
HAL Id: hal-03110419
https://hal.science/hal-03110419v1

Submitted on 14 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Displacement Uncertainty Quantifications in
T3-Stereocorrelation

M Berny, T. Archer, P. Beauchêne, A. Mavel, François Hild

To cite this version:
M Berny, T. Archer, P. Beauchêne, A. Mavel, François Hild. Displacement Uncertainty Quantifications
in T3-Stereocorrelation. Experimental Mechanics, 2021, 61, pp.771-790. �10.1007/s11340-021-00690-
0�. �hal-03110419�

https://hal.science/hal-03110419v1
https://hal.archives-ouvertes.fr


Experimental Mechanics manuscript No.
(will be inserted by the editor)

Displacement Uncertainty Quantifications in

T3-Stereocorrelation

M. Berny · T. Archer · P. Beauchêne · A. Mavel ·
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Abstract Background: Uncertainty quantifications are required for any measurement result

to be meaningful. Objective: The present work aims at deriving and comparing a priori es-

timates of displacement uncertainties in T3-stereocorrelation for a setup to perform high

temperature tests. Methods: Images acquired prior to the actual experiment (i.e., at room

temperature) were registered using 3-noded triangular elements (T3-stereocorrelation) to de-

termine displacement uncertainties for different positions of the experimental setup. Results:

The displacement uncertainties were then compared to their a priori estimates. Conclusions:
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LMT - Laboratoire de Mécanique et Technologie, Gif-sur-Yvette, France

∗Corresponding author. Email: francois.hild@ens-paris-saclay.fr

T. Archer, P. Beauchêne, A. Mavel
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For the analyzed experiment, it is shown that noise floor estimates only differed by a factor

2 when compared to a posteriori measurements of standard displacement uncertainties.

Keywords Covariance matrix ·Displacement ·Noise floor level ·Uncertainty quantification

1 Introduction

Stereocorrelation is a mature measurement technique [1,2,3]. Most commercial codes use

local (i.e., subset-based) analyses to perform spatial and temporal registrations that enable

3D shapes and their deformations to be measured. With such approaches, the output infor-

mation corresponds to clouds of 3D points (i.e., centers of interrogation windows) and their

motions [4,5,6,7]. If comparisons with virtual models are sought, additional steps are re-

quired to change the experimental frame to that of the modeler (for CAD models) or the

finite element model. To link these two spaces, Iterative Closest Point (ICP) algorithms [8,

9] are one possible route, which may induce additional errors [10].

Another route is to start with the virtual model of the surface of interest, and use the

calibration step to globally express the extrinsic and intrinsic parameters of each considered

camera in the virtual reference frame [11,12]. There is therefore no additional step required

for comparing measured and nominal shapes [12,13,14]. This type of global approach has

been applied to NURBS-based [15,16] or finite element [17,13,18] descriptions of the mea-

sured shape and its subsequent deformation.

Any stereocorrelation technique calls for uncertainty quantifications if they are used in

academia or industry [19,20]. The uncertainties associated with calibration parameters and

shape measurements were assessed by propagating acquisition noise [21] and validated in

actual configurations [22]. Monte-Carlo simulations were performed to assess in a system-

atic way the sensitivities to various calibration parameters [23,24]. Further, the effect of
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lighting fluctuations and deformations were added [25] and guidelines were proposed to

mitigate as much as possible the level of uncertainties [26,20].

Most of the previous analyses focused on calibration and shape measurements. Very

recently, displacement uncertainties were assessed for local and global multiview registra-

tions with finite elements. It was shown that the covariance matrix of the measured degrees

of freedom was equal to the inverse of the Hessian matrix of the underlying minimization

scheme of the suitably normalized cost function [27]. A simplified expression was derived

for the standard displacement uncertainty and was validated against artificial test cases. This

framework will be further studied for finite element (FE) based stereocorrelation using 3-

noded triangles (i.e., T3-stereocorrelation). All these derivations correspond to the so-called

Rao and Cramér lower bounds [28,29] applied to evaluation of displacement uncertainties.

The paper is organized as follows. The first part deals with a priori estimations of dis-

placement uncertainties in the case of finite element based stereocorrelation when 3-noded

elements are utilized. Closed-form expressions are derived by using mean field approxima-

tions. In the second part, the so-called BLAG setup [30] is introduced. It allows thermome-

chanical tests to be performed with a CO2 laser heating the top surface of plates or beams.

The calibration of the stereovision system was performed in a global setting. One of its

key features is the fact that the calibration target was kept in the field of view during the

whole experiment. Such configuration allows thermal heat wave effects to be quantified in

high temperature experiments. In the following analyses, uncertainty quantifications were

performed at room temperature prior to such tests. Last, the a priori displacement uncertain-

ties are compared to actual levels measured on the sample surface and the calibration target

when a series of images for different prescribed displacements were acquired by following

the spirit of standard prEN 4861 P1 [19].
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2 A Priori Uncertainties in T3-Stereocorrelation

2.1 Covariance in FE-based Stereocorrelation

The following discussion focuses on surfaces of interest discretized with finite elements.

The same discretization was assumed for the displacement fields such that a single mesh

is needed to describe the surface shape and its deformation. In a multiview framework, the

surface of interest is the master information, and each of the nc ≥ 2 cameras is calibrated

with respect to the reference frame of the numerical model of the ns surfaces Ss (or that of

the calibration target). Shape corrections were subsequently performed to evaluate offsets

between the actual shape and its nominal model. Last, displacement fields were measured

by minimizing the following weighted cost function

φ
2
u ({U}) = (1)

nc

∑
c=1

ns

∑
j=1

∑
X j∈S j

ω
c
j
(Ic

t (x
c +uc({U}))− Ic

0(x
c))2

2(σ c)2

with respect to the unknown degrees of freedom {U} for the series of images in the de-

formed configuration Ic
t with respect to those in the reference configuration Ic

0 . The weight

ω
c
j is equal to 1 when the surface S j is visible by the camera c, and null otherwise. The

variance (σ c)2 describes the level of acquisition noise at each evaluation point Xs of the

cost function [27]. In the present setting, acquisition noise is assumed to Gaussian and white

at the pixel level. If it were Poissonian instead (i.e., variance proportional to the gray level),

the Anscombe transform could be used to account for such effect [31,32,33].

The considered surfaces of interest S j are projected onto each camera c plane as sur-

faces S c
j thanks to the projection matrices [P c] that relate the homogeneous coordinates of

3D points {X j} to their pixel positions {xc}

sc{xc}= [P c]{X j} (2)
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where sc is the local scale factor. In the present setting, the apparent pixel displacement uc

depends on the nodal displacement vector {U}. The framework (1) enables an arbitrary

number of cameras (i.e., nc ≥ 2) to be considered, in a similar fashion as standard stereocor-

relation (i.e., nc = 2).

The minimization of the cost function φ
2
u (Equation (1)) is performed via a modified

Gauss-Newton scheme [34,1,35] that consists in iteratively updating the nodal corrections

{δU} through the solution to the global system(
nc

∑
c=1

[Hc]

)
{δU}=

nc

∑
c=1
{hc} (3)

where [Hc] denotes the Hessian matrix associated with each camera c

Hc
i j =

ns

∑
j=1

∑
S c

j

ω
c
j
(∇Ic

0 ·ϕϕϕc
i )(∇Ic

0 ·ϕϕϕc
j)

2(σ c)2 (4)

in which the dependence on xc in the summand was omitted for the sake of simplicity, and

{hc} the residual vector

hc
j =

ns

∑
j=1

∑
S c

j

ω
c
j

ρc(∇Ic
0 ·ϕϕϕc

j)

2(σ c)2 (5)

with ϕϕϕ
c
k the kinematic sensitivity of the k-th degree of freedom Uk along direction ek (no

index summation)

ϕϕϕ
c
k = [ΠΠΠc(X)]ekNk(X) (6)

where Nk denotes the shape function of nodal displacement Uk, and [ΠΠΠc] = ∂xc/∂X the

placement sensitivities. The gray level residual ρ
c is computed for each evaluation point xc

and current estimate of the nodal displacement vector {Ũ}

ρ
c(xc) = Ic

t (x
c +uc({Ũ}))− Ic

0(x
c) (7)

In the following, the uncertainty quantifications accounting for acquisition noise are

performed on the displacement fields only. Other sources of errors related to calibration
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and shape corrections are not accounted for herein. The covariance matrix of the measured

degrees of freedom [C] = 〈{δU}{δU}>〉η (where 〈·〉η denotes the expected value over

noise η) then reduces to [27]

[C] = [H ]−1 (8)

where [H ] is the total Hessian of the multiview correlation scheme

[H ] =
nc

∑
c=1

[Hc] (9)

when the gray level residuals are assumed to be only due to white Gaussian noise (i.e.,

ρ
c = η

c) of variance 2(σ c)2. If the mean gray level of Gaussian noise is equal to zero,

then the displacement estimates are unbiased. When (iterative) Gauss-Newton schemes are

considered to perform the minimization of Equation (1), the global Hessian matrix [H ] is

computed. Consequently, the covariance matrix [C] is directly known since it simply is the

inverse of [H ] in the present setting.

The next sections aim at deriving closed-form solutions for various meshes using 3-

noded triangles (i.e., T3-stereocorrelation). The basis of the derivations consists in mean

field approximations of the various terms needed to calculate the Hessian matrices [27].

Long-range (i.e., [ΠΠΠc(X)]ek) and short range (i.e., ∇Ic
0) fluctuations are separated from

those of the shape functions Nk. Consequently, the integral of the tensor ∇Ic
0 ⊗∇Ic

0 is ap-

proximated by Sc
k/2〈‖∇Ic

0‖2
2〉I , where I is the identity tensor, and Sc

k the area of the pro-

jected support surface of the shape function Nk. Further, Πc
k denotes the mean placement

(pixel/m) sensitivity for the studied component of displacement. With such hypotheses, a

first order estimate of the diagonal terms of the Hessian matrix becomes

Hkk ∝ N2
eq

nc

∑
c=1

(Πc
k)

2〈‖∇Ic
0‖2

2〉
4(σ c)2 (10)



Displacement Uncertainty Quantifications in T3-Stereocorrelation 7

and the variance σ
2
k =Ckk of the nodal displacement Uk uncertainty is proportional to 1/Hkk,

or equivalently

σ
2
k ∝

1
N2

eq

(
nc

∑
c=1

(Πc
k)

2〈‖∇Ic
0‖2

2〉
4(σ c)2

)−1

(11)

where Πc
k denotes the mean placement (pixel/m) sensitivity for the studied component of

displacement, and Neq the equivalent number of integration points (i.e., the square root of

the total number of integration points per element N2
IP). Equations (10) and (11) show that

when more than 2 cameras are used (i.e., multiview systems), and if some regions are imaged

by nc > 2 of them, then the measurement uncertainties can be lowered in comparison to a

situation with nc = 2 (i.e., stereovision setup). In the following, a more detailed analysis

will be performed in the case of meshes made of 3-noded (T3) elements. For the sake of

simplicity, it is assumed that the whole studied surface S is visible by both cameras (i.e.,

ω
c
j = 1 and nc = 2).

2.2 Local T3-based Stereocorrelation

The previous mean field approximations are utilized to derive the results for a single T3

element (Figure 1(a)). As a consequence, the components (Hc
l )i j of elementary Hessian

matrices for each direction ek are products of shape functions Ni(x,y)N j(x,y) for i, j = 1,2,3

to be integrated over the domain S c
e covered by each element

[Hc
l ] =

N2
eq(Πc

k)
2〈‖∇Ic

0‖2
2〉

4(σ c)2
1
12


2 1 1

1 2 1

1 1 2

 (12)

with N1(x,y) = 1− x− y, N2(x,y) = x, and N3(x,y) = y following the node numbering and

the reference frame of Figure 1(a). In practice, NIP integration points are considered to eval-

uate the integrals over each element, and Neq denotes the equivalent number of integration

points (i.e., the square root of NIP). The total Hessian matrix [H ] then becomes a block
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diagonal matrix made of [Hk] matrices

[Hk] = N2
eq

nc

∑
c=1

(Πc
k)

2〈‖∇Ic
0‖2

2〉
4(σ c)2 [Hl ] (13)

where [Hl ] is the corresponding dimensionless Hessian matrix (Figure 1(b))

[Hl ] =
1
12


2 1 1

1 2 1

1 1 2

 (14)

(a) (b) (c)

Fig. 1 (a) T3 element. The node numbering is in green, and that of the element in blue. (b) Dimensionless

Hessian matrix [Hl ]. (c) Corresponding dimensionless covariance matrix [Cl ].

The covariance matrix [C] is composed of block diagonal matrices [Ck], which each

are the inverse of [Hk]

[Ck] =
1

N2
eq

(
nc

∑
c=1

(Πc
k)

2〈‖∇Ic
0‖2

2〉
4(σ c)2

)−1

[Cl ] (15)

where the dimensionless matrix [Cl ] reads (Figure 1(c))

[Cl ] = 3


3 −1 −1

−1 3 −1

−1 −1 3

 (16)

Figure 2(a) shows the diagonal components of the dimensionless covariance matrix [Cl ]

(i.e., the dimensionless variances of each degree of freedom considered independently of
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the others). In the present case, they are identical and equal to 9. This level will serve as

comparison when different discretizations are considered.

(a) (b)

Fig. 2 (a) Diagonal components (i.e., variances) of the dimensionless covariance matrix [Cl ]. (b) Dimen-

sionless variance σ
2
u (x,y). The white cross shows the location of the minimum level.

Given the fact that the displacement component Ue
k (x,y) of any point (x,y) within the

considered T3-element is a linear combination of shape functions Ni and nodal displace-

ments Ue
i

Ue
k (x,y) =

3

∑
i=1

Ni(x,y)Ue
i (17)

or equivalently, when gathering the shape functions in the column vector {N (x,y)}

Ue
k (x,y) = {N (x,y)}>{U e} (18)

its variance σ
2
Ue

k
(x,y) reads

σ
2
Ue

k
(x,y) = {N (x,y)}>[Ck]{N (x,y)} (19)

and becomes

σ
2
Ue

k
(x,y) =

1
N2

eq

(
nc

∑
c=1

(Πc
k)

2〈‖∇Ic
0‖2

2〉
4(σ c)2

)−1

σ
2
u (x,y) (20)
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where σ
2
u denotes the dimensionless variance

σ
2
u (x,y) = 3

(
4N2

1 (x,y)+ 4N2
2 (x,y)+ 4N2

3 (x,y)−1
)

(21)

Figure 2(b) shows that the variance σ
2
u reaches its maximum level (i.e., 9) at each node and

its minimum (i.e., 1) at the center of gravity of the T3 element. If only one point were to be

kept from local analyses using T3 elements, its center of gravity has the lowest uncertainty

in comparison to any other point within the element. Conversely, the nodal displacements

have the highest uncertainties.

Last, let us define the spatial resolution. It corresponds to the square root of the surface

area used to evaluate any degree of freedom. For one single element, the spatial resolution

then is the square root of the area of the domain Se.

2.3 Global T3-based Stereocorrelation

When using structured meshes made of T3 elements, the connectivity of an inner node

is typically equal to 6 (see node 1 of Figure 3(a)). This means that the evaluation of the

corresponding nodal displacements is performed over 6 elements. Consequently, the spatial

resolution for node 1 is
√

6 times higher than in the case of a single element (Figure 1(a)).

(a) (b) (c)

Fig. 3 (a) Mesh composed of 6 T3 elements. The node numbering is in green, and that of the elements in

blue. (b) Dimensionless Hessian matrix [Hg]. (c) Corresponding dimensionless covariance matrix [Cg].
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The global Hessian matrix [H ] of the present mesh is the assembly of all 6 local Hessian

matrices for each camera c accounting for node connectivities. As for the local Hessian

matrix, it is a block diagonal matrix whose components [Hk] now become

[Hk] = N2
eq

nc

∑
c=1

(Πc
k)

2〈‖∇Ic
0‖2

2〉
4(σ c)2 [Hg] (22)

with the dimensionless Hessian matrix [Hg] (Figure 3(b))

[Hg] =
1
12



12 2 2 2 2 2 2

2 4 1 0 0 0 1

2 1 4 1 0 0 0

2 0 1 4 1 0 0

2 0 0 1 4 1 0

2 0 0 0 1 4 1

2 1 0 0 0 1 4



(23)

From the assembled Hessian matrix, the covariance matrix [C], which is obtained by

following the same path as in the previous section, is composed of block diagonal matri-

ces [Ck]

[Ck] =
1

N2
eq

nc

∑
c=1

(
(Πc

k)
2〈‖∇Ic

0‖2
2〉

4(σ c)2

)−1

[Cg] (24)

where the dimensionless matrix [Cg] reads (Figure 3(c))

[Cg] =
1
30



45 −15 −15 −15 −15 −15 −15

−15 109 −23 13 1 13 −23

−15 −23 109 −23 13 1 13

−15 13 −23 109 −23 13 1

−15 1 13 −23 109 −23 13

−15 13 1 13 −23 109 −23

−15 −23 13 1 13 −23 109



(25)
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Figure 4(a) shows the diagonal components of the dimensionless covariance matrix

[Cg]. For the central node, the variance is equal to 3/2, which is six times lower than the

levels observed when only one element was considered (Figure 4(a)). This factor 6 decrease

is related to the connectivity of this node (i.e., 6) and the increase by a factor
√

6 of the

spatial resolution. Conversely, the other nodes have variances that are identical and equal to

109/30≈ 3.63.

(a) (b)

Fig. 4 (a) Diagonal components of the dimensionless covariance matrix [Cg]. (b) Dimensionless variance

σ
2
u (x,y) for element 1 (Figure 3(a)). The white cross shows the location of the minimum level.

The dimensionless variance σ
2
u is computed by using Equation (19) in which the block

diagonal matrix [Ck] is restricted to the nodes belonging to any of the considered elements.

In the present case, the results are identical for all the elements

σ
2
u (x,y) =

1
30
(
45N2

1 (x,y)+ 109N2
α (x,y) (26)

+ 109N2
β
(x,y)−30N1(x,y)Nα (x,y)

−46N1(x,y)Nβ (x,y)−46Nα (x,y)Nβ (x,y)
)

where α ,β denote the other two node numbers of any element containing node 1 (e.g.,

α = 2,β = 3 for the element shown in Figure 4(b)). Figure 4(b) shows that the variance σ
2
u
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reaches its maximum level (i.e., 109/30 ≈ 3.63) at each edge node and its minimum (i.e.,

29/60≈ 0.48) at a point that is no longer the center of gravity of the element (in the shown

example, it is when x = y = 0.25). The nodal displacements have higher uncertainties but

their level depends upon the connectivity number.

This first analysis shows the benefit of considering a mesh instead of independent el-

ements, namely, the nodal uncertainties are significantly reduced in comparison with local

analyses using independent elements. In the present case, the variance is reduced by a factor

6, which is related to the number of connectivities of the studied (inner) node. The other

(edge) nodes also experience uncertainty reductions, yet to a lesser degree (i.e., a factor 2.5)

because they share less elements. The minimum variance is also lowered but less (i.e., by a

factor of 2.1) than that of nodes.

To further discuss the role of inner, edge and corner nodes, let us consider a simple mesh

made of 18 elements (Figure 5(a)). The corresponding dimensionless Hessian matrix [H16]

is shown in Figure 5(b). Its maximum value is still equal to 1 (for the inner nodes 6, 7, 10

and 11). However, the minimum value is equal to 1/6 for nodes 4 and 13, and 1/3 for nodes

1 and 16. Even though these four nodes are corners, the first ones only belong to one element

as opposed to the latter ones. Consequently, the spatial resolution is
√

2 times lower for the

former ones. All edge nodes (i.e., 2, 3, 5, 8, 9, 12, 14, 15) have the same (i.e., 1/2) level as

they are all being shared by three elements.
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(a) (b) (c)

Fig. 5 (a) Mesh composed of 18 T3 elements. The node numbering is in green, and that of the elements in

blue. (b) Dimensionless Hessian matrix [H16]. (c) Corresponding dimensionless covariance matrix [C16].

The previous observations also apply to the covariance matrix, whose dimensionless

block diagonal component [C16] is shown in Figure 5(c). The inner nodes have about the

same level (i.e., ≈ 1.27), the edge nodes ≈ 2.36−2.53, and the corner nodes either ≈ 3.48

or ≈ 6.96.

When the number of elements is increased, asymptotic results can be obtained. Fig-

ure 6(b) shows the diagonal terms of the dimensionless covariance matrix when 2× 104

elements are considered in a structured mesh (Figure 6(a)). For inner nodes, the dimen-

sionless variance tends to ≈ 1.16. For edge nodes with three connectivities, the asymptotic

level is≈ 2.32. For corner nodes, the dimensionless variance tends to≈ 6.96 when only one

connectivity is concerned, and ≈ 3.48 when it is shared by two elements.



Displacement Uncertainty Quantifications in T3-Stereocorrelation 15

(a) (b) (c)

Fig. 6 (a) Mesh composed of 2× 104 T3 elements. The inset shows the mesh fineness. (b) Diagonal com-

ponents of the dimensionless covariance matrix. (c) Dimensionless variance σ
2
u (x,y) for one inner element.

The white cross shows the location of the minimum level.

2.4 First Order Estimates

All the previous results are now summarized. It is worth remembering that in order to fully

quantify the uncertainties, the covariance matrix should be used and reported [19]. When

dealing with T3 elements, even in local analyses, it was shown that covariances arose (i.e.,

off-diagonal terms in the covariance matrices, see Equation (16)). Consequently, the total

Hessian matrix accounts for acquisition noise when white and Gaussian.

When simplified assessments are aimed for, the mean variance of each displacement

component is a good first order estimate. Further, when using mean field approximations,

Equation (11) provides a very simple way of assessing the variance of the degree of free-

dom Uk. For inner nodes of a structured T3 mesh, it was shown above that the uncertainty

level corresponds to a lower bound since the connectivity number is the highest (i.e., the

corresponding spatial resolution is also the highest). For corner and edge nodes, their spatial

resolution is lower than that of inner nodes. Thus, their variances increase. For instance, a

multiplicative factor
√

2 is expected for edge nodes sharing three elements. For corner nodes

with a connectivity of 2, this factor is equal to
√

3, and for those belonging to one element,

√
6.
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Last, let us note that the lowest dimensionless variance level in T3 elements could be

decreased from 1 for a single element to 0.28 for a fine mesh. The gain is not as important

as for the nodal displacements. Such trend was already observed in Q4-DIC [36]. It can be

understood by the fact that the (anti)covariances are lower (in absolute value) compared to

the variances in the case of fine meshes than for a single element.

3 Experimental Configuration

3.1 BLAG Setup

The BLAG setup (Banc Laser A Gradients, i.e., laser bench with temperature gradients) at

ONERA [30] was used to analyze the thermomechanical behavior of SiC/SiC composites. A

parallelepipedic sample made of CERASEPr A600 Ceramic Matrix Composite (CMC) was

manufactured by SAFRAN Ceramics [37]. It was heated at very high temperatures thanks

to a CO2 laser beam [38]. Under such thermal gradients, the material expands and deflects.

To measure the thermomechanical fields of the sample, a set of three cameras was installed

(Figure 7).

Fig. 7 Multi-instrumented experiment of a SiC/SiC composite under thermal gradient obtained with a CO2

laser beam. The reference frame (X ,Y ,Z), where the 3D displacements will be expressed, is depicted with

green arrows.
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These three cameras monitored the top surface of the studied CMC, which was heated by

the laser beam, in order to measure temperature fields during the test (with an infrared cam-

era FLIR X6580scr, acquiring frames at a frequency of 1 Hz) and 3D surface displacement

fields (i.e., stereovision system composed of two cameras, see Table 1). An LED light panel

(7700 lm) was installed. Table 1 summarizes the hardware parameters of the stereovision

system to be studied herein.

Table 1 DIC hardware parameters of the stereosystem

Cameras AVT Pike-421

Definition 2048×2048 pixels (B/W images)

Color filter none

Gray Levels rendering 8 bits

Lens Schneider Kreuznach 2.8/50 mm

Aperture f/11

Field of view 16,800 mm2

Image scale ≈ 63 µm/pixel

Stereo-angle 30°

Stand-off distance 80 cm

Image acquisition rate 0.5 fps

Patterning technique W or B/W paints (see text)

Pattern feature size 4 px

To measure the 3D surface displacements of the heated face, the CMC sample surface

was speckled with a white paint that is resistant to very high temperatures [39]. It is worth

noting that the top surface was only partially speckled, with a raw central part corresponding

to the heated area and speckled parts on both sides (Figure 25). Therefore, the speckle pattern

did not perturb temperature field measurements in the hottest area and the displacements
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were measured on both sides of that part (especially on the free edge, where the amplitude of

displacements is the highest). In addition, a tailored calibration target (Appendix A) was kept

next to the sample, so that it was totally seen by both cameras during the whole experiment.

It was also speckled by B/W paints (Figure 17).

The characteristic speckle size, which was determined as the full width at half maximum

of the autocorrelation of the regions of interest (ROI) of the calibration target and the speck-

led part of the sample surface, was equal to 4 px (or≈ 250 µm). Another quantity is needed,

namely, the RMS image gradient
√
〈‖∇Ic

0‖2
2〉, which was determined over the two ROIs

and for both cameras. For the calibration target, it was found equal to 19.4 gray level/px for

both cameras. This level was even higher for the CMC sample surface: 22.6 gray level/px

for the first camera, and 23.6 gray level/px for the second one.

Last, a fan (not shown in Figure 7) that can be turned on and off was positioned in front

of the sample free edge. A reference frame (X ,Y ,Z) (depicted with green arrows in Figure 7)

was defined for that experiment, so that the in-plane motions of the sample correspond to

the Y and Z components measured by stereocorrelation, and the out-of-plane displacements

to the X component.

3.2 Calibration

In the present case, two calibration steps were needed. First, the cameras were calibrated

using the calibration target. Within the present framework, this step (see Appendix B) con-

sisted in determining the projection matrices [P c] that allow the cameras to be positioned

within the updated model of the calibration target (Appendix A) by only using the first pair

of acquired images. All other image pairs were used for uncertainty quantification (UQ)

purposes.
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The second step (Appendix C) was devoted to the positioning of the CMC sample sur-

face in the reference frame of the calibration target. At the end of these two steps, a unique

reference frame defines the experimental configuration (i.e., both meshes were positioned

with respect to each other), and all the subsequent measurements are expressed in that frame.

3.3 Placement sensitivity fields

Once the projection matrices [P c] are known (i.e., the stereosystem is calibrated), the place-

ment sensitivity matrices [Πc(X)] can be evaluated at any location of the surface of interest.

Figure 8 illustrates the placement sensitivity fields (i.e., norms of ∂xc/∂X , ∂xc/∂Y , and

∂xc/∂Z) for the two cameras, and the global (i.e., RMS) sensitivities drawn on the meshes

of the nominal surfaces of the CMC sample and calibration target.

These fields, as assumed in the mean field approximation, do not vary much over the

region of interest of the CMC sample (more over the calibration target due to its roof top

shape), and are, on average, more than 3 times higher in the in-plane directions in compar-

ison with those in the out-of-plane directions. This information is very useful, for instance,

when designing experiments and having to place cameras in an optimal way (i.e., minimiz-

ing the measurement uncertainties [40]).

On a more quantitative basis, the total out-of-plane RMS sensitivity
√
〈‖∂x/∂X‖2〉=

7.2 mpx/µm is about 3.1 times lower than the in-plane components
√
〈‖∂x/∂Y‖2〉 =

22.3 mpx/µm and
√
〈‖∂x/∂Z‖2〉 = 22.6 mpx/µm for the calibration target. For the

CMC surface, the in-plane sensitivities are very close, namely,
√
〈‖∂x/∂Y‖2〉 =

22.1 mpx/µm and
√
〈‖∂x/∂Z‖2〉 = 22.5 mpx/µm. Conversely, the out-of-plane compo-

nent
√
〈‖∂x/∂X‖2〉 = 6.7 mpx/µm is lower (i.e., the out-of-plane sensitivity is about 3.3

times lower than the in-plane component). This is due to the fact that the sample surface is
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Sensitivity fields expressed in mpx/µm of the stereovision system. Each row reports the results for X ,

Y and Z-directions. The first column corresponds to camera #1, the second to camera #2, and the third to the

total sensitivity projected onto the nominal shape of the plate and the calibration target.

planar as opposed to the calibration target that has a roof top like shape (Figure 18), which

increases the RMS levels.
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4 Uncertainty Quantifications

4.1 Experimental Protocol

The following analyses only correspond to the very first part of the experiment [39], namely,

images were acquired at room temperature for different positions of the calibration target

and the sample [19] for UQ purposes. It will be referred to as UQ phase. The sequence

of prescribed in-plane displacements was conducted thanks to the in-plane Y − Z micro

positioning stage available on the setup. For each of the 23 positions (Table 2) approximately

15 image pairs were recorded. This procedure was repeated when the fan was turned on to

quantify its effect on heat waves mitigation at room temperature, as commonly used in

reported high-temperature experiments [41,42,43,44,45], and on spurious vibrations that

may occur.

Table 2 Y −Z in-plane prescribed displacements with the micro-positioning linear stage for the UQ phase.

Step Y disp. (mm) Z disp. (mm)

1 0 0

2 −10−3 0

3 −2×10−3 0

4 −5×10−3 0

5 −0.01 0

6 −0.05 0

7 −0.1 0

8 −0.5 0

9 −1 0

10 −2 0

11 −4 0

12 0 0

Step Y disp. (mm) Z disp. (mm)

13 0 10−3

14 0 2×10−3

15 0 5×10−3

16 0 0.01

17 0 0.05

18 0 0.1

19 0 0.5

20 0 1

21 0 2

22 0 4

23 0 0
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4.2 A Priori Estimates

Equations (8) and (11) enable the standard displacement uncertainties to be estimated once

the placement sensitivities (Figure 8), the mean RMS image gradient, and acquisition noise

levels are known. For the latter, 2D-DIC analyses were run on each image series of the first

UQ step. This is possible since the master meshes (Figures 19 and 25) were projected onto

the reference images acquired by both cameras thanks to the calibrated projection matrices

[P c] (see Figure 9). For the CMC surface, the master mesh has a mean size (i.e., square root

of the mean surface of the T3 elements) of 1.5 mm. The mesh of the calibration target has a

mean size of 1.7 mm. When reprojected onto the reference pictures, the corresponding mesh

sizes are 25 px and 26 px, respectively.

(a) (b)

Fig. 9 Projected meshes onto the reference pictures acquired by cameras #1 (a) and #2 (b).

At the end of these 2D analyses, the gray level residuals were stored. For each pixel, the

standard deviation of the residuals was computed, and the mean over the ROI was evaluated.

A 2/3 correction was finally applied since a bilinear gray level interpolation scheme was

considered [27]. For the calibration target and the CMC surface,
√

2σ
1 =
√

2σ
2 = 1.3 gray

level. It is worth noting the
√

2 factor is related to the fact that gray level residuals correspond

to gray level differences of two images (i.e., its variance is twice that of acquisition noise).
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With all these data at hand, it is possible to estimate a priori the standard displacement

uncertainties by applying Equations (8) or (11). One additional information should be added,

namely, if the number of integration points increases, pixels may be shared by more than one

integration point [46]. In that case, no gain is expected in terms of measurement uncertainty

since no additional information is available (i.e., the standard displacement uncertainties no

longer decrease). It follows that the equivalent number of integration points is defined by

Neq = min(NIP,Npx) (27)

where N2
px denotes the number of pixels contained, on average, in each element of the pro-

jected meshes. In the present case, the maximum value is equal to 262 (see Table 3), and

thus Npx = 26.

Figure 10 shows the corresponding estimates for the CMC surface and the calibration

target. Because of the previous modification of the equivalent number of integration points,

a flattening of the different curves is observed. When using Equation (8), the predictions are

stopped when NIP = Npx. The same dependence with the number of integration points is

observed for both approaches. As expected from the sensitivity fields, the uncertainty level

for the out-of-plane displacements is about three times higher than for in-plane displace-

ments. Overall, the expected uncertainty levels are similar for the CMC surface and and the

calibration target.
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Fig. 10 A priori estimates of the standard displacement uncertainties as functions of the equivalent number

of integration points according to Equations (11) and (27) (thick lines) and Equation (8) (thin dashed lines)

compared to actual results for the artificial test case (symbols) for the CMC surface (a) and calibration target

(b). The vertical (green) dashed line depict the number of integration points that was selected for the analysis

of the UQ phase.

These estimates are compared to an artificial case that consisted in considering the im-

ages of the reference configuration, and adding white Gaussian noise with variances con-

sistent with actual acquisition noise of both cameras. The same number of images was con-

sidered as that of step 1 of the UQ phase. Stereocorrelation analyses were run on this set of

artificial pictures for different numbers of integration points. From these results, the standard

displacement uncertainties for any component were obtained as the square root of the aver-

age nodal variances and are reported in Figure 10 as symbols. For both surfaces, a very good

agreement is observed with the a priori estimates following Equations (8) and (27). Con-

versely, the approximate solution given by Equation (11) (with a 1.16 prefactor) combined

with Equation (27) provides lower bound estimates. This result shows that if uncertainty

levels are sought with high fidelity, the full covariance matrix should be computed.
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From this artificial test case, it is concluded that Equations (11) and (27) are validated for

the CMC surface and calibration target. Such results also allow the user to select the optimal

number of integration points associated with the selected discretization. In the present case,

N2
IP = 528 is the best choice since it allows the measurement uncertainty to be lowered as

much as possible (see green dashed lines in Figure 10). It was kept for the following analyses

of the whole UQ phase (Table 3).

4.3 Analyses of the UQ phase

The 707 image pairs acquired during the UQ phase (without or with fan) were analyzed.

Table 3 gathers all stereocorrelation analysis parameters of the UQ phase.

Table 3 Stereocorrelation analysis parameters

DIC software Correli 3.0 [47]

Image filtering None

Element sizes 1.5-1.7 mm (≈ 25−26 px, see Figure 9)

Shape functions Linear (T3 elements)

Evaluation points (per element) 528 (i.e., NIP ≈ 23)

Matching criterion Normalized quadratic differences (1)

Interpolant Linear

Displacement noise-floor see text and Figures 13, 15

3D surface displacement fields were measured on the calibration target, the standard

displacement uncertainties were computed for each prescribed position. For each position

of the calibration target prescribed by the in-plane linear stage (Table 2), approximately

15 images were acquired. Thus, it was possible to investigate the uncertainty on the dis-

placements measured by stereocorrelation on each set of 15 images. Figure 11 shows the

uncertainty maps computed for each component of displacements (namely the out-of-plane
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Ux, the longitudinal Uy and the transverse Uz displacements) for, respectively, the initial po-

sition of the calibration target and for a prescribed displacement of U presc.
y = 2 mm, when

the fan was off.

(a) (b) (c)

(d) (e) (f)

Fig. 11 Standard uncertainty maps for (a,d) out-of-plane Ux, (b,e) longitudinal Uy and (c,f) transverse Uz

displacement fields (expressed in µm) of the calibration target computed for the first calibration step (initial

position) with no fan (top row) and the tenth calibration step (U presc.
y = 2 mm) with no fan (bottom row).

The uncertainty maps are rather homogeneous, which was expected since the entire

surface of the calibration target was speckled and for a given position, the lighting conditions

did not vary much with time. It can be noted that the uncertainty levels were of the same

order for both prescribed conditions. This observation is also evidenced when plotting the

average of the nodal uncertainties for each increment of the calibration phase (Figure 12).



Displacement Uncertainty Quantifications in T3-Stereocorrelation 27

Prescribed disp.

along y

Prescribed disp.

along z
P0 P0 P0

S
ta

nd
ar

d 
di

sp
la

ce
m

en
t u

nc
er

ta
in

ti
es

 (
µ

m
)

Fig. 12 Change of standard displacement uncertainties during the UQ phase for out-of-plane Ux (in red),

longitudinal Uy (in green) and transverse Uz (in blue) displacements of the calibration target. The vertical

dashed lines mark the ends of the main steps of the UQ phase, namely the acquisition at initial position P0,

for displacements along Y -direction and for Z-direction.

The standard displacement uncertainties were virtually constant for any position, except

the very last increment. During that step, the measured displacements were consistent with

the prescribed position (i.e., return to the initial position, implying null-displacements), ex-

cept for one image of the series where displacements of≈ 5 µm were measured for the Y and

Z-directions. This spurious motion induced higher standard deviations for the corresponding

increment, so that it was excluded from the following uncertainty analyses. The longitudinal

displacement Uy was characterized by the lowest level of uncertainty (i.e., 0.7 µm). The un-

certainty of the transverse displacement Uz was higher, with a mean level over the different

positions of the UQ phase of 1 µm. Regarding the out-of-plane displacement Ux, the uncer-

tainty level was 2.7 times higher than that of the longitudinal component and was equal to

2 µm.

Moreover, since the UQ phase was repeated while the fan was on, it was possible to

analyze in the same way the displacement uncertainties (Figure 13). There are no significant

differences between the two configurations (i.e., with and with no fan) because there were
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no detectable heat waves at room temperature in this experiment and the air flow was smooth

enough (laminar) not to induce detectable vibrations. The source of heat for the surrounding

air, which could be due to the lighting devices, was several tens of centimeters away from

the observed surfaces. The a priori estimates based upon Equation (8) led to the following

levels: 1 µm for Ux, 0.3 µm for both in-plane directions (Figure 10(b)). The mean ratio of

a posteriori results to a priori estimates is only 2.1. Given the fact that other sources of

uncertainties are involved, this level is considered rather low.
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Fig. 13 Change of standard displacement uncertainties during the UQ phase for out-of-plane Ux (in red),

longitudinal Uy (in green) and transverse Uz (in blue) displacements of the calibration target. The results are

reported when the fan was off (solid lines) and on (dashed lines). The vertical dashed lines mark the ends

of the main steps of the UQ phase, namely, the acquisitions at initial position P0, for displacements along

Y -and Z-directions.

Similar results were obtained using the displacements measurements on the CMC sur-

face during the UQ phase with the same level of uncertainties on the three components.

Figure 14 illustrates the uncertainty maps related to the CMC sample.
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(a) (b) (c)

Fig. 14 Standard uncertainty maps for (a) out-of-plane Ux, (b) longitudinal Uy and (c) transverse Uz dis-

placements (expressed in µm) of the CMC sample computed for the first UQ step (initial position) with no

fan.

Figure 15 shows the history of standard uncertainties on CMC surface displacements for

the UQ phase. The same comment can be made on the uncertainties computed for the last

increment, since the global motions measured on one image affected both the calibration

target and the CMC sample, leading to increased standard deviations for that increment.

Regarding the other positions, the uncertainty levels were stable, with average values over

the 22 calibration increments of 2 µm for the out-of-plane component Ux, 0.8 µm for the

longitudinal displacement Uy and 0.9 µm for the transverse displacement Uz. Last, it is worth

noting that the fluctuations of the uncertainties reported in Figures 13 and 15 are totally

correlated. This trend is to be expected since the calibration target and the CMC surface

were imaged at the same time (Figure 9).
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Fig. 15 Change of CMC standard displacement uncertainties during the calibration phase for out-of-plane ux

(in red), longitudinal uy (in green) and transverse uz (in blue) displacements of the CMC sample. The results

are reported when the fan is off (solid lines) and on (dashed lines). The vertical dashed lines mark the ends

of the main steps of the calibration phase, namely the acquisitions at initial position P0, for displacements

along Y -direction and for Z-direction.

The a priori estimates based upon Equation (8) were equal to 1 µm for Ux, and 0.3 µm

for both in-plane directions (Figure 10(a)). The mean ratio of the a posteriori results to a

priori estimates is equal to 2.1, which again remains very low.

Since the UQ phase was performed a few hours before the heating phases of the experi-

ment [39], a similar analysis based on the first 46 images acquired at room temperature just

at the beginning of the actual test, was conducted to confirm the previous estimates. The

uncertainty maps shown in Figure 16 were measured on the calibration target.



Displacement Uncertainty Quantifications in T3-Stereocorrelation 31

(a) (b) (c)

Fig. 16 Uncertainty maps associated with (a) out-of-plane Ux, (b) longitudinal Uy and (c) transverse Uz

displacements (expressed in µm) measured on the calibration target at room temperature (before heating),

with no fan

The standard deviations were lower than in the previous analyses, namely, equal to

1.8 µm for the out-of-plane component and 0.5 µm for the in-plane displacements. The

low-range heterogeneity on the uncertainty maps may be due to differences in lighting con-

ditions. When compared to the a priori estimates, the ratio is equal to 1.8.

5 Conclusion

Displacement uncertainties were assessed in the case of T3-stereocorrelation. Mean field

approximations were performed to derive a priori estimates for different meshes made of T3

elements. Closed-form solutions were obtained for the Hessian and covariance matrices in

the case of simple meshes. When more than one element is used, there are significant gains

to be expected for the nodal displacement uncertainties (e.g., a factor 6 on the variances of

inner nodes). Further, very simple lower bounds were obtained. In its simplest declination,

the standard displacement uncertainty depends upon the image contrast (characterized by its

RMS level), the mean placement sensitivities (which depend on the extrinsic and intrinsic

parameters of each camera), acquisition noise (i.e., camera hardware and illumination), and

the number of integration points.
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Such framework allows a priori estimates of displacement uncertainties to be obtained.

They were probed at room temperature when applied to an experimental setup in which

thermomechanical tests are to be performed by illuminating the top surface of ceramic ma-

trix composites with a laser beam. An in-situ calibration target was designed to ensure a

good calibration of a stereovision system using a single pair of images and measure small

displacements, as expected for SiC/SiC composites. This configuration allows, in particular,

heat haze effects to be analyzed in-situ [39].

Uncertainty quantifications were performed by acquiring sets of pictures for different

positions of the calibration target and the sample [19]. Both surfaces were studied and the

corresponding measurement uncertainties were assessed. No degradation was observed for

the range of prescribed displacements. A fan was also turned on to investigate its effect for

room temperature evaluations. No major effect was observed. The displacement uncertain-

ties showed the high-quality of the stereovision setup and its calibration, with levels less

than 1 µm for the in-plane measurements and about 2 µm for the out-of-plane component.

When compared to a priori estimates, there was only a factor 2 difference with respect to the

lower bounds derived herein. This observation shows that there are other sources of random

or systemic uncertainties, yet they remain reasonably small.

Since the calibration target can be kept in high temperature tests, the impact of high-

temperature environments on the measurement trustworthiness of 3D surface displacements

and the level of displacement fluctuations can be compared with respect to the present un-

certainty levels obtained at room temperature. A future study will focus on such effects at

high temperatures.
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18. J.-E. Pierré, J.-C. Passieux, and J.-N. Périé. Finite Element Stereo Digital Image Correlation: Framework

and Mechanical Regularization. Experimental Mechanics, 57(3):443–456, 2017.

19. ASD-STAN prEN 4861 P1. Metrological assessment procedure for kinematic fields measured by digital

image correlation, 2018.

20. E.M.C. Jones and M.A. Iadicola (Edts.). A Good Practices Guide for Digital Image Correlation. In-

ternational Digital Image Correlation Society (iDICs), idics.org/guide/, DOI: 10.32720/idics/gpg.ed1,

2018.

21. Y.-Q. Wang, M. A. Sutton, X.-D. Ke, H. W. Schreier, P. L. Reu, and T. J. Miller. On Error Assessment

in Stereo-based Deformation Measurements. Experimental Mechanics, 51(4):405–422, 2011.

22. X.-D. Ke, H. W. Schreier, M. A. Sutton, and Y. Q. Wang. Error Assessment in Stereo-based Deformation

Measurements. Experimental Mechanics, 51(4):423–441, 2011.



Displacement Uncertainty Quantifications in T3-Stereocorrelation 35

23. P.L. Reu. A study of the influence of calibration uncertainty on the global uncertainty for digital image

correlation using a monte carlo approach. Experimental Mechanics, 53(9):1661–1680, 2013.

24. C. Zhu, S. Yu, C. Liu, P. Jiang, X. Shao, and X. He. Error estimation of 3D reconstruction in 3D digital

image correlation. Measurement Science and Technology, 30(2):025204, 2019.

25. R. Balcaen, L. Wittevrongel, P. L. Reu, P. Lava, and D. Debruyne. Stereo-DIC Calibration and Speckle

Image Generator Based on FE Formulations. Experimental Mechanics, 57(5):703–718, 2017.

26. R. Balcaen, P.L. Reu, P. Lava, and D. Debruyne. Stereo-dic uncertainty quantification based on simulated

images. Experimental Mechanics, 57(6):939–951, 2017.

27. F. Hild and S. Roux. Displacement uncertainties with multiview correlation schemes. Journal of Strain

Analysis for Engineering Design, 55(7-8):199–211, 2020.

28. C.R. Rao. Information and the accuracy attainable in the estimation of statistical parameters. Bulletin of

the Calcutta Mathematical Society, 37:81–89, 1945.

29. H. Cramér. Mathematical Methods of Statistics. Princeton Univ. Press, Princeton, NJ (USA), 1946.

30. T. Archer. Comportement sous gradients thermiques d’un composite à matrice céramique revêtu. PhD
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Appendix A: Calibration Target

To calibrate the stereovision system, a new calibration target (Figure 17) was designed. One

face of the calibration target is composed of a series of six inclined planes with a verti-

cal offset of 3 mm, corresponding to the cameras depth of field. The shape of the opposite

face is identical, with an offset of 1 mm. The object was speckled with black paint RAL

9005 by Rontr. The calibration target that includes 14 corners (i.e., fiducials) at different

heights within the field of view of the cameras allows for a good initialization of the pro-

jection matrices [P 1] and [P 2], and the calibration of the stereovision system with a single

pair of images (contrary to what is usually carried out with planar calibration targets [1]

that require full sets of different positions). Moreover, this shape enables for the calibra-

tion within a volume corresponding to the expected deformation of CMC samples. Last, in

the present configuration, the calibration target was kept in the field of view during whole

experiments [39].

Fi

Si

(a) (b)

Fig. 17 (a) CAD model of the calibration target where a facet is denoted Fi and an edge surface Si. (b) Speck-

led calibration target positioned next to a tested CMC sample.

To perform the first calibration step, the real model of the manufactured calibration

target was identified. First, a 3D surface measurement was performed using a Coordinate-

Measuring Machine. For each main facet of the object (inclined planes, denoted as Fi in
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Figure 17(a)), the space coordinates of 50 points, uniformly distributed over the surface,

were acquired. For each of the two small surfaces (horizontal planes Si), 10 points were

acquired.

A total of 620 points was used to build the model of the calibration target. Then, an

algorithm based on least squares and least distances methods was implemented to find the

best surface interpolating all the points of a facet [39]. It is a two-step algorithm, where the

first step was based on least squares fit between the measurements and the estimated plane,

and the second step on the least distances method to update the plane normal direction. With

such procedure, a more faithful parameterization of the surface is achieved in comparison to

the nominal shape, and minimizes the distance of the measured points to the sought plane.

Once the optimization of each face model was performed, all planes were combined to

determine the corners of every facet. Then, the global model for the calibration target was

constructed and can be expressed in different frameworks, either using an FE (T3) mesh or

NURBS patches (Figure 18).
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Fig. 18 (a) Finite Element model and (b) corresponding NURBS model of the calibration target.
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Appendix B: Calibration of the Two Cameras

The calibration procedure aims to minimize the cost function [12]

φ
2
c ([P

1], [P 2]) =
ns

∑
j=1

∑
X j∈S j

(
I1
0 (x

1(X j, [P 1]))

2(σ1)2

−
I2
0 (x

2(X j, [P 2]))

2(σ2)2

)2

(28)

with respect to the components of the projection matrices [P 1] and [P 2], where S j denotes

the ns = 6 surfaces defining one side of the calibration target. The calibration procedure

used herein was based an the FE formulation of global stereocorrelation [13]. A fine mesh

of the calibration target was considered. It was composed of 558 T3 elements 1.7 mm in

size (Figure 19). The total number of integration points was equal to 528 (i.e., Neq ≈ 23) so

that the projected surface of one integration point had the size of roughly one pixel in the

images (Table 3).
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(a)

Fig. 19 Three-noded triangular (T3) mesh of the calibration target used for calibration procedure.

The minimization procedure was initialized with a direct estimation (via SVD [48,12])

of the projection matrices, using the 3D positions of the 14 fiducials (i.e., corners of the

calibration target) and their associated projection in each image, see Figure 20.
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(a) (b)

Fig. 20 (a) Fiducials (in red crosses) on one of the image pair on the calibration target and (b) estimated

2D positions (in cyan asterisks) of these points through initial projection matrix obtained with an SVD pre-

calibration, along with manually clicked points (in red crosses).

The associated gray level (GL) residuals using this initialization of the projection ma-

trices are shown in Figure 21(a) for each camera. The initialization led to a medium level

of RMS residuals (≈ 21.4 gray levels, i.e., 8.4% of the dynamic range) and to errors on the

description of the calibration target edges. This was expected since the initialization was

obtained by using only 14 fiducials, which were manually selected on the images.

(a)

(b)

Fig. 21 Initial (a) and converged (b) gray level residual fields for each camera that was calibrated.



Displacement Uncertainty Quantifications in T3-Stereocorrelation 41

At the end of the optimization procedure, the calibration converged to a solution that

considerably reduced the residuals (Figure 21(b)) to an RMS level of 3.1 gray levels (i.e.,

1.2% of the dynamic range). As opposed to Figure 21(a), the edges were well-defined and

the errors on the speckled parts were erased, hence leading to a good stereosystem calibra-

tion. Figure 22 illustrates how each node was correctly projected onto each image plane and

matched the calibration target shapes on the images (especially for the edges, the corners

and the inclined planes).

(a) (b)

Fig. 22 Projection of nodes of the calibration target mesh (depicted with red crosses) using the converged

projection matrices for (a) camera #1 and (b) camera #2.

Appendix C: Shape Correction for the CMC Sample

Displacements were then measured for the top surface of the CMC sample. The first step

consisted in expressing its model in the calibration target frame. The correction procedure

seeks to determine the (new) nodal positions gathered in the column vector {N} of the
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surface mesh by globally minimizing the cost function [13]

φ
2
s ({N}) =

ns

∑
j=1

∑
X j∈S j

(
I1
0 (x

1(X j,{N}))
2(σ1)2

−
I2
0 (x

2(X j,{N}))
2(σ2)2

)2

(29)

Since the goal was to correct the global position of the CMC surface with respect to the

calibration target, the FE mesh was very simple (i.e., made of two T3 elements covering the

CMC surface). Because the discretization was coarse, a large number of integration points

(i.e., 8,256 corresponding to Neq ≈ 91) was selected. The nodal positions were initialized

using in-situ distances between the sample and the calibration target. This initial model led

to an RMS residual of 12.1 gray levels, corresponding to 4.7% of the dynamic range. The

maps show that the residuals were higher on the right part (free edge) of the sample with a

line of evaluation points with very high residuals (Figure 23(a)). They indicated that the real

model of the CMC sample was shorter and needed to be corrected.
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(a)

(b)

Fig. 23 Initial (a) and converged (b) gray level residuals for each camera and for the CMC sample using its

optimized shape.

At convergence of the approach, the RMS residuals were reduced to 2.1% of the dy-

namic range (i.e., 5.3 gray levels) and the previous errors at the free edge were virtually

erased (Figure 23(b)). It was even possible to see the residuals associated with CMC 3D

woven architecture of the central unspeckled part of the sample, which was a further proof

of the good quality of the shape corrections.

The corrected position of the sample is shown in Figure 24. The main contribution is

on the out-of-plane component Ux with a mean translation due to a wrong estimation of the

sample thickness. There is also a gradient of ≈ 180 µm between the X-position of nodes in

the clamp (corresponding to Y ≈ 60 mm) and the nodes of the free edge, explained by the

fact that the CMC sample was slightly inclined at the free edge. Regarding the components
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on the longitudinal Y and transverse Z-directions, the corrections mainly corresponded to an

adjustment of the shape in terms of length and width.

Fig. 24 Comparison between the initial (green mesh) and optimized (red mesh) positions of the CMC surface.

Once the position of the sample was corrected, it was possible to measure its 3D surface

displacements. A fine mesh was used with 498 T3 elements of mean size 1.5 mm (Table 3).

To avoid convergence issues on displacement measurements, this mesh did not contain the

unspeckled part and a line of nodes at the clamped edge, since they were hidden on one

camera plane. Figure 25 shows the mesh with its projection onto both camera planes.

(a)

(b) (c)

Fig. 25 (a) Mesh of the CMC surface and projection of its nodes (red crosses) using the converged shape

corrections for (b) camera #1 and (c) camera #2.
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With this last step, the cameras were calibrated and the reference configuration of the

CMC surface was expressed in the same frame. Displacement fields of the CMC surface and

the calibration target can now be measured and are reported in a unique frame.
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