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In condition-based maintenance, real-time observations are crucial for on-line
health assessment. When the monitoring system is a wireless sensor network,
data loss becomes highly probable and this affects the quality of the remaining
useful life prediction. In this paper, we present a fully distributed algorithm that
ensures fault tolerance and recovers data loss in wireless sensor networks. We
first theoretically analyze the algorithm and give correctness proofs, then provide
simulation results and show that the algorithm is (i) able to ensure data recovery
with a low failure rate and (ii) preserves the overall energy for dense networks.
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1. INTRODUCTION

In a monitoring activity, the sensor nodes are placed
on/around the monitored target to collect measure-
ments of relevant parameters, such as temperature.
These measurements will help evaluate the system’s
current state of health, diagnose the degree of its sever-
ity, and extrapolate the result in the future to estimate
when the system is more likely to fail. The goal from
this activity is to schedule maintenance in a way that
prevents system failure and shutdown. To guarantee the
efficiency of this process, the accuracy of on-line mea-
surements is a crucial requirement. Consequently, the
Wireless Sensor Network (WSN) used in the monitoring
needs to be dependable.
Avizienis [1] defined system dependability as “the

ability of a system to avoid failures that are more
frequent or more severe, and outage durations that are
longer, than is acceptable to the users”. A dependable
network should be able to deliver a correct service
(forwards measurements to the base station) and makes
sure that failed components will not lead to a network
failure. Dependability of WSNs is a property that
integrates the attributes needed for the application
to be justifiably trusted. These attributes include
availability and reliability.
A network failure can be caused by a number of

triggers such as: packet loss, node failure, energy

exhaustion, packet interference... The network is
considered available if its downtime is very limited,
either due to few failures or to quick restarts when a
failure takes place [2, 3]. A reliable network is able to
continuously deliver a correct service. The reliability
can be computed as the probability that a network
functions properly during a time interval [3, 4].

Most of the research works solved the problem
of network reliability through retransmission and
redundancy mechanisms [4].
The acknowledgment mechanism is employed by the
receiver to notify the sender of the reception status.
If the packet fails to arrive to its destination, the
sender keeps on re-sending it until the transmission
is successful [5, 6, 7, 8]. Unfortunately, this solution
does not respect the energy constraints of WSNs, since
packet transfer consumes the highest amount of energy
in the network. Reliability can also be introduced via
data redundancy mechanisms. A packet is transmitted
in multiple copies using different routes as a backup
plan in case one of the routes fails [9, 10, 11]. However,
this solution results in unnecessary transmissions and
therefore does not improve energy consumption WSNs.

In the context of of extending the network’s lifetime,
a possible solution is to maintain a minimum number of
sensor nodes in an active mode [12, 13, 14]. Although
this seems to solve the energy problem, other issues
arise:



• How can we ensure a minimum coverage rate?
• How can we reduce the loss of data?
• How can we avoid unnecessary packet forwards?

In this study, the number of awake sensor nodes
is kept to a minimum; enough to ensure coverage
rate. The probability of nodes awakening is updated
following two variables: time and failure rate. Data
sensed by a sensor is copied on its neighbors, and
will only be retrieved when the active node has failed.
this mechanism avoids unnecessary packet forwards and
therefore preserves the overall energy. The remainder
of this paper is organized as follows. Section 2 presents
some of the existing work in WSN reliability. In Section
3, we describe our algorithm. The simulation results are
shown and discussed in Section 4.

2. RELATED WORK

Reliability is an important attribute for WSNs
dependability, and it means that the network should
be able to continuously deliver a correct service. In
order to attain reliability in WSNs, sensing coverage
and sensing level need to be considered. The sensing
coverage refers to the integrated sensing area which
is monitored by at least one sensor node. As for the
sensing level, it refers to the number of sensor nodes
being able to detect a new event when it takes place [15].
Choi et al. argue that existing node scheduling schemes
focus on the minimum sensing level for the coverage
problem and neglect the fault tolerance issues [15]. In
one hand, the minimum sensing level is an NP-complete
problem. On the other hand, it cannot be preserved
when nodes start to fail. Therefore, the authors propose
the Fault-tolerant Adaptive Node Scheduling (FANS)
algorithm, which efficiently handles the degradation of
the sensing level. The algorithm designates a set of
backup nodes for each active node. If the latter fails, the
predesignated set of backup nodes activate themselves
to replace it and to restore the lowered sensing level.
FANS requires a small number of backup nodes and a
small amount of control messages. In [16], Chen et al.

study fault tolerant out-of-band monitoring for WSNs.
They aim at placing a minimum number of monitors in
a sensor network in a way that all sensor nodes are
monitored by k distinct monitors, and each monitor
serves at most w sensor nodes. The authors first prove
that this problem is NP-hard and then propose three
algorithms providing near optimal solutions.
Battery level, broken links, and communication

failures have an impact on the Quality of Service (QoS)
of WSNs. This leads to consequences varying from
disturbing the traffic in the network to completely
interrupting it. Geeta et al. [17] propose an Active
node-based Fault Tolerance using Battery power and
Interference model (AFTBI) to identify the faulty nodes
in WSNs. Fault tolerance against low battery power is
assured through a hand-off mechanism where the faulty
node selects the neighbor with highest battery level

and transfers all the services towards it. To reduce
interference signal, a dynamic power level mechanism
is introduced, where the power of a node is adjusted
automatically with regards to its current state (active
or asleep). Simultaneous transmissions can be avoided
if the nodes are only allowed to transmit data within a
time slot. Lee and Choi [18] tackle the same problem by
identifying and isolating the faulty sensor nodes in the
network. Sensed data is compared among neighbors
to determine its accuracy. Once the predetermined
fault threshold is reached, the node in question is
isolated from the diagnosis process; a faulty node can
be included in data transferring but not data sensing.
Transient faults in communication and sensor reading
are tolerated by using the time redundancy mechanism.
The drawback of this solution is that faults are assumed
to be only related to the sensing activity, excluding
other sources of failure.

Energy in WSNs can also be preserved through
lifetime optimization. The authors in [19] leverage
prediction to prolong the network lifetime, by exploiting
temporal-spatial correlations among the data sensed
by different sensor nodes. Based on Gaussian
Process, the authors formulate the issue as a minimum
weight sub-modular set cover problem and propose
a centralized and a distributed truncated greedy
algorithms (TGA and DTGA). They prove that these
algorithms obtain the same set cover. Lifetime
optimization using knowledge about the dynamics of
stochastic events has been studied in [20]. The
authors presented the interactions between periodic
scheduling and coordinated sleep for both synchronous
and asynchronous dense static sensor network. They
show that the event dynamics can be exploited for
significant energy savings, by putting the sensors on
a periodic on/off schedule. In [13], the authors
design a polynomial-time distributed algorithm for
maximizing the lifetime of the network. They
proved that the lifetime attained by their algorithm
approximates the maximum possible lifetime within a
logarithmic approximation factor. Zhang et al. [21]
presented a stochastic sensing algorithm to reduce
energy consumption through node scheduling. They
used data correlation between nodes to reduce error
rate by adjusting duty cycle of faulty sensors. Their
algorithm conserves 60 % of energy as compared to
other solutions, while confining sensing error within
specified error tolerance. In [22], He et al. use actors to
allocate spare sensors to sensor-deficient regions or to
relocate sensors from sensor-abundant regions to sensor-
deficient regions. They introduce a baseline centralized
greedy algorithm for sensor allocation, where global
sensor information is communicated to obtain the
optimal solution. The works cited here focus on a
periodic schedule for turning the sensors on and off.

Data collection delay and reliability need to be
considered in scheduling algorithms for WSNs. Zhang
et al. [23] claim that existing algorithms have not solved



these two problems effectively. The authors propose
the Fault-Tolerant Scheduling (FTS) algorithm, where
each sensor node detects the environment and generates
some sensing data at regular intervals. The algorithm
helps surviving network malfunction by switching the
parent of a sensor node to its backup parent. The
simulation results show that FTS has a short data
collection time and high fault tolerance. Feng et

al. [24] considered the problem of efficient data
aggregation in WSNs by putting in place amendment
strategies in case of failures. Their solution needs
local information to repair the aggregation tree and
automatically reschedules nodes for interference free
aggregation after the amendment. Cheng et al. [25]
present STCDG, an efficient data gathering scheme
based on matrix completion. STCDG takes advantage
of the low-rank feature instead of sparsity, thereby
avoiding the problem of having to be customized for
specific sensor networks. They exploit the presence of
the short-term stability feature in sensor data, which
further narrows down the set of feasible readings and
reduces the recovery errors significantly. Furthermore,
STCDG avoids the optimization problem involving
empty columns by first removing the empty columns
and only recovering the non-empty columns, then filling
the empty columns using an optimization technique
based on temporal stability.

To preserve the overall energy in the network, sen-
sor nodes are on a periodic schedule where they are
switched on only when the sensing level is decreased.
An optimal schedule needs to take nodes failure rate
and the elapsed run-time into consideration. When
the failure rate is small, wakening the nodes too often
would only waste energy. As we go further in time,
nodes start to exhaust their energy supply and this is
when they start to fail. A combination a node failure
rate and elapsed time would give us a better indication
of the optimal nodes wakening schedule.
Maintaining the sensing level considerably reduces the
amount of packet loss, yet it does not completely pre-
vent its occurrence. A sudden node failure will result
in the permanent loss of the held data packet, unless a
redundancy mechanism is put in place. In the context
of reducing energy consumption, the redundancy solu-
tion should be avoided and replaced by other solutions
which do not include unnecessary packet transmission.

In this paper, we present a fault-tolerant data
collection algorithm. This algorithm preserves energy
consumption by only maintaining the necessary set
of nodes in the active mode to ensure the minimum
coverage level, while considering nodes failure rate. It
is also able to recover data loss when a node fails before
forwarding the data towards the base station. This
algorithm is described in the next section.

3. THE PROPOSED ALGORITHM

To cope with fault tolerance and data survivability, a
fully distributed algorithm is presented and theoreti-
cally analyzed. Our algorithm seeks to cover data loss
by maintaining a necessary set of working nodes and
recovering failed ones when needed. We suppose that
we are in the case of high density networks, and not all
nodes participate in the network’s service. Some nodes
are in an idle state because their targets are actually
covered by working sensors. We consider that these
idle sensors wake up periodically to check for eventual
node failures and therefore ensure their targets’ cover-
age. In case of failures, they decide to switch to active
mode and therefore initiate the recovery process to re-
trieve the data of the failed nodes. However, during the
network’s service, how can we handle the case where
two (or more) sleeping nodes, would realize at the same
time that the working neighbor is down?

Indeed, two neighboring sensor nodes may be elected
at the same time step, and the recovery process of two
neighboring nodes may be the same. This paper aims
at filling this gap by proposing an efficient node failure
recovery scheme in order to allow sensor networks to
gracefully degrade in performance instead of failing
unpredictably.

In the following, we first focus on the legitimate state
formulation and next, we present the algorithm which
consists in only three rules and give the correctness
proofs.

3.1. Problem formulization

Let G = (V,E) be the graph modeling the sensor
network, with |V | = n and |E| = m. We assume sensor
node identifiers to be unique. We recall that sensor
node identifier is unique if and only if i.Id 6= j.Id holds
for each i, j ∈ V (i 6= j). A sensor node can be in one
of these three states: failed, working, or probing. Every
node i in the network has to maintain the following data
structure:

- Di: the sensed data by node i. Each time a node
updates Di, it sends/replicates the newly sensed
data to/on its neighbors.

- Pi: the parity information on node i. It is the result
of the combination of the replicated information of
its neighbors.

We considered two different scenarios for the parity
information. In the first scenario, there are no memory
constraints. Each new data is saved on a different
memory register, and we used the SUM function for
data collection. In the contrary, all information must
be saved on the same memory register when it comes
to the second scenario. So, we used the XOR function
to preserve memory space.

Let T = t1, t2, ..., tk be the set of monitoring targets
to be covered and S = 1, 2, ..., n the set of sensor nodes.



Each target in T has to be covered by at least one sensor
node in S. We call Γu the set of neighbor- sensors of
target tu, 1 ≤ u ≤ k. Each neighbor-sensor j ∈ Γu is
capable of monitoring the target tu, formally:

∀j ∈ Γu : ds(tu, j) ≤ Rs,Γu ⊆ S, tu ∈ T,

where ds(tu, j) denotes the distance between points tu
and sensor j.
Let Ni be the initial set of neighbors of node i and

di = |Ni \ Γu(i) \ i|, the number of its working
neighbors. As the number of failures goes up with
time, we let d∗i be the dynamic number of alive neighbor
nodes. We denote by Dk the set of di + 1 replicas of
data Di. Also, we denote by s (Dk) the sensor node to
which data-replica Dk is assigned, for 1 ≤ k ≤ di + 1
and by ŝ (Dk) the elected sensor node who recovers
Di if node i fails. The data are replicated on different
nodes (space exclusion, see Lemma 1) since the goal is
to achieve data survivability even if some node failures
occur in the network.
We say that a sensor node i is independent if
i.state = working∧(∀j ∈ Γu(i))(j.state = sleeping∨

probing ∨ failed)
and that i is dominated if
(i.state = sleeping∨probing)∧(∃j ∈ Γu(i))(j.state =

working)
The legitimate state (let us denote it Σ) of the network
is then expressed as follows:
∀i ∈ V : i.state = failed

⇒ ((∃ŝ, ŝ′ ∈ Γu(i))(ŝ.state = ŝ′.state = working) ⇒
(ŝ(Dk

i ) = ŝ′(Dk
i )))

In other words, each data loss is recovered by at most
one working sensor node.

3.2. The algorithm

When a sleeping node wakes up, it sends a probe-

request message to check if there exist working nodes
in its vicinity. If no working nodes, it recovers the
lost data of the failed node and starts to operate in
the active mode; otherwise, it sleeps again. Nodes are
initially in the sleeping mode. Each node sleeps for an
exponentially distributed time generated according to a
probability density function (PDF) f(t) = λe−λt, where
λ is the probing rate of the sensor node and t denotes
its sleeping time duration.
Upon detecting an eventual failure, a probing node i

updates its actual probing rate λi by taking into account
the dynamic number of alive neighbors d∗i : λnew

i ←
λi . di

d∗

i

. Then, a new sleeping period is generated by

using the new computed parameter λnew
i according to

the PDF function: f(t) = λnewe−λnewt. The following
notations are also given for the predicates of node i

- W (i): working neighbor: ∃j ∈ Γu(i), i.state =
working

- W ∗(i): working neighbor with lower Id: ∃j ∈
Γu(i), j.state = probing ∧ i.Id > j.Id

- F (i): failed neighbor: ∃j ∈ Γu(i), j.state = failed

- P ∗(i): probing neighbor with lower Id: ∃j ∈
Γu(i), j.state = probing ∧ i.Id > j.Id

The proposed algorithm uses the following three rules:
r1:

if (i.state = probing ∧ (P ∗(i) ∨W (i))) then

if P ∗(i) then
λnew
i ← λi.

di

d∗

i

end if

i.state← sleeping

end if

FIGURE 1. Algorithm rule 1.

r2:

if i.state = probing ∧ (¬W (i)∧¬P ∗(i)∨F (i)) then
if F (i) then
if memory constraint then
Di ← Pz ⊕

k∈Nz\Γu(i),k 6=j
Dk (*F (i) = F (z) =

j*)

else

Di ← Dk, k ∈ Nz\Γu(i), k 6= j (* k is

chosen randomly*)

end if

end if

i.state← working

end if

FIGURE 2. Algorithm rule 2.

r3:

if (i.state = working ∧W ∗(i)) then
i.state← sleeping

end if



FIGURE 3. Algorithm rule 3.

3.3. Correctness proofs

In this section, we detail properties of our fault tolerant
algorithm, and express its validity/convergence. We
assume that links are trustworthy/flawless and lossless.

Lemma 1. A sensed data Di is guaranteed to survive
in the presence of di permanent faults if and only if
s(Dk

i ) 6= s(Dk′

i ), for 1 ≤ k, k′ ≤ di + 1.

Proof. If di nodes fail, then there is s(Du
i ), 1 ≤ u ≤

di + 1 which did not fail, and therefore Du
i will be

recovered successfully from s(Du
i ) since there are di+1

copies of Di assigned to di+1 different nodes. However,
if there is a sensor node s(Dk

i ), 1 ≤ k ≤ di+1, such that
s(Dk

i ) = s(tui ) = s∗ and s∗ fails, then neither Dk
i nor

Du
i can be recovered successfully.

Lemma 2. If at most di neighbors crash down for any
sensor node i ∈ V in the network, then the algorithm is
valid and resists to eventual node failures.

Proof. The proposed algorithm is based on replication
scheme with space exclusion. Thus, according to
Lemma 1, each data is replicated di+1 times onto di+1
distinct sensor nodes. We have at most di node failures
at the same time. So at least one copy of each data is
recovered from a fault free node.

Lemma 3. If a node changes to the working state by
r2, then it remains in its state and will never execute a
rule again until an eventual failure takes place.

Proof. Let i be a sensor node that executes r2.
According to the preconditions of all rules, node i can
execute only rule r3 in the next round. However, in
order to do so, one of its neighbors would have to switch
to working state following r2. This is impossible as
long as node i is in the working state. Thus, node i

will never execute a rule again. If node i is down, it
remains in its state (fail-stop failure).

Lemma 4. If a sensor node is enabled by rule r2, then
each one of its neighbors will execute at most one more
rule until their next wake-up/probing, and this rule will
be r1.

Proof. Let i be a node that executes r2. When node
i changes to working state, all its neighbors are either
in sleeping, probing, or failed state. So, we have three
possible scenarios: i) neighbors in sleeping state: there
is no conflict in this case. ii) neighbors with probing

state: these neighbors have a higher Id than i. iii)
failed neighbors will remain in their state until their
recovery.

Lemma 5. Every sensor node is either independent,
dominant, or failed.

Proof. From the point of view of node i, we have three
scenarios:

- if node i is in the working state and is not
independent, then i may execute rule r3.
- if node i is in the sleeping ∨ probing state and is
not dominated, then node i may execute rule r2.
- if node i is in the failed state, then node i will
remain in its state until its recovery.

Lemma 6. When a node is not failed ∨ sleeping, it
can make at most two moves.

Proof. By Lemma 3 and Lemma 4, each rule can be
executed at most once by a node. Hence, the only case
a node makes two moves is when it executes r3 then r2
with a working state.

Theorem 1. With respect to the legitimate state Σ
of the network, the proposed algorithm converges within
2n moves.

Proof. This follows from Lemma 1 to Lemma 6.

3.4. Message complexity analysis

In the following, we give an Upper-Bound of the actual
number of probe/reply messages exchange during the
network’s lifetime task.

Theorem 2. The number of probe/reply messages
involved by the algorithm is at most:

O n m×max
i

tRi

i

∆i

)

, 1 ≤ i ≤ n

where, n is the number of nodes, m is the number of
virtual communication links, tRi

i is the reliable lifetime
of node i and ∆i is the smallest sleeping period time of
node i.
This bound is attainable.

Proof. (a)- The reliable lifetime tRi

i , of the node
i, 1 ≤ i ≤ n for a specified reliability Ri, starting the
mission at age 0, is computed as follows:

Ri = 1 − F (tRi

i ) = e−λt
Ri
i ⇒ ln Ri = −λt

Ri

i ⇒ tRi

i =
− 1

λ
ln Ri

This is the lifetime during which the sensor node i will
be functioning successfully with a reliability of Ri.
According to node’s sleeping periods subdivisions of
the time, we have:
0 = to < t1 < t2 < ... < tk = t. Let
∆p = [tp−1, tp[, 1 ≤ k denote the pth sleeping pe-
riod time. Since the number of failures goes up, the



sleeping time period decreases with time. This im-
plies that the probing process of node i costs at most

O

(

t
Ri
i

∆i

)

, 1 ≤ i ≤ n,∆i = min∆p, 1 ≤ p ≤ k. In

addition, for each probing message issued from node i,
we may have the corresponding reply messages from
its working neighbors. This cost is at most O(|Ni|).
Therefore, from the point of view of node i, the number

of probe/reply messages is at most O

(

|Ni| ×
t
Ri
i

∆i

)

.

Finally, summing up for the whole n sensor
nodes, the algorithm’s message cost is at most

O

(

Σn
i=1|Ni| ×

t
Ri
i

∆i

)

≤ O

(

n m×maxi
t
Ri
i

∆i

)

, 1 ≤ i ≤

n

(b)- To see that this bound is really attainable,
consider a linear chain graph of only two sensor nodes
s1 and s2(n = 2). We need to orchestrate the involved
communications between these nodes in time. Assume
that s1 is working and s2 is the passive state. If
tR1

1 = tR2

2 (s1 and s2 start functioning and fail at the
same time), then the whole number of probe-message

issued from s2 is
t
R2

2

∆2

, where ∆2 is the constant sleeping
time period of s2. Since both s1 and s2 have the same
life for which nodes will be functioning successfully,
node s1 will reply for each probing message issued from
s2. As a result, the whole number of involved probe-
request/reply message before the failure of s1 and s2 is

n m×
maxit

R
i

miniminj∆ji
= 2×

t
R2

2

∆2

4. SIMULATION RESULTS

In this section, we discuss some results through
simulations. We consider a flat grid topology of 10 by
10 i.e. 100 monitoring zones. We vary the number
of sensors between 200 and 1600 nodes. Since sensors
are uniformly distributed in the monitoring area, the
density of sensors at each zone varies between 2 and 16.
The performance evaluation considers five aspects:

(i) Network lifetime evolution; (ii) Failure rate: that is
the ratio of information recovery attempts that did not
succeed; (iii) Effective monitoring time: this measure is
related to the time between the death of the active node
in a monitoring zone and its replacement; it is expressed
in (%); (iv) Total number of messages; and (v) Number
of awakenings per inactive sensors.
Our simulations are performed in two different

settings: the first setting sets a low wake-up rate but
enough to keep the monitoring time ratio higher than
50% in almost all configurations (see Figure 4); while
the second setting considers a wake-up rate four times
higher than the rate in the previous setting. This
allowed us to reach monitoring time ratios up to 90%
(see Figure 5).
These two settings were put in place in order to test

and compare two different solutions for data collection.

In the first scenario, we assume that there is no
constraint related to memory capacity of sensor nodes.
Therefore, each sensor is able to save data received from
all nodes in its neighborhood on a different memory
register (this method is called SUM). As for the second
scenario, we aim for preserving the memory space.
Thus, we suppose that each node has one memory
register that is available to save all information received
from all its neighboring nodes; every new data packet is
added in the register using the function XOR. We can
notice that the second method for data saving (XOR)
is highly sensitive to any neighboring node failure. In
fact, the failure of a neighbor induces a corruption of the
calculation of the data needed for the recovery process.
For this reason, the coverage rate needs to be high
enough for this solution to work. Consequently, the
XOR method is only implemented in the 4x version of
our simulation settings.

4.1. Wake-up rate = 1x

In this section, only the SUM method is implemented.
The nodes in the network are designed to fail randomly.
This failure rate varies from 0% to 8% by a pitch of 2%.

In Figure 4(a), we can observe that the network’s
lifetime increases in an almost linear manner. For
a small network, the number of times a sensor node
receives a wake-up message is higher comparing to the
same number when the network is larger. Therefore, the
more nodes are participating in the coverage process,
the less energy is consumed per node and the overall
energy in the network is preserved. The overall energy
level has an impact on the recovery process. In fact,
when the energy level start to go down, the number
of nodes able to cover a given area is reduced. The
remaining nodes will receive an increasing number of
wake-up messages, and when they fail the number of
replacements is continuously decreased. Eventually,
some zones will no longer be covered. Thus, data
recovery rate increases when the network is larger. Even
though failures are less impacting for a dense network,
the failure rate is low even for a small network (see
Figure 4(b)). The coverage rate (illustrated in Figure
4(c)) is more successful when the density of the network
grows. Nevertheless, it remains between the values of
45% and 55% depending on the settings. Indeed, as
discussed above, the number of wake-up messages in
the network is higher with the growth of nodes number
and therefore more energy is dissipated. On the other
hand, when the number of nodes is small, even though
the number of wake-up messages is reduced, nodes fail
faster as the number of node replacements is small.
Consequently, there is no huge difference in the coverage
rate. Still, a dense network guarantees a better coverage
rate. The total number of exchanged messages in the
network will only grow with the increased number of
nodes in the network as shown in Figure 4(d). In fact,
each node will copy its sensed data onto each one of its
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FIGURE 4. Performance evaluation with average (1x) wake up rate.

neighbors. So when the number of nodes increases, the
number of messages increases accordingly. The number
of wake-ups per node illustrated in Figure 4(e) follows a
logarithmic form. Sensor nodes periodically wake up to
verify if there zone is being covered by an active node.
The wake-up rate follows a probability function that is
updated considering node failure. So, the number of
these messages highly depends on the number of nodes
failure. When the probability of node failure increases,
the number of nodes in the network is decreased and
thus the total number of wake-ups.

4.2. Wake-up rate = 4x

In this section, both of SUM and XOR methods are
tested. Since all the curves are similar, except for failure
of the recovery process, only the figure corresponding
to the latter illustrates the comparison between both
methods. Nodes failure rate are fixed to 0% and
8% only (the two extreme cases from the previous
configuration).

Comparing to the previous configuration, the
network’s overall lifetime has decreased. Considering
that the wake-up rate here is 4 times more frequent, it
is normal that network consumes more energy in this
setting (see Figure 5(a)). Nevertheless, the different
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FIGURE 5. Performance evaluation with high (4x) wake up rate.

zones coverage rate illustrated in Figure 5(c) was
considerably and understandably improved. The failure
of the recovery process in Figure 5(b) remains very
low with the absence of memory constraints, and even
lower comparing to the previous configuration. In
the contrary, the XOR function appears to be highly
sensitive to node failure. When the failure rate reaches
8%, the recovery failure jumps by 30% for a small
network and 15% when the network is dense. The
total number of exchanged messages is considerably
higher than the number in the previous configuration,
and this is due to the increased number of wake-up
messages. The algorithm also improves the overall
energy consumption by only maintaining a necessary

set of nodes in the active mode. the rest of the
node wake up randomly to check their area and ensure
that coverage is performed. This random function
is optimized by updating it accordingly to the nodes
failure rate.

5. CONCLUSION

In this paper, we proposed a fully distributed algorithm
that seeks to cover data loss by maintaining a necessary
set of working nodes and recovering failed ones when
needed. Each sensor node copies its data onto neighbors
using two different assumptions: (i) in the first one, we
suggest that there is no memory constraint and each



new information is copied on a different register, and (ii)
in the second one we put in place a memory constraint
and use the XOR function to add a new data to the
common memory register for all data. We also tested
two different configurations, where the wake-up rate is
4 times more frequent from one configuration to the
other. The performed simulations showed that a more
frequent wake-up rate helps improve the quality of the
recovery process. Even though the absence of memory
constraints facilitates the recovery process, this rate was
maintained below 35% for a small network and around
15% for a dense one even in the presence of memory
constraints. This algorithm also helps preserving the
energy in the network by only maintaining a necessary
set of sensor nodes in the active mode. The rest of
the nodes wake up randomly to ensure that their area
is covered by a sensor node. This random function is
optimized by updating it according to the nodes failure
rate.
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