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The present work pertains to the numerical prediction of the current residual strength of large metallic engineering structures when submitted to accidental overloads. In this context, is developed a unified 3D numerical methodology reproducing the successive stages of the progressive failure of structures made of ductile metals, viz. (i) more or less diffuse micro-voiding induced damage, (ii) strain/damage localization in a narrow band, and (iii) macro-crack formation and propagation. This is notably realized via a combination of the GTN model and an XFEM/CZM coupling. Localization is addressed here as a phenomenon driven either by plastic instability or void coalescence. In the latter case an original transition criterion is proposed, accounting for the competition between Mode I/II type localization, utilizing the local triaxiality as a mode indicator. The methodology is implemented as a user element subroutine (UEL) within the commercial finite element computation code ABAQUS and its performance is assessed considering 3D numerical simulations of various loading cases. The proposed methodology is shown to be mesh objective and able to fairly reproduce ductile crack patterns, while it gives promising results regarding global specimen responses.

q 1 , q 2 material constants Q r acoustic tensor

Introduction

The objective of this work is the development of a unified three-dimensional methodology able to reproduce qualitatively and quantitatively, the successive stages of the progressive ductile failure, in the context of engineering design 5 using commercial finite element computation codes. It is generally accepted that ductile cracks appear within a material following a three-stage process after plastic flow initiation: (i) more or less diffuse micro-voiding induced damage, (ii) strain/damage localization in a narrow band, and (iii) macro-crack formation and propagation. As soon as the loaded material is no longer able 10 to accommodate the deformation by the sole plasticity, micro-voids nucleate (by particle/matrix debonding, phases separation, etc) and grow. At a more or less advanced stage of the loading, micro-voids coalesce and form narrow bands wherein strain progressively localizes and meso-cracks nucleate. At the ultimate stage of the loading, meso-cracks coalescence themselves to form the traction-free macro-crack. The above mentioned stages are depicted in Fig. 1. Since the development of continuum damage mechanics (CDM) by Kachanov [START_REF] Kachanov | Time of the rupture process under creep conditions[END_REF],
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a great variety of models has been proposed to account for the coupling between elasticity/plasticity and micro-damage in ductile materials. One can notably cite the models by Lemaître [START_REF] Lemaitre | A Continuous Damage Mechanics Model for Ductile Fracture[END_REF], Perzyna [START_REF] Perzyna | Stability of flow processes for dissipative solids with internal imperfections[END_REF] and Rousselier [START_REF] Rousselier | Ductile fracture models and their potential in local approach of fracture[END_REF], while the most widely used undoubtedly remains the model by Gurson [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth[END_REF] as extended by Tvergaard and Needleman [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF], known as the GTN model.

Many modified GTN models have been also proposed in order to take into account different loading conditions [START_REF] Longère | Modeling the Transition between Dense Metal and Damaged (Microporous) Metal Viscoplasticity[END_REF][START_REF] Longère | Description of shear failure in ductile metals via back stress concept linked to damage-microporosity softening[END_REF][START_REF] Nahshon | Modification of the Gurson Model for shear failure[END_REF][START_REF] Nahshon | A modified Gurson model and its application to punch-out experiments[END_REF], matrix material behaviours [START_REF] Shinohara | Anisotropic ductile failure of a highstrength line pipe steel[END_REF][START_REF] Benzerga | Plastic potentials for anisotropic porous solids[END_REF] or void shapes [START_REF] Benzerga | Anisotropic ductile fracture: Part II: Theory[END_REF][START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids-Case of axisymmetric prolate ellipsoidal cavities[END_REF][START_REF] Gologanu | Approximate Models for Ductile Metals Containing Nonspherical Voids-Case of Axisymmetric Oblate Ellipsoidal Cavities[END_REF]. Yet, in the softening regime when employing the standard finite element method (FEM), the above mentioned CDM-based models exhibit a pathological mesh dependence as the result of the ill-posed problem.

Among the methods aiming at regularizing the numerical solution, one can cite (integral and differential) non local models. They however require a very fine meshing and involve a characteristic length l c [START_REF] Seabra | Damage driven crack initiation and propagation in ductile metals using XFEM[END_REF][START_REF] Bažant | Nonlocal Continuum Damage, Localization Instability and Convergence[END_REF], a quantity that is not physical but rather numerically determined. Moreover, as a consequence of the fine meshing, these methods suffer from a high computational cost and increased complexity for distributed computing implementations [START_REF] Shakoor | Computational Methods for Ductile Fracture Modeling at the Microscale[END_REF].

Intrinsically, CDM is limited to phenomena preserving the continuity of the matter and must accordingly be replaced by other methods as soon as the crack-induced strong discontinuity is forming. The most widely used technique in FEM, due to its relative ease of implementation, is element deletion [START_REF] Longère | Ship structure steel plate failure under near-field air-blast loading: Numerical simulations vs experiment[END_REF] or erosion [START_REF] Wulf | FE-simulation of crack paths in the real microstructure of an Al(6061)/SiC composite[END_REF][START_REF] Mchugh | Micromechanical modelling of ductile crack growth in the binder phase of WC-Co[END_REF], the former rending nill the element strength while preserving the mass whereas the latter suppressing the element and involving a mass loss.

Their inconvenience is that they induce a mesh dependency of the numerical results in terms of size and orientation. Full geometry remeshing [START_REF] Mediavilla | A robust and consistent remeshing-transfer operator for ductile fracture simulations[END_REF][START_REF] Feld-Payet | A new marching ridges algorithm for crack path tracking in regularized media[END_REF] or local mesh refinement [START_REF] Shakoor | An adaptive level-set method with enhanced volume conservation for simulations in multiphase domains[END_REF] of highly damaged regions is often utilized to accommodate newly formed cracks in a meshed structure. They can be coupled to element erosion [START_REF] Borouchaki | Adaptive remeshing in large plastic strain with damage[END_REF][START_REF] Areias | A constitutive-based element-by-element crack propagation algorithm with local mesh refinement[END_REF], alleviating the mesh dependency issues or to the cohesive zone method (CZM) inserting cohesive elements in the newly formed interfaces [START_REF] Chiaruttini | An adaptive algorithm for cohesive zone model and arbitrary crack propagation[END_REF].

They are also expensive in terms of computation time.

An alternative approach to methods based on the standard FEM has been the enriching of the kinematics of the FE formulation [START_REF] Ortiz | A finite element method for localized failure analysis[END_REF][START_REF] Belytschko | A finite element with embedded localization zones[END_REF]. The method that mostly captured the attention of the community has been the XFEM [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]. Its appeal consists in that there is no need for a priori knowledge of the crack path or remeshing as the crack is described via the node enrichment independently of the mesh. It has found application mostly on brittle fracture problems [START_REF] Mariani | Extended finite element method for quasi-brittle fracture[END_REF][START_REF] Budyn | A method for multiple crack growth in brittle materials without remeshing[END_REF][START_REF] Comi | Extended finite element simulation of quasi-brittle fracture in functionally graded materials[END_REF] but gives promising results regarding ductile failure simulation [START_REF] Seabra | Damage driven crack initiation and propagation in ductile metals using XFEM[END_REF][START_REF] Pourmodheji | Improvement of the extended finite element method for ductile crack growth[END_REF][START_REF] Crété | Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM[END_REF].

Nevertheless, in these cases the passage is realized directly from the diffuse damage state to the crack opening, neglecting the localization phase. Since damage localization implies gradual material degradation an interesting idea has been the coupling of the XFEM to CZM [START_REF] Wells | A new method for modelling cohesive cracks using finite elements[END_REF][START_REF] Remmers | A cohesive segments method for the simulation of crack growth[END_REF][START_REF] Combescure | Cohesive laws X-FEM association for simulation of damage fracture transition and tensile shear switch in dynamic crack propagation[END_REF][START_REF] Wolf | Numerical modeling of strain localization in engineering ductile materials combining cohesive models and X-FEM[END_REF][START_REF] Mikaeili | Numerical modeling of shear band propagation in porous plastic dilatant materials by XFEM[END_REF]. This way the softening process is better captured while avoiding abrupt load drops.

In the context of numerical simulation-aided engineering design, employing commercial finite element computation code, like Abaqus, the following requirements need to be met: (i) no alteration of the mesh connectivity mid-analysis, (ii) no a priori knowledge of the crack path, (iii) need for mesh objective results, using particularly coarse meshes, (iv) reasonable computational cost and simulation times, (v) straightforward implementation for the use of the practising engineer. Taking these into consideration the use of the GTN model with an XFEM/CZM coupling appears as the most suitable choice both from a physical and a purely engineering perspective. The unified three-dimensional numerical methodology developed in the present work is schematically illustrated for one 3D finite element in Fig. 2. is generally rare for the 3D case [START_REF] Shakoor | Computational Methods for Ductile Fracture Modeling at the Microscale[END_REF].

GTN (standard FEM) GTN + XFEM/CZM XFEM

In Section 2 the basic assumptions regarding the material model, the cohesive law and the adopted kinematic enrichment approach are outlined. The numerical three-dimensional operational method developed in this work, notably comprising criteria for element localization, band orientation, propagation and continuity, as well as the XFEM/CZM coupling formulation and the employed integration scheme, is described in Section 3. Finally, in Section 4 the unified methodology is applied as an Abaqus user element in 3D numerical simulations of various quasi-static loading cases and a study regarding the influence of the user defined parameters of the analysis is presented.

Preliminary considerations

In this section are presented some preliminary considerations regarding the damage-plasticity model, the cohesive law and the XFEM kinematics used in the present work.

Kinematic framework

Since ductile fracture is a phenomenon that potentially involves large strain and rotation, the finite strain framework would be required. However, the implementation of the unified methodology (GTN+XFEM/CZM) accounting for large deformation is considered an important challenge in itself. The choice of the adequate reference configuration and related strain and stress measures, associated to the computation of the internal forces and stiffness matrix and the need for ensuring the continuity of the band/crack in the current configuration, are all open. The main challenge involved in a formulation accounting for large strain and rotation is linked to the tracking of the propagating meso and macro-crack which is far more complex when the structure undergoes large rotations. A question that arises is whether the tracking of the meso and macrocrack should be realized relative to the initial or the current configuration (Lagrangian vs. Eulerian perspective, and their combination). For example Kumar et al., [START_REF] Kumar | A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects[END_REF] have adopted an updated Lagrangian approach to describe cracking in an elasto-plastic material without damage using 2D XFEM, Broumand and Khoei, [START_REF] Broumand | The extended finite element method for large deformation ductile fracture problems with a non-local damage-plasticity model[END_REF] also adopted an updated Lagrangian approach in the framework of 2D XFEM, using a non-local damage-plasticity model, while, on the other hand, Legrain et al., [START_REF] Legrain | Stress analysis around crack tips in finite strain problems using the eXtended finite element method[END_REF] argue that to deal with the problems of cracking within the XFEM framework in large deformations, the total Lagrangian approach is much more suitable. The numerous non-linearities of the model (GTN + XFEM/CZM) do not facilitate the passage to large deformations, particularly affecting the convergence speed and the accuracy of the results. To the authors' knowledge, there are, currently, no models implemented in a commercial FE code that make use of an XFEM/CZM combination within the framework of ductile fracture in finite strain. For these reasons, in this work, efforts were concentrated on the development of a robust and reliable model making it possible to treat the ductile fracture of materials, albeit in the small strain framework, and the confrontation of various scientific challenges, e.g. the passage to 3D, the development of an efficient numerical integration scheme, physically motivated localization scenario and band propagation criteria. The present model can, thus, act as a reliable support for the passage to the large strain framework in the future.

In the small strain framework the strain tensor r is defined by:

r " 1 2 pp∇uq `p∇uq T q (1)
where ∇u is the displacement gradient. The total strain and total strain rate tensor can be accordingly decomposed into elastic and plastic contributions: 

r " r e `
where r e and r p represent the elastic and plastic strain tensors respectively.

An overhead dot denotes the corresponding strain rate tensor.

Damage-plasticity model : GTN microporous plasticity model

The material under consideration is tentatively assumed to be rate and temperature independent. Here the coupling between plasticity and ductile damage, see Fig. 2 (left), in the stage of more or less diffuse damage is described using the Gurson model [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth[END_REF] as modified by Tveergard and Needleman [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF], taking into account isotropic hardening as well as void nucleation and growth induced softening. The GTN plastic flow potential is written as follows:

Φ " ˆσeq σ y ˙2 `2q 1 f cosh `´3 2 q 2 p m σ y ˘´r1 `pq 1 f q 2 s " 0 (3) 
with σ eq the equivalent stress, p m " ´σm the hydrostatic pressure, σ y the yield stress, f the void volume fraction and q 1 , q 2 material constants. The equivalent stress and pressure read:

σ eq " c 3 2 s r : s r and p m " ´T rpσ r q 3 ( 4 
)
where the deviatoric part s r of the stress tensor σ r is:

s r " σ r ´1 3 T rpσ r q I r (5) 
With σ r the Cauchy stress tensor, I r the identity tensor and T rp'q the trace of a tensor. The yield stress σ y accounting for isotropic strain hardening is assumed to obey a Voce type law:

σ y " R 0 `R8 r1 ´expp´kκqs (6) 
where R 0 the initial size of the elasticity domain, R 8 the saturating value 125 of strain hardening -(R 0 `R8 ) representing accordingly the maximum size of the elasticity domain -, k a strain hardening-related constant, and κ the accumulated plastic strain.

The instantaneous plastic strain rate is decomposed into a volumetric and a deviatoric contribution:

9 r p " 1 3 9 v I r `9 d n r (7) 
where 9 v is the volumetric intensity and 9 d is the deviatoric intensity and n r "

3 2 s r σeq the plastic flow direction. According to the normality rule, the expressions for the volumetric and deviatoric plastic strain rates are given respectively as:

9 v " ´9 Λ BΦ Bp m and 9 d " 9 Λ BΦ Bσ eq (8) 
where 9 Λ is the plastic multiplier.

The rate of the accumulated plastic strain κ is given in Gurson [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth[END_REF] as:

9 κ " σ eq 9 d ´pm 9 v p1 ´f qσ y (9) 
The porosity rate 9 f is decomposed into two parts, 9 f g accounting for void growth and 9 f n for void nucleation:

9 f " 9 f g `9 f n (10) 
where 9 f g " p1 ´f q 9 v , f p0q " f 0 and 9

f n " A n 9 κ
where the nucleation rate A n is expressed as a Gaussian function [START_REF] Chu | Void nucleation effects in biaxially stretched sheets[END_REF] A n " [START_REF] Shinohara | Anisotropic ductile failure of a highstrength line pipe steel[END_REF] with f N the void volume fraction that can be ultimately nucleated, κ N the strain at the maximum micro-void nucleation rate and s N the standard deviation.

f N s N ? 2π exp ˆ´1 2 `κ ´κN s N ˘2˙ ( 
There are some well-known limitations inherent to GTN model, e.g. the assumption of very small void volume fraction, its incapacity to describe the coalescence band induced plastic anisotropy, and the pathological mesh dependence in the softening regime and further uncontrolled numerical localization, amplified by the use of the erosion technique to describe the crack. In order to palliate these limitations, in this work, the kinematical consequences of the presence of a localization band are accounted for by the XFEM, while the band's physical consequences, i.e. softening due to material mechanical degradation, are phenomenologically reproduced by means of the cohesive law. The combination of the GTN model with an XFEM/CZM approach leads to a physic-numerical solution that is mesh objective, unlike other methods seeking to reproduce: void coalescence, via e.g. a micro-voiding amplification phenomenological function f ˚pf q as in Tvergaard and Needleman [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF], or localization induced cracking, e.g. by means of the use of the element deletion technique.

Cohesive zone model (CZM)

The stage of diffuse damage growth is succeeded by the coalescence of voids in a thin localization band, see Fig. 2 (center), wherein the progressive matter decohesion leading to the ultimate crack formation is accompanied by a gradual thermomechanical properties degradation leading to a complete loss of resistance. This phase can be phenomenologically described via the use of a cohesive zone model. CZM is based on the early works of Dugdale [START_REF] Dugdale | Yielding of steel[END_REF], Barenblat [START_REF] Barenblatt | The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[END_REF][START_REF] Barenblatt | The Mathematical Theory of Equilibrium Cracks in Brittle Fracture[END_REF] and Hillerborg [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF] and describes the progressive loss of cohesion via the use of a predetermined traction/separation relationship. One can typically distinguish two types of cohesive entities described by cohesive laws: 1) pre-existing cohesive entities having their own properties, such as structural adhesives between two parts or interface between two plies in laminate composites (usually designated as intrinsic cohesive laws), e.g. [START_REF] Turon | A damage model for the simulation of delamination in advanced composites under variable-mode loading[END_REF] (see Fig. 3(b)),

2) cohesive entities not existing initially but forming under certain conditions at an advanced stage of the deformation process, with properties identical to the matrix at its onset and diverging from them along the deformation process (usually designated as extrinsic cohesive laws), e.g. [START_REF] Elices | The cohesive zone model: advantages, limitations and challenges[END_REF][START_REF] Vocialta | 3D dynamic fragmentation with parallel dynamic insertion of cohesive elements[END_REF], see Fig. 3(a). An intrinsic cohesive law that possesses both a hardening and a softening branch would be out of the scope of this work because the cohesive law is activated in an element at the time of localization. Thus, only an extrinsic cohesive law can be used in this work. The cohesive law is accordingly characterized only by a softening regime function, as depicted in Fig. 3(a). Depending on the works of different authors, the criteria for the loss of (initial) linearity (deterioration onset) and ultimate failure (complete de-cohesion) are expressed mostly as a combination of two material parameters, e.g. in terms of critical displacement δ c and critical traction t c [START_REF] Ortiz | Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis[END_REF][START_REF] Lorentz | Numerical simulation of ductile fracture with the Rousselier constitutive law[END_REF] or critical traction and energy release rate G c [START_REF] Alfano | On the influence of the shape of the interface law on the application of cohesive-zone models[END_REF]. Particular attention must be paid to ensure the stress continuity at the n: vector normal to the cohesive band plane associated to the opening mode g: vector tangent to the cohesive band plane and collinear to the shear direction associated to the shearing mode that can be analysed into two components g 1 and g 2 on the band plane.

t n t n δ δ G c G c t c t c (a) (b) δ c δ c
The pn, g 1 , g 2 q vector basis is orthonormal direct, meaning that the vectors are mutually perpendicular and of unit length.

The cohesive tractions t vector is the stress tensor σ r of the element projected on the cohesive band:

t " σ r ¨n " t n n `tg1 g 1 `tg2 g 2 " tt n , t g1 , t g2 u pn,g 1 ,g 2 q ( 12 
)
with t n " n T ¨σ r ¨n , t g1 " g T 1 ¨σ r ¨n and t g2 " g T 2 ¨σ r ¨n

The corresponding displacement jump vector reads

δ " tδ n , δ 1 , δ 2 u pn,g 1 ,g 2 q (14)
Instead of using different models for the opening and shearing modes, we are here tentatively considering a unique model expressed in terms of traction force vector t and equivalent relative displacement ∆:

∆ " b ăă δ n ąą 2 `δ2 1 `δ2 2 (15) 
Contact is treated indirectly, i.e. ăă δ n ąą"max(0, δ n ), as a zero equivalent displacement jump when the normal component δ n is negative (compression).

In addition, we are introducing the effective traction force vector as :

t ˚" t p1 ´Dq (16) 
D in Eq.16 is a damage-like variable (evolving between 0 and 1) accounting for the progressive decohesion-induced material degradation along the deformation process. The rate independent cohesive model accordingly reads:

f ptq " t ˚´t 0 " 0 ( 17 
)
where t 0 is the traction force vector at the cohesive band onset. It is noteworthy that t 0 is not a priori postulated but results from the meeting of the band onset criterion and accordingly depends on the finite element considered, see Section 3.2.3. Inserting Eq.16 in 17, leads to :

f ptq " t p1 ´Dq ´t0 " 0 (18) 
Finally, the traction force vector is expressed as :

t " p1 ´Dqt 0 (19) 
The manner in which each component of the tractions vector evolves can be seen in Fig. 5. The evolution of the damage-like variable D takes a power law form:

195 D = 0 D = 1 t i ∆ ∆ c 0 t n 0 t g 1 0 t g 2 0 -Dt n 0 -Dt g 1 0 -Dt g 2 0
D " $ ' ' ' ' & ' ' ' ' % 0 if ∆ ď 0, `∆ ∆c ˘γ if 0 ă ∆ ă ∆ c , 1 otherwise, (20) 
where ∆ c is the critical value of the equivalent relative displacement at complete fracture (D " 1) of the element and the power law exponential γ ě 1.

While the complete loss of resistance of the band material requires D " 1, for numerical or physical reason a lower critical value D c may be needed, viz.

D c ă 1. As soon as the critical value of the decohesion variable D is reached the 200 cohesive tractions vanish, leading to a traction free crack. For example D c can take values between 0 for purely brittle fracture to 1 for purely ductile; though it usually lies in the range r0.2, 0.5s [START_REF] Pourmodheji | Improvement of the extended finite element method for ductile crack growth[END_REF].

Tangent matrix.

According to 19, the tangent matrix of the cohesive law is computed as follows where the subscript loc refers to the local frame of the localization band:

C loc pi, jq " Bt i Bδ j " ´BD Bδ j t i 0 " ´BD B∆ B∆ Bδ j t i 0 " ´γ ∆ c ˆ∆ ∆ c ˙γ´1 δ j ∆ t i 0 ( 21 
)
with t i 0 the components of the initial tractions at the occurrence of localization in the element, calculated from the internal forces of the element in that instance (see Section 3.2.3) and C loc pi, 1q " 0 if δ n ă 0 (compression).

Accordingly, the softening response of the material is fully characterized by three independent constant quantities, i.e. ∆ c , γ and D c . The decision behind the use of such a cohesive law lies on its ability to reproduce a large number of different macroscopic behaviours by modifying a limited number of constant values.

Kinematic enrichment -Adopted X-FEM formulation

In the framework of the eXtended Finite Element Method the regular displacement field of the finite element u reg is enriched by a discontinuous part u dis to simulate the crack displacement jump following the work of Crété [START_REF] Crété | Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM[END_REF]. Another assumption in this paper is the 'shifted basis' formulation [START_REF] Zi | New crack-tip elements for XFEM and applications to cohesive cracks[END_REF] wherein the discontinuous enrichment disappears at the element nodes. This way there is no need for transition elements. The displacement field is consequently described via the following relation:

upxq " u reg `udis " ÿ iPI N i α i `ÿ jPJ pHpxq´H j qN j β j
, where H j " ˘0.5 [START_REF] Mediavilla | A robust and consistent remeshing-transfer operator for ductile fracture simulations[END_REF] where N i , N j is the i-th and j-th standard FE shape functions, I the number of nodes, α i the i-th standard displacement degree of freedom, J the number of enriched nodes and β j the j-th additional degree of freedom associated to the j-th node. H is the Heaviside function, which equals to +0.5 if a point is located at the 'positive' side of the discontinuity and -0.5 else and H j the value of the Heaviside function at each node. In Fig. 6 the reader can see the form of the shape functions in the case of a simple 1D element with a discontinuity in its middle point, before the application of the 'shifted basis' formulation (left) and after (right). The numerical integration of the elasto-plastic equations is realized using the radial return procedure in combination with a Newton-Raphson algorithm, see Aravas [START_REF] Aravas | On the numerical integration of a class of pressure-dependent plasticity models[END_REF] and Longère et al. [START_REF] Longère | Modeling the Transition between Dense Metal and Damaged (Microporous) Metal Viscoplasticity[END_REF]. By dividing Eq. 8.1 and 8.2 we eliminate the plastic multiplier and, expressing rates in an incremental form, we define a system of non-linear equations:

Ψ " ∆ v BΦ Bσ eq `∆ d BΦ Bp m " 0 (a)
Φpσ r , σ eq ; κ, f q " 0 (b)

p m " p e m `K∆ v (c) σ eq " σ e eq ´3µ∆ d (d) ∆H α " hp∆ v , ∆ d , p m , σ eq , κ, f q (e) (23) 
where p e m , σ e eq are the trial equivalent stress and mean pressure, µ and K 240 the elastic shear and bulk moduli and ∆H α a system of equations of the state variables, see [START_REF] Aravas | On the numerical integration of a class of pressure-dependent plasticity models[END_REF].

Linearization modulus

In order for the finite element code to solve the equilibrium at a given increment one needs to determine the linearization modulus L r r , the latter provides 245 the code with the variation of the stress increment due to a variation in the strain increment, consistent with the algorithm used for the numerical integra-tion, in this case implicit time integration. The linearization modulus must not be confused with the elasto-plastic tangent operator. For more information on this implementation the reader can refer to Aravas [START_REF] Aravas | On the numerical integration of a class of pressure-dependent plasticity models[END_REF].
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The linearization modulus is derived from:

Bσ r t`∆t " L r r : B r t`∆t (24) 
The elasticity equation gives:

σ r t`∆t " C r r e : r e t`∆t " C r r e : " r t`∆t ´´ r p t `∆ p ¯ı " C r r e : ˆ r t`∆t ´ r p t ´1 3 ∆ v I r ´∆ d n r ˙(25)
Hence,

Bσ r t`∆t " C r r e : ˆB r t`∆t ´1 3 B∆ v I r ´B∆ d n r ´∆ d Bn r Bσ r t`∆t : Bσ r t`∆t ˙(26)
Where C r r e is the isotropic elastic stiffness tensor. Derivation of Eq. 23(a) and 23(b) leads to the following system of equations, then solving for B∆ v and

B∆ d : » - A 11 A 12 A 21 A 22 fi fl $ & % B∆ v B∆ d
, .

-"

$ & % B r 1 B r 2 , .
-

: Bσ r t`∆t (27) 
hence, inverting 27

$ & % B∆ v B∆ d
, .

-

" rAs ´1 $ & % B r 1 B r 2 , . - : Bσ r t`∆t " $ & % G r 1 G r 2 , . - : Bσ r t`∆t (28) 
The A ij , B i and G i components are presented in the Appendix A. Injecting 28 into 26 yields:

pI r `C r r e : M Ă q : Bσ r t`∆t " C r r e : B r t`∆t (29) 
where

M Ă " 1 3 I r : G r 1 `n r : G r 2 `∆ d Bn r Bσ r t`∆t (30) Hence L r r " ˆBσ r B r ˙t`∆t " pI r `C r r e : M Ă q ´1 : C r r e ( 31 
)
The symmetry of the operator is imposed for the reduction of the cost of the analysis and the improvement of the convergence [START_REF] Aravas | On the numerical integration of a class of pressure-dependent plasticity models[END_REF]. The linearization modulus is finally expressed by: The need for such a two-case criterion arises from the observation that plastic instability is not always numerically detected even well inside the softening regime, e.g. [START_REF] Ngamy | Analyse numerique de la localisation dans les materiaux rocheux[END_REF]. In this work (a) and (b) case criteria are inspected sequentially (if needed) in each pre-localized element.

L r r " 1 2 pL r r `L r r T q (32) 3 

Pre-localization criterion.

In this work the condition for an element to be a potential candidate for localization (localizable) is derived from the Drucker's stability postulate, i.e.

the positiveness of the 2nd order work. The necessary condition for material stability proposed by Drucker [START_REF] Drucker | Some implications of work hardening and ideal plasticity[END_REF] is that the work done externally is positive:

9 σ r : 9 r ą 0 (33)
Softening implies the occurrence of negative work. This coincides with the appearance of a negative eigenvalue of the tangent stiffness operator. This is to be expected as soon as negative eigenvalues signify energy release [START_REF] Al-Sabah | Use of negative stiffness in failure analysis of concrete beams[END_REF], a phenomenon involved in the creation of damage localization bands. Simply put, in this work an element is considered as a potential candidate for localization when negative work leading to softening is detected, i.e.: detpL r r q ă 0 (34)

In the first case, mentioned in Section 3.2.1, all possible planes are probed as to whether they satisfy the bifurcation criterion in an element. In three-dimensions these calculations, if applied to all elements at every increment until localization onset, can become computationally cumbersome, especially for the modelling of large structures. The adopted pre-localization criterion is simple and easy to calculate so that the search of localized elements can be narrowed to a small number of potential candidates. Equivalently, in the second case, where localization is triggered by a critical porosity, the pre-localization criterion corroborates that the element has indeed entered the softening phase.

A finite element is said to meet the pre-localization criterion as soon as the condition 34 is satisfied in the central Gauss point, see Fig. 7, in the finite element in question. The ID and the porosity f of all elements satisfying the pre-localization criterion, Eq.34, in each increment, are saved and then sorted by order of decreasing porosity in a matrix indicatively named PreLocEle[ID,f ].

Localization criteria.

After the softening initiation indicator (Eq. 34) has manifested itself, we seek to determine whether the element will localize. All elements satisfying this condition are introduced in a list and sorted with decreasing porosities. The localization criteria, presented below, are checked at the list elements with that 285 order. The calculation of all quantities are done in a GP located in the element's centre (this GP does not participate in the calculation of the stiffness and internal force matrices, see Fig. 7).

a) Case of plastic instability-induced localization 290

In the case of a rate-independent material the initiation of an instability induced strain localization band can be detected employing the bifurcation analysis [START_REF] Besson | Modeling of crack growth in round bars and plane strain specimens[END_REF]. In order to verify the existence of a band one needs to calculate the acoustic tensor Q r " n L r r n, where n is the normal vector to the band and L r r the linearization modulus 32. The bifurcation criterion reads:

detpQ r q " 0 (35) 
When the acoustic tensor becomes singular, i.e. one of its eigenvalues and the determinant become zero, a localization band is indeed expected to appear, i.e. 35 is satisfied. Practically, these conditions are never exactly met, so the criterion evolves to finding the normal n for which detpQ r q ă 0 for the first time, while at the same time minimizing the acoustic tensor [START_REF] Besson | Modeling of crack growth in round bars and plane strain specimens[END_REF]:

minpdetpQ r qq ă 0 (36) 
For each angle φ P r0 o , 359 o s an angle θ P r0 o , 89 o s is scanned and a n vector is calculated for each combination. The normal vector of a surface can be characterized by two angles ( φ, θ), see Fig. 9, in the following sense: 

n " $ ' ' ' & ' ' ' % cos φ ¨cos θ cos φ ¨sin θ sin φ , / / / . / / / - (37) 

Onset criterion

When searching for conditions for coalescence onset, one can distinguish two main approaches: (i) a phenomenological approach, such as in Tvergaard

and Needleman [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF], where a critical porosity is used as a threshold from which the evolution of porosity is accelerated, and (ii) a numerical micromechanics based approach, e.g. Pardoen and Hutchinson [START_REF] Pardoen | An extended model for void growth and coalescence[END_REF][START_REF] Pardoen | Micromechanics-based model for trends in toughness of ductile metals[END_REF]. In this work the former criterion is employed as the most simple and practical one from an engineering point of view. This means that as porosity increases there is a point at which the void concentration is high enough for a distinct band of damage to be witnessed.

Examples of f c values in the literature are between 0.03 and 0.15 ([6, 11, 39]) in steel alloys, 0.035 in aluminium alloys [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF]. However, it is not unusual to treat f c as a function of the initial porosity f 0 , e.g. [START_REF] Benzerga | Anisotropic ductile fracture: Part II: Theory[END_REF][START_REF] Zhang | Complete Gurson model approach for ductile fracture[END_REF]. It is clear though that porosity at localization onset depends on the material under consideration.

The condition for void coalescence-induced localization accordingly reads

f " f c (38) 

Band orientation

The critical porosity as a coalescence triggering criterion is not able in itself to provide us with the damage band orientation. In this work that information is derived from the stress state as there is a competition between Mode I and Mode II driven coalescence.

The first step of the present method is consequently the calculation of two candidate localization planes in the element that maximize the tensile and shear stress, with normal vectors n ten and n sh respectively:

σ max " n T ten ¨σ r ¨nten τ max " g T sh ¨σ r ¨nsh where g sh ¨nsh " 0

Numerically, in this case too, all possible planes are probed, i.e. for each angle φ P r0 o , 359 o s an angle θ P r0 o , 89 o s is scanned and the n ten and n sh are calculated.

The second step is the determination of a criterion that will discern between Mode I and Mode II type localization, allowing for selecting one between the two potential localization planes.

Some criteria for the transition between normal and shear stress dominated loading conditions have been proposed in the literature, though mostly applied to 2D problems, e.g. Here the transition zone between Mode I and Mode II type localization is delimited by the local stress triaxiality values T sh (denoting shear) and T ten (denoting tension). These values will be evaluated in Section 4.3.1.

The plane angle couples ( φten , θten ) and ( φsh , θsh ), corresponding to n ten and n sh respectively, are those that maximize the normal and the shear stress. The actual angles for an element whose local triaxiality state lies in the mixed-mode region is calculated as a weighted average of the two, see Fig. 10: φ " M el φsh `p1 ´Mel q φten θ " M el θsh `p1 ´Mel q θten (40) where M el " ω 1 ´ks T the mixicity factor [START_REF] Kumar | A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects[END_REF] with ω " τ max σ eq and k s "

1 exppT q (42)
In 41 ω is a shear ratio, proposed in the work of Hooputra et al. [START_REF] Hooputra | A comprehensive failure model for crashworthiness simulation of aluminium extrusions[END_REF] and is a measure of the influence of the maximum shear stress. In Fig. 11 the principle of the method for the determination of the angle θ is shown. The same approach is applied also to angle φ.

A finite element is said to meet the localization criterion as soon as one of the two conditions 36 or 38 is satisfied in the central Gauss point in the finite element in question. ments (FE), as depicted in two-dimensions in Fig. 12. We are distinguishing two cases that depend on the location of the FE, wherein a band is about to form with a given orientation, with respect to the boundary. For an about-to-localize FE situated on an outer free surface of the specimen, the band is introduced in the centre of the free side, Fig. 12 (left). For an about-to-localize FE in the interior of the mesh, the band is introduced in the middle of the element, Fig. 12 (right).

Localization band spatial representation

In the present methodology, the band can tentatively initiate in only one element and propagate to adjacent elements. On the other hand, the porosity in every Gauss point is frozen once it has reached the f c value. Since coalescence and material degradation is treated by the cohesive law there is no need for the porosity to continue evolving.

Band Propagation & Continuity.

We are here considering 2 adjacent 8-Gauss point finite elements (FE), a first one designated m containing a localization band of normal n pmq , and a second one designated j containing no localization band, see Fig. ¨npjq " 0, viz. the bases formed by the couples pn pmq , t pmq l2 q and pn pjq , t pjq l2 q define the same plane and are inclined by an angle φ covering the range r´45 o , 45 o s, see Fig. 13.

The aim is now to find the angle φ satisfying one of the two localization criteria, viz. related to either plastic instability or void coalescence, see Section

3.2.1.2.
Beforehand, it is needed to account for certain conditions that artificially prevent the localization band to propagate. Such a situation is depicted in Fig. 14 where the (red coloured) FE adjacent to the FE containing the band front meets the pre-localization criterion but does not meet a localization criterion, inhibiting further propagation of the band, whereas its (cyan coloured) neighbour does. To overcome this issue, it is necessary to realize a localization analysis not only in the closest neighbour but also in a group of neighbours contained in a patch (of radius R, perpendicular to the band front). The band orientation determined in the cyan coloured element in the patch is then applied to the red coloured element, respecting, at the same time, the band continuity.

Practically, this method is only applied in the localization case (a) when the bifurcation criterion is not satisfied. Independently of any localization criterion, if 3 edges of element j are already 'cut' by other elements' bands (defining 3 intersection points) the j element's localization plane is the one passing through these three intersection points. The vector normal to this plane is thus directly defined, as well as its corresponding φ and θ angles. This way band continuity is assured.

The algorithm for the band initiation and orientation is briefly presented in Algo. 1.

Band propagation conditions.

As in the approaches of Crété et al. [START_REF] Crété | Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM[END_REF] and Wolf et al. [START_REF] Wolf | Numerical modeling of strain localization in engineering ductile materials combining cohesive models and X-FEM[END_REF] the band propagation follows the concept of element exhaustion. The surface increase δA of the band is simply determined by checking certain criteria in all localizable elements; the band is introduced in elements that satisfy all the criteria in the same increment. The criteria are the following:

1. Elements must satisfy the pre-localization criterion (detpL r r q ă 0).

2. Since multiple initiation sites are not treated in this work, elements must be connected to an already localized element and share a side.

3. The adjacent band must intersect this shared side. -"

$ & % F α ext F β ext , .
-

´$ & % F α int F β int , .
-

where dα, dβ represent the nodal displacement increments of the standard and additional dofs and F int the internal forces (with the superscript denoting correspondence to standard or additional dofs), i.e.

F α int " ż V e B T σdV e F β int " ż V e B* T σdV e `Fcoh (44) 
In this work we consider displacement control so there are no external tractions applied to the finite elements. Thus, the external forces corresponding to the The cohesive tangent matrix C loc is calculated only when an element is localized. At the moment of localization the band orientation is determined and the displacement jump vector δ is calculated, Eq.14. This is done in the following sense:

δ " N* U ( 46 
)
where U is the nodal displacements vector calculated by Abaqus. Since the displacement jump vector is non-zero, the equivalent displacement jump ∆ is also non-zero.

The cohesive forces, appearing in Eq.44, are expressed as:

F coh " F 0 int ´żΓD N* T pD t 0 qdΓ (47) 
The initial tractions t 0 are calculated from the internal forces of the element in that instance via the solution of the linear system expressed by:

F 0 int " ż ΓD N* T t 0 dΓ ( 48 
)
where F 0 int is the vector of the internal forces of the element at the time of localization. This vector is, thus, constant while being a priori different for each element. Indeed, t 0 takes a value that depends on the element since it results from its current state at the moment of localization.

The reason why the initial tractions are not calculated directly from the stress tensor at localization onset (σ r 0 ), in the sense of Eq. 12, is because this calculation creates inaccuracies that lead to convergence issues at localization onset and non-physical reaction force jumps. For the same reasons the calculation of F coh is not treated as F coh " ş ΓD N T pp1 ´Dq t 0 qdΓ but rather as expressed in Eq.47.

According to 47, the cohesive forces are consequently calculated as a damaged state correction to the predicted healthy state.

Integration scheme

For the integration of the XFEM element integrals associated with the stiffness matrix and force vectors the method that finds the widest use is the element subdivision [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Mariani | Extended finite element method for quasi-brittle fracture[END_REF][START_REF] Wells | A new method for modelling cohesive cracks using finite elements[END_REF]. In the 3D case the volumes created by the crack (V ´`V `" V e ) are divided into tetrahedra and standard Gauss integration is applied using the newly distributed integration points of each tetrahedron.

This partitioning implies the projection of state variables from the old GPs onto the new ones, which especially in the case of path-dependence can become both numerically demanding and might lead to inaccuracies. Other methods have appeared in the literature. One can notably cite (i) the use of a great number of GPs [START_REF] Elguedj | Appropriate extended functions for X-FEM simulation of plastic fracture mechanics[END_REF] ensuring that there will always be at least one GP on both sides of the discontinuity; which is a practical but numerically cumbersome scheme, or (ii) the the replacement of the Heaviside function by continuous enrichment functions as in Martin et al. [START_REF] Martin | About the use of standard integration schemes for X-FEM in solid mechanics plasticity[END_REF], but again using a rather large number of GPs.

In the present work the integration scheme adopted is the Volume Averaging Integration (VAI) inspired by Belytschko et al. [START_REF] Belytschko | A finite element with embedded localization zones[END_REF] approach and applied in Nikolakopoulos et al. [START_REF] Nikolakopoulos | Volume averaging based integration method in the context of XFEM-cohesive zone model coupling[END_REF]. This method alleviates the need for GPs on both sides of the discontinuity. VAI is a modified quadrature rule that uses standard Gauss points and performs the integration twice, averaging the contributions of the two sub-volumes as follows:

ρ " V V e nint ÿ i"1 f `´0.5, ξ i , ... ˘wi J a pξ i q `V V e nint ÿ i"1 f ``0.5, ξ i , ... ˘wi J a pξ i q (49)
where ρ can be the stiffness matrix or the internal forces vector, nint the number of Gauss points, ξ i the vector containing the local coordinates of the Gauss point, w i the weight of the Gauss point, J a the determinant of the Jacobian and f p¨q a function of the position of the integration point with respect to the discontinuity.

According to the contribution of a given sub-volume to ρ consists in a sum over all integration points of the element while assigning the value +0.5 (V `) or -0.5 (V ´) to H and weighting the result by the ratio of the sub-volume over the total volume of the element.

The integration scheme is completed by the use of the B-Bar approach (see Hughes [START_REF] Hughes | Generalization of selective integration procedures to anisotropic and nonlinear media[END_REF]) in order to deal with volumetric locking. For more information on the implementation of the B-bar approach in the framework of ABAQUS the reader can refer to Shi et al. [START_REF] Shi | Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions[END_REF].

The ability of VAI to accurately calculate the displacement jump when GPs do not exist on both sides of the discontinuity is presented by means of a simple 1D problem in the Appendix B.

In Algo. 3 the Abaqus user element (UEL) algorithm is presented.

of Mode I/II mechanisms (void growth and void distortion) manifesting themselves depending on the magnitude of the local triaxiality in the finite element.

Furthermore, a triaxiality transition region was introduced leading to a modemixicity law. A set of numerical criteria for the 3D element localization band onset, continuity and propagation has been also developed that lead to smooth band propagation and realistic crack path results.

Application

In this section the methodology detailed in the previous sections is applied to various boundary value problems employing the commercial finite element code Abaqus/std. The first step is to determine the critical values of the critical stress triaxiality, as were presented in Section 3.2.1.2, so as to better reproduce the flat-to-slant localization transition. This is done by examining the stress triaxiality evolution using only the Abaqus in-built GTN model. In a second step, by applying the methodology to a notched axisymmetric, a flat notched and a shear specimen we seek to show that the methodology is capable to fairly reproduce the ductile fracture phenomenon, whilst being mesh independent. In a third step, the influence of user defined parameters is investigated.

Numerical procedure

The unified 3D XFEM/CZM methodology described in the previous Section has been implemented as an Abaqus user element routine (UEL). The different specimens under consideration are meshed with 3D full integration 8-node hexahedral elements, and the loading is applied under quasi static conditions with displacement control. The discretization of the boundary value problem is achieved using Abaqus-CAE which generates an initial input file (~.inp).

Given that Abaqus allows only 3 dofs per node for 8-node 3D elements, the dof enrichment of the model is achieved through the addition of 'enrichment' nodes done in a modified input file created via a Python script. In the same time, each element is associated with both its initial standard nodes and its new enrichment nodes. This modified input file is submitted to Abaqus for analysis with the UEL. The size of the element stiffness matrix and internal forces vector is equal to the standard dofs plus the enrichment dofs, i.e. the number of dofs is not growing throughout the analysis. At the beginning of the analysis all 'enrichment' dofs are inactive and are activated as soon as localization conditions are met. The stiffness matrix and internal forces vector is calculated for each element through the UEL routine and is provided to Abaqus, that assembles the global matrices. The global problem is solved via implicit integration with Abaqus solver. If there is convergence of the solution of the system of equations the new nodal displacements vector is acquired, if not the solver adjusts the load increment until convergence is reached.

Analysis assumptions

Throughout this work there is no pre-existing discontinuity in any specimen. Two different mesh sizes are employed, i.e. 'coarse' with element dimensions «1x1x1mm 3 and 'fine' «0.5x0.5x0.5mm 3 , in the area of interest. It is reminded that the goal of this unified methodology is its application to the numerical simulation of crack initiation and propagation within large engineering structures, so the use of extremely fine meshes is not within its scope. The elastic and hardening material parameters were chosen to reproduce the response of a mild steel. The cohesive law parameters in this part of the study have been arbitrarily chosen so as to simulate a ductile like softening behaviour. As usually done when using GTN type models, see e.g. [7, 9-11, 13, 39, 80], the material has been ascribed an initial porosity, viz. 0.1%. The material and cohesive law parameters taken into consideration are gathered in Table 2.

Flat-to-slant transition

A flat-to-slant fracture transition resulting in the well-known cup-and-cone fracture is often observed in post-mortem tensile loaded round cylindrical specimens. Indeed, in these specimens cracking starts in the middle of the specimen, and propagates under the effect of normal stresses (mode I) in high triaxiality 
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regions. Then under the dominant effect of shear stresses (mode II) it propagates inclined towards the edges, see Fig. 16. A similar behaviour is displayed in flat specimens but with a slanted crack surface through the specimen's thickness [START_REF] Geffroy | Modélisation numérique de la rupture de structures navales sous l'effet d'explosions au contact[END_REF]. The various specimen geometries considered in the following are drawn in Fig. 17, with their dimensions given in Table 3.

Mode I

Mode II Mode II To favour the failure in the middle of the specimen gauge length and palliate the absence of necking when using the small strain theory, specimens with large notch radii were considered, see Table 3 3. For the flat notched specimen it is expected that the band will appear more or less slanted through the thickness in all elements (mixed-Mode or Mode II). This implies that T ten " 0.57 (the triaxiality value of the centre element for

f " f c ).
For all subsequent analyses the values used are T sh " 0.41 and T ten " 0.57, both determined numerically so as to reproduce the fracture surface for both specimens.

Unified GTN-XFEM/CZM methodology results

In Figs.20 and 21 is depicted the global response in terms of reaction force vs displacement for the three specimens (in Fig. 17). The proposed XFEM/CZM methodology for the two meshes (utilizing the FE developed seen in Fig. 7) is compared with the in-built Abaqus GTN model (standard FEM) and the GTN model with coalescence effects or f ˚method from Tvergaard and Needleman [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF] (standard FEM). In the latter case the coefficients used are f c " 0.03, f Ů " 1 and f F " 0.15 (for more explanations see equations 2.3 and 2.4 in [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF]). The porosity at localization incipience f c is chosen to be the same both for the f method and the XFEM/CZM method for a better comparison. According to Figs. 20a and20b, it can be seen that for the two tensile specimens the mesh size has little if no effect on the obtained results when the XFEM-CZM methodology is used. Indeed, the pathological mesh dependency of the GTN model, visible in Figs.20a and 20b when using standard FE, is overcome thanks to the use of the proposed methodology combining XFEM and CZM. Concerning the f ˚method, it can be seen that in this case the mesh size influence is less acute than in the case of the standard GTN, but there is a non-physical abrupt softening behavior. For the shear specimen, Fig. 21, there is an influence of the mesh size in the hardening regime, that means before the localization onset and 610 accordingly before the activation of the XFEM-CZM method, and then in the softening regime. This is explained by the presence of too few elements in the region of interest (only two elements on the R1 notch arc, viz.Fig. 17). It is noteworthy that in this work void growth in pure shear is not treated, since the standard GTN model is used. Indeed, the evolution of the porosity f is due only to the void nucleation which explains the presence of the large plateau that appears in Fig. 21 when only the standard FE is used (dashed lines). A better representation of the phenomenon would be obtained via the use of a modified GTN model taking into account void growth at negative and null triaxialities (e.g. [START_REF] Longère | Modeling the Transition between Dense Metal and Damaged (Microporous) Metal Viscoplasticity[END_REF][START_REF] Nahshon | Modification of the Gurson Model for shear failure[END_REF][START_REF] Nahshon | A modified Gurson model and its application to punch-out experiments[END_REF]). Regarding the results obtained with the f ˚method, the initial load drop is due to the fact that a few elements have attained the f c , but since most of the elements cannot attain this porosity there is no complete loss of load carrying capacity.

The objectivity of the proposed unified methodology has been established in terms of mesh size, but another factor that could have an impact on the obtained numerical results is the mesh orientation. However, with the type of test specimens studied in this article it is difficult to study the influence of the mesh orientation. Indeed, the shape of the test specimens and the use of hexahedral elements, allows Abaqus-CAE only little flexibility in the meshing. For this reason the influence of mesh orientation is studied here through the comparison of the numerical results obtained with the flat notched specimen using both a structured and an unstructured mesh. It can be seen in Fig. 22 that quasi-similar RF vs. Displacement curves are obtained with all four meshes, which means that the mesh orientation has a negligible influence on the numerical results. is to be expected since the triaxiality is generally higher for the axisymmetric specimen, see Fig. 19, leading to a quicker attainment of f c . According to Fig. 23a (right), it can be seen that in the axisymmetric specimen the band has crossed the whole cross-section in two increments, while for the flat, Fig. 23b (right), it takes a much larger number of increments. Once the band has propagated through the whole cross section, then D increases rapidly. On the other hand localization initiates and propagates fast for the shear specimen, see Fig. 24, since it is triggered by the bifurcation criterion and it is, thus, independent of the evolution of porosity.

As to the crack path almost identical results are obtained with both meshes for all specimens, see Fig. Through the application of the GTN-XFEM/CZM methodology to a notched axisymmetric, a flat notched and a shear specimen the methodology is seen to be able to fairly reproduce the crack surface and the softening regime in a mesh objective manner. In the following study the 'coarse' mesh will be used in all cases. 4. Application of VAI to the 1D bar problem.

Considering now the same case of 1 Gauss point rule we are going to apply the proposed VAI.

Using equation 49, where volumes have been replaced by lengths, the stiffness matrix of the finite element using VAI is expressed as follows:

K " l ĺ ÿ g rB 1 g pH ´qs T rLsrB 1 g pH ´qspSw g ql l ÿ g rB 1 g pH `qs T rLsrB 1 g pH `qspSw g q (B.12)

The first sum considers that the integration point is on the 'negative' side of the crack pH ´" Hpx ´q " ´0.5q and the second sum considers that it is on the 'positive' side of the crack pH `" Hpx `q " `0.5q. The crack being in the middle of the bar gives: l ĺ " l l " 0.5. 
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 314 Figure 3: Extrinsic (a) and intrinsic (b) cohesive laws -Illustration of the evolution of the normal traction component tn
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 6 Figure 6: Example of shape functions for a 1D element with a discontinuity in its middle point -XFEM (left) and XFEM shifted basis (right)
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 10 Figure 10: Illustration of localization plane as an average of the planes maximizing the normal and shear stresses
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 11 Figure 11: Band orientation angle as a function of the stress triaxiality ratio completing the void coalescence induced localisation onset f " fc
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 14 Figure 14: Hemispherical patch method -2D example
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 15 Figure 15: Illustration of the localization band spiral propagation in one time increment
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  standard and additional dofs F α ext and F β ext in 43 are neglected. The element stiffness matrix K in 43 reads: C loc is defined in 21 and L in 32, B represents the spatial derivatives matrix of the shape functions, B* the spatial derivatives matrix of the pHpxq ´Hj qN j functions, N* " R ´1N, with R the transformation matrix for the passage from the global to the local framework of the cohesive band and V e the finite element volume and Γ D the discontinuity surface.
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 18192 Figure 18: Elements considered: (a) Notched axisymmetric specimen -through-the-crosssection view, (b) Flat notched specimen -front view
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 20 Figure 20: Mesh size dependence study: (a) Notched axisymmetric specimen, (b) Flat notched specimen -A comparison of in-built f -based Gurson model, in-built f ˚-based GTN model and XFEM-CZM model
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 21 Figure 21: Mesh size dependence study: Shear specimen -A comparison of in-built f -based Gurson model, in-built f ˚-based GTN model and XFEM-CZM model
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 2223 Figure 22: Mesh orientation dependence study: Flat notched specimen -RF vs Displacement response
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 24 Figure 24: Shear specimen -RF {RFmax vs Displacement response and decohesion variable D vs Displacement evolution for five elements along the region of interest (left) and Decohesion variable D vs Displacement evolution for five elements along the region of interest -zoom in the region of localization initiation (right)
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 2725 Figure 25: Crack surfaces of notched axisymmetric specimen -coarse (left) and fine (right) mesh. Porosity f distribution
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 26 Figure 26: Crack surfaces of flat notched specimen -coarse (left) and fine (right) mesh. Porosity f distribution
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 272829 Figure 27: Crack surfaces: (a) shear specimen -coarse (left) and fine (right) mesh. Porosity f distribution
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 3032 Figure 30: Band propagation in the shear specimen (fine mesh)
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 33 Figure 33: Notched axisymmetric specimen -RF vs Displacement response for different nucleation laws (left) and Zoom-in the region of apparent inflection (right)
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 34 Figure 34: Notched axisymmetric specimen -RF vs Displacement response for different critical porosities fc (left) and Zoom-in the region of apparent inflection (right)
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Stage of cracking -XFEM

The stage of localized damage in a ductile material is ultimately succeeded by cracking, i.e. a macro-crack appears in the wake of the meso-crack. In this work this corresponds to a complete loss of cohesion as soon as:

At this point the cohesive forces are reduced to zero, the element becomes 480 standard XFEM and the localization band becomes a traction free crack.

Summary

In this section a ductile failure scenario was developed, postulating that a localization band can either precede or succeed void coalescence. For this reason two different criteria were applied, employing the bifurcation criterion and 485 a phenomenological critical porosity criterion for either case respectively. In the latter case the orientation of the band is deduced from the competition the softening commences at the same increment and it is triggered by the void coalescence-induced localization criterion (involving f c ). 

Nucleation law

As previously mentioned, the apparent inflection discussed in Section 4.4 is notably influenced by the void nucleation law parameters in Eq.11. In Fig. 32 three different laws centered in κ N " 0.3 but with different standard deviations s N are used: a small standard deviation yields a narrow bell-shape kinetics law whereas a large standard deviation yields a wide bell-shape kinetics law. In Fig.

(left) the response of the notched axisymmetric specimen using the Abaqus

in-built GTN model for the three laws is plotted. For the first nucleation law, characterized by a small standard deviation, there is an inflection whereas for the third nucleation law, characterized by a large standard deviation, this inflection vanishes. This phenomenon is more clearly seen if we zoom on the said region of the reaction force-displacement curve, see Fig. Decomposing the term BΦ{Bσ r to a deviatoric contribution and a volumetric contribution we then have:

The total porosity increment (see Eq.10) is given as:

Bf " p1 ´f qB∆ v `An Bκ (A.3) Considering Eq.9 :

Bκ "

and Eq.23(a) :

Hence, the components A ij , B i and G i involved in the calculation of the linearization modulus are calculated as (see Eq.27 and 30):

´" BΦ Bσ eq `η p1 ´f qσ y p´p m q

´" BΦ Bσ y η p1 ´f qσ y σ eq `BΦ Bf

A n 1 p1 ´f qσ y σ eq  (A.8)

´" BΦ Bσ y η p1 ´f qσ y p´p m q `BΦ Bf

"

A n 1 p1 ´f qσ y p´p m q `p1 ´f q * (A.9)

Appendix B. VAI application in a simple 1D problem

The inability of the standard Gauss integration scheme to integrate correctly the equilibrium equations in the case where all integration points are on 1045 the one side of the discontinuity can be shown by means of a simple 1D example:

We consider a bar of length l " 1, area S " 1, Young's modulus E " 1 and a U a 2 " 1 forced displacement on node 2 and a crack in the middle of the bar. The unknowns of the problem are U i and U i , the standard and additional 1050 degrees of freedom respectively of node i. A displacement is applied on node 2 (U 2 " 1), while node 1 is blocked (U 1 " 0). pHpx`q " 0.5, Hpx´q " ´0.5, H 1 " ´0.5 and H 2 " 0.5q

" ´1 ´pHpxq `0.5q 1 pHpxq ´0.5q where Hpxq has been replace by H for simplicity.
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Using a 2 Gauss point rule with x 1 " `0.577, x 2 " ´0.577 and w 1,2 " 1, the stiffness matrix can be calculated using the following sum:

In this linear elastic case rLs can be replaced by E. After manipulation of the equation and realizing the summation for the two GPs: 

The determination of the enriching dofs displacements reduces to solving the following system:

.

-"

.

-"

Finally, in order to obtain the displacement jump:

where N 1 px `q " N 2 px ´q " 0.5

After determining the displacement jump we then can proceed to calculate the cohesive tractions. The same procedure as above is followed:

.

-"

, .

-

This way it is evident that VAI can provide us with a correct displacement jump in the case of just 1 GP situated on one side of the crack, whereas the 1090 standard Gauss integration cannot.
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