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Viewpoints

A Pictorial History of the Neuronal Cytoskeleton

Christophe Leterrier
Aix Marseille Université, Centre National de la Recherche Scientifique, INP Unité Mixte de Recherche 7051, NeuroCyto, Marseille 13005, France

Neurons are the “delicate and elegant...butterflies of the soul,” as
Santiago Ramón y Cajal famously put it in his memoir (Zwirn,
2015). Neurons interconnect throughout the brain and body via
the elaborate arborization of their dendrites and axon. Their cy-
toskeleton, the intricate array of microtubules, intermediate fila-
ments, and actin filaments running throughout each neuron,
allows them to build, maintain, and transform their fantastic
architectures (Leterrier et al., 2017; Tas and Kapitein, 2018). The
40th anniversary of the Journal of Neuroscience first issue marks
a great occasion to showcase how images have shaped our under-
standing of the neuronal cytoskeleton, from the early drawing of
pioneers to the latest developments of microscope technology. I
will follow how preparation and culture procedures, staining
methods, and microscopy techniques each brought new insight
on key neuronal structures, such as microtubules, the axonal
growth cone, and dendritic spines.

This history of the cytoskeleton in pictures begins in the 19th
century with the drawings of gifted scientists/artists. Staining
techniques, such as the Golgi method and its refinements,
revealed not only the morphology of isolated neurons, but also
the details of intraneuronal fibers, which were termed “neurofi-
brils.” Beautiful drawings from light microscopy observations by
Cajal and others depict these straight or wavy neurofibrils inside
the cell body, dendrites, and axon of a variety of neurons (Fig.
1A,B, from Frixione, 2009). The advent of microphotography
allowed images to be captured directly from the microscope, but
drawings were still used throughout the 20th century to summa-
rize findings as platonic ideals from numerous observations.
Classic electron microscopy (EM) works from the 1950s to 1970s
thus feature often beautiful, detailed drawings, such as the depic-
tion of intermediate filament (“neurofilament”) loops within pre-
synapses from George Gray and Ray Guillery (Fig. 1C, from
Gray and Guillery, 1966) or the summary of Victoria Chan-
Palay’s observations on the submembrane organization of the
axon initial segment (Fig. 1D, from Chan-Palay, 1972). The
abstraction offered by drawings makes them a natural choice to
recapitulate current knowledge in textbooks, such as the works
of art by Radivoj V. Krsti�c (Fig. 1E, from Krsti�c, 1979). Today’s
quantitative imaging has more rigorous and modern ways to

refine and recapitulate information from a set of observations,
but one may regret the artfulness and communication efficiency
of these wonderful drawings, and hope for their renewed pres-
ence in scientific articles (Chabrier and Janke, 2017).

EM was instrumental in visualizing the details of cytoskeletal
organization, with numerous ultrastructural studies in the 1940s
and 1950s. The accuracy of EM observations goes hand in hand
with the development of better fixation and sample processing
techniques. Inclusion in plastic resin, then aldehyde fixation
(Sabatini et al., 1963) greatly improved preservation of the neu-
ronal cytoskeleton, allowing visualization of distinct microtu-
bules; compare a typical osmic-acid fixed sample (Fig. 2A, from
Horridge and Mackay, 1962) with a formaldehyde-fixed sample
(Fig. 2B,C, from Sandborn et al., 1964). This opened the golden
era of thin-section EM of the nervous system, with the ultrastruc-
tural definition of the three main cytoskeleton components:
microtubules, intermediate filaments, and actin. Microtubules
(“neurotubules”) appear as hollow, 25-nm-diameter tubes running
longitudinally along dendrites and axons (Prokop, 2020) in culture
(Fig. 2D, from Bartlett and Banker, 1984) and in vivo (Fig. 2E,
from Gonatas and Robbins, 1965). In cross-section, axonal micro-
tubules appear as small rings, and along the axon initial segment,
they can be seen closely linked together in characteristic bundles
named “fascicles” (Fig. 2F, from Chan-Palay, 1972). Classic thin-
section EM is still the method of choice for investigating nerve
architecture, in particular in transverse sections of peripheral
nerves, which show the arrangement of microtubules inside axons
and the morphology of the myelin sheet surrounding them (Fig.
2G, from Katanov et al., 2020). Intermediate filaments (“neurofila-
ments”) are thinner, 10 nm longitudinal filaments (Fig. 2B,C).
Actin filaments (“microfilaments”) are usually more difficult to
discern on these images, appearing as a network of 7-nm-thick fil-
aments at the periphery of axons, as well as within growth cones
and filopodia (“microspikes,” Fig. 2H, from Yamada et al., 1970).

Early on, microtubules were considered key components in
establishing and maintaining neuronal architecture (Kapitein
and Hoogenraad, 2015). Their role in transporting cellular com-
ponents was suggested in the 1960s and strengthened by the
observation of axonal microtubule bundles decorated with
attached vesicles (Fig. 3A,B, from Smith et al., 1970; Smith,
1971). Refinements in EM sample preparation and imaging
brought additional insight about microtubule organization in
the 1980s and 1990s: painstaking serial reconstruction from
multiple EM sections revealed the three-dimensional arrange-
ment of microtubules along axons (Fig. 3C–E). The “hook”
method, where microtubules are made to polymerize in a
branched way using a specific buffer just before fixation, was
able to resolve the orientation of microtubules (Fig. 3F, from
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Baas et al., 1988) and showed that microtubules are uniformly
plus-end distal in axons, but have a mixed orientation in den-
drites (see also Figs. 7B, 8B, from Baas and Lin, 2011).
Protofilaments within the microtubule lattice were visualized
thanks to tannic acid fixation, which demonstrated, for exam-
ple, the existence of unusual 15-protofilaments microtubules in
touch neurons of the worm Caenorhabditis elegans (Fig. 3G,
from Chalfie and Thomson, 1982). Immunogold labeling
against tubulin post-translational modifications, indicative
of microtubule age and stability, showed that different parts
of axons have distinct modifications and stability profiles,
and that the same microtubule can have segments bearing
different modifications (Fig. 3H, from Baas et al., 1993).
Twenty-five years later, progress in EM is still exciting, with
cryo-EM promising another leap in our understanding of the
neuronal cytoskeleton, by allowing visualization of macro-
molecular complexes in situ down to the near-atomic scale
(Fig. 3I, from Atherton et al., 2018).

Beyond thin-section EM, alternative imaging modes have
allowed unique ways to observe the neuronal cytoskeleton.
Whole-mount transmission EM resolves the fine actin network
within growth cones and filopodia (Fig. 4A,B, from Kuczmarski
and Rosenbaum, 1979; Dailey and Bridgman, 1989). EM of plati-
num replicas, produced by rotary shadowing, beautifully reveals
the inner network of the cytoskeleton after detergent extraction
of the plasma membrane (Fig. 4C,D, from Letourneau, 1982;
Stern et al., 2009). The quick-freeze, deep-etch technique, where
the sample is rapidly frozen before being etched and replicated

(Heuser, 2011), further revealed the intricate arrangement of
cytoskeletal components within neurons (Fig. 5A, from Meller,
1987). This provided the stunning images obtained by Tom Reese
and Nobutaka Hirokawa, showing the axon interior crowded with
longitudinal microtubules and intermediate filaments, and inter-
spersed with vesicles and organelles traveling along microtubules
(Fig. 5B,C, fromHirokawa, 1982; Schnapp and Reese, 1982).

Immunolabeling with fluorescent antibodies for observation
using light microscopy was invented in the 1940s (Coons et al.,
1942) but was not used to image the neuronal cytoskeleton until
much later, and then primarily in neuronal cultures. Antibodies
against tubulin and actin (or fluorescent phalloidin) labeled
microtubule and actin filaments in the processes of neuroblas-
toma cells (Fig. 6A, fromMarchisio et al., 1978), revealing the or-
ganization of microtubules along neurites and the meshwork of
actin within growth cones. The restriction of the microtubule-
associated protein MAP2 to the somatodendritic compartment
was first shown by comparison to tubulin immunolabeling (Fig.
6B, from Cáceres et al., 1986). By the end of the 1990s, fixation
and staining protocols had been refined to their contemporary
state, with fluorescent phalloidin, anti-tubulin, and MAP2 anti-
bodies as standard labels (Fig. 6C, from Allison et al., 2000).
Confocal microscopy, with its optical sectioning capabilities, was
then used to generate 3D reconstructions of the neuronal cyto-
skeleton (Fig. 6D, from Gallo and Letourneau, 1998). Better
microscopes and processing allowed refinement of fluorescence
imaging of actin and microtubules in fixed neuron during the
21st century (Fig. 6E, from Ruthel and Hollenbeck, 2003; and
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Figure 1. The neuronal cytoskeleton as drawn by scientists. A, B, Funicular cells of a young rabbit (A) and pyramidal cells of the visual cortex (B), as drawn by Cajal (1903). The reduced sil-
ver nitrate staining highlights neurofibrils inside the cell body and processes. Adapted from Frixione (2009). C, Diagram of a spinal cord synapse showing a loop of neurofilaments, as seen by
EM after osmium preparation. Adapted from Gray and Guillery (1966). D, Drawing recapitulating the organization of the initial segment in Purkinje cells, with the microtubule bundles and the
tripartite submembrane coat. Adapted from Chan-Palay (1972). E, An archetypal neuron with its intracellular organization and synaptic contacts as drawn by Krsti�c (1979).
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Fig. 6F, distinguished at the 2017 Nikon Small World competi-
tion). Two key advances stand out: live-cell imaging to assess the
dynamics of neuronal components, and super-resolution micros-
copy to resolve them at the nanoscale.

Dynamics are indeed a crucial aspect of the neuronal cytoskele-
ton and associated components: they underlie the morphologic
changes that participate in synaptic plasticity and the evolution of
neuronal shape over time. Before the broad adoption of live-cell
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Figure 2. Classic electron microscopy (EM) images of the cytoskeleton inside neuronal processes. A, Jellyfish axons fixed by osmic acid. A few neurotubules (t) are seen. Adapted from
Horridge and Mackay (1962). B, C, The use of aldehydes for fixation led to better preservation of microtubules (cm) and neurofilaments (f), as seen in these longitudinal (B) and transverse (C)
sections of myelinated axons from the semilunar ganglion of the rat. From these images, microtubules are measured as 22 nm in thickness (6 nm wall thickness, 10 nm lumen). Adapted from
Sandborn et al. (1964). D, EM image of cultured rat hippocampal neurons. Longitudinal sections along a dendrite (top) and the proximal axon (bottom, branches A1 and A2) from the same
neuron. Tracks of microtubules are seen along the dendrite and axons, while polyribosomes are only present along the dendrite. Scale bar, 1.5mm. Adapted from Bartlett and Banker (1984).
E, Axons from optic nerve fibers (embryonic chicken retina) in cross and diagonal sections showing microtubules as circular profiles, some of them containing intraluminal particles. Adapted
from Gonatas and Robbins (1965). F, Cross-section of a Purkinje cell axon initial segment showing connected fascicles of microtubules (arrowheads) and the undercoat lamina lining the inner
side of the plasma membrane. Adapted from Chan-Palay (1972). G, Cover from the August 5, 2020 issue of the Journal of Neuroscience showing a cross-section EM image of a sciatic nerve
from a mouse lacking N-WASP in oligodendrocytes (Katanov et al., 2020). H, Left, A filopodia (microspike [M]) from the axon of a DRG neuron, filled with a filamentous network (F) of actin.
The main branch contains microtubules (T) and smooth endoplasmic reticulum (R). Right, Zoomed view. Adapted from Yamada et al. (1970).

Leterrier · A Pictorial History of the Neuronal Cytoskeleton J. Neurosci., January 6, 2021 • 41(1):11–27 • 13



CC

A

G

H I

F

D

E

B

Figure 3. Refining the architecture of neuronal microtubules from EM images. A, B, Apposition of vesicles and microtubules suggesting their role in axonal transport. A, Association of vesicu-
lar cargoes attached to microtubules along axons of the lamprey spinal cord. Adapted from Smith et al. (1970). B, Corresponding transverse views showing bundles of connected microtubules
and vesicles (v) along them with microtubule-vesicle links (arrows) and unattached projections (arrowheads). Adapted from Smith (1971). C–E, Serial EM reconstructions used to reveal the 3D
path of axonal microtubules. C, Three microtubules traced over 6mm along a rat sensory axon in organotypic culture of rat dorsal root ganglion neurons. Adapted from Bray and Bunge (1981).
D, Nine microtubules within an axon from chick optic tectum, traced over 10mm. Adapted from Cheng and Reese (1988). E, Drawing of microtubules along a single section from a serial section
study of developing rat hippocampal neurons in culture, including a minor process of a neuron before axonal specification (top) and just after specification (bottom). The length of each neurite
is;20mm. Adapted from Yu et al. (1994). F, Cross-section of axons from rat hippocampal neurons in culture prepared using the “hook” method. The direction of the hooks reveals that all
microtubules have the same polarity, with their plus-ends directed toward the distal axon. Adapted from Baas et al. (1988). G, Tannic acid fixation of C. elegans neurons reveals classic, 24-nm-
diameter microtubules with 11 protofilaments (inset) in ventral cord neurons (left), whereas touch receptor cells contain larger, 30-nm-diameter microtubules with 15 protofilaments (right).
Adapted from Chalfie and Thomson (1982). H, Immunogold labeling of tyrosinated tubulin distinguishes tyrosinated (considered as labile) and detyrosinated (more stable) microtubules along
the axon shaft of a rat sympathetic neuron in culture. Scale bar, 0.3mm. Adapted from Baas et al. (1993). I, Cryo-EM allows direct visualization of microtubules in cultured mouse neurons,
revealing intraluminal particles (left, arrows), microtubule ends (top right), and defects along the lattice (bottom right, arrowheads). Scale bar, 20 nm. Adapted from Atherton et al. (2018).
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imaging in the 2000s, investigation of cytoskeletal dynamics relied
on ingenious endpoint experiments after time-controlled manipu-
lation, such as injection of labeled tubulin to distinguish newly
assembled and stable microtubules within neurons (Fig. 7A, from
Slaughter et al., 1997). Live-cell imaging of microtubule plus-end
associated proteins, such as EB1/EB3, complemented the hook
approach to determine the orientation of growing microtubules
along the axon and dendrites (Stepanova et al., 2003), an approach
recently extended from cell culture to organotypic slices and living
animals (Fig. 7B, from Yau et al., 2016). The diffusion of proteins
and lipids along the plasma membrane is another important phe-
nomenon for neuronal physiology; and the cytoskeleton, in partic-
ular the submembrane actin and scaffold, plays an important role
in this movement (Kusumi et al., 2005). Measuring diffusion of
lipids requires high-speed tracking of single particles; such experi-
ments revealed a diffusion barrier at the axon initial segment (Fig.
7C, from Nakada et al., 2003; see also Fig. 13C). The diffusion of
receptors in and out synapses is key to synaptic plasticity and
learning (Groc and Choquet, 2020); single-particle tracking (SPT)

of quantum-dot-labeled synaptic receptors allows researchers to
dissect the mechanisms regulating their enrichment at the postsy-
napse (Fig. 7D, from Charrier et al., 2006). Nowadays, live-cell
imaging continues to progress toward better temporal and spatial
resolution, but also smarter schemes allowing the capture of rare
events over long-term acquisitions.

The other major advance for neuronal cytoskeleton imaging
was the development of super-resolution microscopy, a set of
techniques able to bypass the ;250 nm diffraction limit of opti-
cal microscopy (Jacquemet et al., 2020). These techniques
include single-molecule localization microscopy (SMLM), a
method using sequential localization of individual fluorescent
emitters and comprising techniques, such as stochastic optical
reconstruction microscopy (STORM), photo-activation localiza-
tion microscopy (PALM), and DNA point accumulation in
nanoscale topography (PAINT); structured illumination micros-
copy (SIM), which retrieves details beyond the diffraction limit
using the moiré produced by patterned illumination of the sam-
ple; stimulated emission depletion microscopy (STED), a point-
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Figure 4. Different EM modalities reveal unseen views of the neuronal cytoskeleton. A, Whole-mount transmission EM images of neuroblastoma cells show a neurite with numerous filopodia
(microspikes, s) containing actin filaments bundles (mfb) (left). Actin filament bundles extend from central microtubules (mt) within filopodia (center), where the actin network appears wavy
(right). Scale bars, 0.5mm. Adapted from Kuczmarski and Rosenbaum (1979). B, Cover from the June 1, 1989 issue of the Journal of Neuroscience showing a whole-mount EM image of a
growth cone (Dailey and Bridgman, 1989). C, Transmission (left) and scanning (right) EM of extracted, shadowed cytoskeleton showing the organization of microtubules within the axon shaft
(left) and in a growth cone (right) of chick sensory ganglia explants in culture. Adapted from Letourneau (1982). D, Cover from the April 8, 2009 issue of the Journal of Neuroscience showing
an extracted, rotary shadowed hippocampal neuron in culture (Stern et al., 2009).
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scanning technique that reduces the size of the excitation point
by superimposing a donut-shaped depletion beam; and expan-
sion microscopy, a technique based on physical expansion of the
sample using hydrogel swelling. Microtubules are densely packed
in neuronal processes, and only refinements of SMLM using
small nanobodies are able to resolve individual microtubules in
axonal and dendritic bundles (Fig. 8A, from Mikhaylova et al.,
2015). An elegant development merging PAINT and SPT is
Motor-PAINT, which tracks recombinant motor proteins along
the microtubules of fixed and extracted neurons, allowing exami-
nation of their nanoscale architecture and orientation (Fig. 8B,
from Tas et al., 2017). Expansion microscopy is also a promising
development for imaging microtubules, as it allows three-dimen-
sional, multicolor imaging of tightly packed bundles inside den-
drites using confocal imaging after sample expansion (Fig. 8C,
from Jurriens et al., 2020). STED allows straightforward multi-
color imaging, which recently revealed the interplay of actin
patches, microtubules, and lysosomes along the dendritic shaft

(Fig. 8D, from van Bommel et al., 2019). Finally, STORM attains
a;20 nm resolution, resolving the finest details of the actin cyto-
skeleton, such as spines bearing synapses in mature neurons
(Fig. 8E) or actin hotpsots and filamentous trails within axons
(Fig. 8F, from Ganguly et al., 2015).

Having presented the historical evolution of the different
techniques, with a majority of examples showing neuronal
microtubules, I would like to focus on how these techniques
shaped our knowledge of two key actin-rich compartments: the
axonal growth cone and dendritic spines. Growth cones, as
drawn by Cajal in 1899 (Fig. 9A, from Cajal, 1999), are fan-
shaped extremities of axons that sense the environment to drive
axonal growth and pathfinding (McCormick and Gupton,
2020). Fluorescence imaging reveals how microtubules loop
into the growth cone center, while actin shapes the peripheral,
dynamic filopodia (Fig. 9B, from Biswas and Kalil, 2018). Live-
cell imaging, first using injected tubulin and phalloidin to visu-
alize microtubules and actin (Fig. 9C, from Dent and Kalil,
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Figure 5. Freeze etching reveals the neuronal cytoskeleton at the macromolecular scale. A, Cryo-fixed, freeze-etched dendrite from a chicken Purkinje cell. The open dendrite reveals intracel-
lular organelles (large arrows) and microtubules (small arrows) embedded in a dense meshwork. Adapted from Meller (1987). B, The technique of quick-freeze, deep etching can reveal the cy-
toskeleton with unprecedented details. In this axon from frog spinal cord, one can see numerous microtubules (arrows) cross-linked with neurofilaments (small arrows), and vesicular cargoes
as well as mitochondria (M) often connected to microtubules by linker proteins (arrowheads). Scale bars, 0.1mm. Adapted from Hirokawa (1982). C, Cover from the September 1, 1983 issue of
the Journal of Neuroscience showing a similar quick freeze, deep-etch preparation from turtle optic nerves (Schnapp and Reese, 1982).
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2001) and later using fluorescent protein probes and sometimes
super-resolution microscopy (Fig. 9D, from Fiolka et al., 2012),
revealed the intricate rearrangement that drives growth cone
twists and turns. Platinum replica EM of extracted growth cone
provided stunning images of the dense, branched actin mesh-
work at the growth cone periphery (Fig. 9E, from Korobova
and Svitkina, 2008) and its connections to central microtubules
(Fig. 9F, from Burnette et al., 2008). SIM of actin at growth

cones (Fig. 9G, from Igarashi et al., 2018) can be performed on
living cells, revealing the interplay between endocytosis, vesicu-
lar trafficking, and actin organization (Fig. 9H, from Nozumi et
al., 2017). More recent work has imaged growth cones in a 3D,
soft collagen matrix using live-cell and STED microscopy,
which showed some key architectural differences with the clas-
sically studied 2D situation of cells growing on glass (Fig. 9I,
from Santos et al., 2020).

Figure 6. Using immunolabeling to visualize the neuronal cytoskeleton. A, Three mouse neuroblastoma cells seen by brightfield (left), immunostained for tubulin (middle), and for actin
(right). Adapted from Marchisio et al. (1978). B, Immunolabeling for microtubule-associated protein MAP2 (left, segregated in the cell body and dendrites) and microtubules (right, present
throughout the neuron) in different rat hippocampal neurons in culture. Scale bar, 50mm. Adapted from Caceres et al. (1986). C, Optimized labeling for actin (using fluorescent phalloidin, left)
and microtubules (using anti-tubulin antibodies, right). Scale bar, 10mm. Adapted from Allison et al. (2000). D, Confocal microscopy of actin (red) and microtubules (green) allows for 3D recon-
struction of the site of contact between a chick embryo dorsal root ganglia neuron in culture and two nerve growth factor-coated beads (not visible), with filopodia (1-3 numbers and arrow-
heads) contacting the beads. Adapted from Gallo and Letourneau (1998). E. Cover from the September 17, 2003 issue of the Journal of Neuroscience showing developing rat hippocampal
neurons in culture labeled for actin (red), concentrated at growth cones, and microtubules (green) present in the cell body and along neurites (Ruthel and Hollenbeck, 2003). F, Rat hippocam-
pal neurons after 2 d culture labeled for microtubules (cyan) and actin (orange). Scale bar, 20mm. Unpublished image from the author.
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Figure 7. Live-cell imaging reveals the dynamics of the cytoskeleton and the neuron surface. A, Sympathetic neuron in culture injected with biotinylated tubulin and fixed after 1.25 h of
incubation. Microtubules that have turned over during incubation are positive for both tubulin (green) and biotinylated tubulin (red), whereas stable microtubules appear green, as seen along
the growing axon (insets, arrows). Scale bar, 20mm. Adapted from Slaughter et al. (1997). B, Imaging of growing microtubules’ plus-ends in living neurons from hippocampal cultures (top
row), organotypic slices (middle row), and in vivo (bottom row). In each condition, comets are seen to move in both the proximal (P) and distal (D) directions along dendrites, demonstrating
the bidirectional orientation of assembling microtubules (kymographs, right panels). Scale bars, 20mm (in low-magnification images, left columns) and 5mm (in dendritic segment images).
Adapted from Yau et al. (2016). C, High-speed measurements of G-DOPE lipid diffusion along the proximal axon. Trajectories (right) show immobilization of lipids along the initial segment
(ankyrin G staining, red on bottom panel; actin staining, top panel) compared with the distal axon, demonstrating the existence of a diffusion barrier at the axon initial segment. Adapted from
Nakada et al. (2003). D, Diffusion of quantum-dot-labeled glycine receptors along the dendrites of spinal cord neurons. In control neurons and after actin disassembly by latrunculin, glycine
receptors are more mobile outside of synapses (yellow and purple arrows). Last panel, Temporal projection (presynapses labeled with FM4-64). Scale bar, 5mm. Adapted from Charrier et al.
(2006).
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Spines, the micron-size, mushroom-shaped extensions that
bear excitatory synapses along dendrites in several neuron types,
have been extensively imaged and studied over the years (Sala
and Segal, 2014). The 1896 drawings from Cajal show Purkinje

cell dendrites studded with spines (Fig. 10A, from García-López
et al., 2007). EM visualized spines in brain sections, but imaging
their actin content required specific filament labeling using myo-
sin head decoration (Fig. 10B, from Markham and Fifková,

Figure 8. Nanoscale architecture of the neuronal cytoskeleton by super-resolution microscopy. A, Nanobodies against tubulin allow labeling of densely packed microtubules inside rat hippocampal
neurons in culture, as imaged by 3D-Stochastic Optical Reconstruction Microscopy (STORM). Scale bar, 2mm. Adapted from Mikhaylova et al. (2015). B, Motor-Point Accumulation in Nanoscale
Topography (PAINT) can determine both the nanoscale organization and orientation of microtubules. It reveals the mixed orientation of dendritic microtubules, with outward-directed ones at the pe-
riphery (green on overlay) and inward-directed ones found deeper in the center of the dendrite (red on overlay). Scale bar, 1mm. Adapted from Tas et al. (2017). C, Expansion microscopy provides
an;5� enhancement in resolution over that delivered by the microscope (here confocal), detailing the organization of tyrosinated and acetylated (stabilized) microtubules, with acetylated micro-
tubules found at the center of large dendrites (bottom panels, cross-sections). Scale bars: Top, 5mm; Middle, Bottom, 2mm. Adapted from Jurriens et al. (2020). D, STimulation-Emission Depletion
(STED) microscopy (right) shows enhanced resolution compared with confocal (left) in these views of hippocampal neurons labeled for actin (yellow), microtubules (cyan), and lysosomes (LAMP1,
magenta). Scale bar, 5mm. Adapted from van Bommel et al. (2019). E, STORM imaging of actin in mature rat hippocampal neurons, with presynapses (synapsin) labeled in blue. Scale bar, 5mm.
Unpublished image from the author. F, 3D-STORM of actin along axons reveals the presence of clusters (actin hotspots) and longitudinal filaments (actin trails) that are present inside the axon
(cross-sections, bottom middle panels). Scale bars: 2mm; 0.5mm for cross-sections. Adapted from Ganguly et al. (2015).
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Figure 9. The neuronal growth cone cytoskeleton. A, Growth cones from the spinal cord of E4 chick embryos stained with the Golgi method, as drawn by Cajal. Adapted from Cajal (1999).
B, Cover from the January 10, 2018 issue of the Journal of Neuroscience showing a STED image of a growth cone labeled for microtubules (cyan) and actin (magenta) (Biswas and Kalil, 2018).
C, Live-cell imaging of actin (injected phalloidin) and microtubules (injected tubulin) within the growth cone of a hamster cortical neuron in culture. Scale bar, 10mm. Adapted from Dent and
Kalil (2001). D, Live growth cone of a rat hippocampal neuron expressing an actin probe (TdTomato-LifeAct, green) and a cytosolic marker (GFP, red), imaged by 3D-SIM. Scale bar, 2mm.
Adapted from Fiolka et al. (2012). E, Platinum-replica EM of a growth cone from a differentiated B35 cell showing the actin meshwork with characteristic branches formed by Arp2/3-mediated
nucleation (zoomed insets, green). Scale bars: Left, 1mm; Right, 0.2mm. Adapted from Korobova and Svitkina (2008). F, Differential interference contrast (top left) and rotary-shadowed EM
images of Aplysia bag neuron growth cones with the neck (circle) and central (C), transition (T), and peripheral (P) zones. Bottom, Immunogold-labeled microtubules (green) and actin filaments
(red) forming a meshwork (star). An actin filament (arrow) connects to a microtubule tip (arrowhead). Scale bars: Top left and middle, 10mm; Top right, 5mm; Bottom, 1mm. Adapted from
Burnette et al. (2008). G, Cover from the October 31, 2018 issue of the Journal of Neuroscience showing a Structured Illumination Microscopy (SIM) image of a growth cone labeled for actin,
color-coded for depth (Igarashi et al., 2018). H, Live-cell SIM showing trafficking of synaptic cargo SV2B (green) between actin-rich filopodia (red) at the growth cone of a differentiated
NG108-15 cell. Scale bar, 2mm. Adapted from Nozumi et al. (2017). I, STED images of mouse hippocampal neuron growth cones in 2D (left) and 3D (right) collagen environments, labeled for
tubulin (cyan) and actin (red). Scale bar, 5mm. Adapted from Santos et al. (2020).
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Figure 10. The dendritic spines, where the cytoskeleton drives synaptic plasticity. A, Spines of a Purkinje cell stained with methylene blue, as drawn by Cajal. Adapted from García-López et
al. (2007). B, Thin-section EM of a dendritic spine with actin filaments labeled with myosin head; note the longitudinal filaments along the spine neck (arrowheads) and branched meshwork
near the postsynapses. Adapted from Markham and Fifková (1986). C, Cryo-fixed, cross-fractured dendritic spine of a mouse Purkinje cell showing a mesh of 6-10 nm filaments (arrows).
Adapted from Landis and Reese (1983). D, Platinum-replica EM of dendritic spines from cultured rat hippocampal neurons showing the longitudinal actin filaments along the neck and dense
meshwork within the head. Scale bar, 0.2mm. Adapted from Korobova and Svitkina (2010). E, Cover from the July 5, 2017 issue of the Journal of Neuroscience showing a colored platinum rep-
lica EM image of a dendrite (green) contacting axons (red) in a neuronal culture (Efimova et al., 2017). F, Live-cell imaging of actin-GFP in a mature hippocampal neuron in culture, showing
actin concentration within dendritic spines (bottom, arrows). Scale bars: Top, 10mm; Bottom, 2mm. Adapted from Fischer et al. (1998). G, Long-term Total Internal Reflection Fluorescence
(TIRF) live-cell imaging of hippocampal neurons expressing a volume marker (DsRed2, top left, red on bottom overlay) and EGFP-tubulin (top right, green on bottom overlay). The bottom
frames capture an event of microtubule invasion into a dendritic spine (green arrow). Scale bars: Top panels, 5mm; Bottom frames, 2mm. Adapted from Hu et al. (2008). H, Top row,
Morphologic plasticity of a dendritic spine of a neuron expressing CFP-actin in contact with an axon expressing YFP-actin, after photo-stimulation. Bottom row, Enlargement of a dendritic spine
expressing GFP-actin (yellow) after photo-stimulation. Scale bar, 1mm. Adapted from Colicos et al. (2001). I, Top, Dendritic spines (labeled with TdTomato, blue) expressing photoactivable GFP
(paGFP) just after (green) and 32 s after (red) activation. Tip activation shows an inward movement of actin. Bottom, Sequential activation/bleach/activation reveals the movement of newly
polymerized actin within dendritic spines. Scale bars, 0.5mm. Adapted from Frost et al. (2010).
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1986). Platinum replica EM, either of deep-etched tissue (Fig.
10C, from Landis and Reese, 1983) or fixed cultures (Fig. 10D,
from Korobova and Svitkina, 2010), highlights the dense mesh-
work of actin around the postsynaptic density, as well as the lon-
gitudinal filaments along the thin spine neck. Nonextracted
samples with intact plasma membrane show how spines and

axons contact to form synapses (Fig. 10E, from Efimova et al.,
2017). Fluorescent imaging using fluorescent protein-tagged
actin probes are used to image spines in living neurons (Fig. 10F,
from Fischer et al., 1998), and long-term imaging revealed the
rare event of microtubules transiently invading spines, a key
event for activity-dependent postsynaptic remodeling (Fig. 10G,

Figure 11. Super-resolved imaging of the dendritic spine cytoskeleton. A, Early two-color PhotoActivated Localization Microscopy (PALM) image of actin-TdEos (red) and synaptic marker
GKAP-Dronpa (green) in a dendritic spine. Scale bar, 1mm. Adapted from Frost et al. (2010). B, Localization images (left, with spine zoomed on middle) and three categories of trajectories
(right) of single photoactivable actin regulator mEos-Rac1 in hippocampal neurons obtained by single particle tracking (spt) PALM. Adapted from Chazeau et al. (2014). C, The combination of
expansion microscopy and lattice-light sheet imaging can resolve individual spines and synapses of Thy1-GFP-labeled mouse neurons in the visual cortex within a volume of expanded brain.
Scale bars: 50mm; Inset, 10mm. Adapted from Guo et al. (2019). D, Cover from the December 2, 2015 issue of the Journal of Neuroscience showing a STED image of dendritic spines from a rat
hippocampal neuron labeled with an actin probe (LifeAct-Venus, blue) and a volume marker (mCherry, red) (Chevy et al., 2015). E, Live STED images of the actin probe LifeAct-YFP expressed
in an organotypic slice culture showing the rearrangement of actin and change of the spine shape over minutes. Scale bars, 0.5mm. Adapted from Urban et al. (2011). F, Live grazing-incidence
SIM image of a cultured hippocampal neuron expressing a membrane marker (memGFP) and an actin probe (LifeAct-mCherry) concentrated in spines (arrows), after chemical stimulation with
glycine that induces morphologic plasticity. Scale bars: Top, 2mm; Bottom frames, 1mm. Adapted from Guo et al. (2018). G, In vivo imaging of postsynaptic densities in the cortex from a living
Halo-PSD95 transgenic mouse treated with SiR-Halo ligand (magenta) and infected with LifeAct-YFP (green), which labels dendritic spines. Scale bars: Left, 2mm; Right, 0.5mm. Adapted from
Masch et al. (2018).
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from Hu et al., 2008). Two-color imaging of CFP and YFP-actin
in neurons cultured on silicon substrate highlighted how both
the presynapse and postsynapse remodel after local photo-stimu-
lation (Fig. 10H, from Colicos et al., 2001), and local photo-acti-
vation was used to probe actin polymerization dynamics within
the spine head (Fig. 10I, from Frost et al., 2010).

The small size of spines, micron-size heads and necks that
can be as thin as a few tens of nanometers, made them a target of
choice for super-resolution imaging using a range of techniques
(Robinson et al., 2016). Early super-resolved images of spine
actin were obtained by PALM (Fig. 11A, from Frost et al., 2010),
and the photo-activation principle behind PALM allowed the

Figure 12. The submembrane periodic actin/spectrin scaffold along axons. A, Early published observation of a 200 nm periodic scaffold along axons near neuromuscular junctions (FasII label-
ing, red), as revealed by labeling the Drosophila ankyrin ank2L (green) and imaged by SIM. Scale bars: Top, 5mm; Bottom, 1mm. Adapted from Pielage et al. (2008). B, Depth color-coded 3D-
STORM image of actin along the axon (extending from the hillock, arrowheads) of a cultured hippocampal neuron, revealing regularly spaced actin rings every 190 nm. Scale bar, 1mm.
Adapted from Xu et al. (2013). C, The periodic actin/spectrin scaffold is present along myelinated fibers, as shown by phalloidin labeling of mouse sciatic nerve imaged by STED. Scale bars,
1mm. Adapted from D’Este et al. (2016). D, Two-color DNA-PAINT of rat hippocampal neurons in culture shows that actin rings (gray) are spaced every 190 nm by spectrin tetramers containing
b 4-spectrin along the proximal axon (orange, top), and b 2-spectrin along the distal axon (orange, bottom). Scale bars, 2mm. Adapted from Vassilopoulos et al. (2019). E, The periodic scaf-
fold visualized in living cells using PALM of b 2-spectrin-mMaple3 in cultured neurons. Scale bar, 1mm. Adapted from Zhong et al. (2014). F, Cover of the November 22, 2017 issue of the
Journal of Neuroscience showing that spectrin tetramers along the axon initial segment are composed of a2-spectrin (green) and b 4-spectrin (magenta) by 2-color DNA-PAINT (Huang et al.,
2017). G, Platinum-replica EM of unroofed cultured hippocampal neurons, showing the submembrane, 190 nm spaced actin braids made of long, intertwined actin filaments along the axon.
Scale bar, 200 nm. Adapted from Vassilopoulos et al. (2019).
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Figure 13. Multiplexed, multimodal, and correlative approaches. A, DNA-PAINT allows multiplexed sequential imaging of 10 targets, including actin and tubulin, to reveal the nanoscale or-
ganization of synapses. Scale bars: Left, 10mm; Right, insets, 0.5mm. Adapted from Guo et al. (2019). B, Multimodal STED/Single Molecule Localization Microscopy (SMLM) imaging of a living
neuron; STED of a cytosolic marker (GFP, orange) visualizes neuronal morphology, while PALM of PSD95-mEos3.2 resolves synaptic nano-domains, and uPAINT tracking of GluA1-SEP determines
the single-molecule mobility of glutamate receptors. Scale bars: Left, 2mm; Right, inset, 0.5mm. Adapted from Inavalli et al. (2019). C, Correlative SPT of GPI-GFP (magenta) and STORM of
b 2-spectrin (gray) reveals that the diffusion of membrane proteins along the proximal axon is compartmented by the periodic submembrane scaffold. Scale bars: Left, 2mm; Right, insets,
0.5mm. Adapted from Albrecht et al. (2016). D, Correlative STORM and platinum-replica EM demonstrate that actin rings seen by STORM are the actin braids seen by platinum-replica EM, com-
bining molecular identification and ultrastructure. Scale bars: Left, 2mm; Middle, 0.5mm; Right, 200 nm. Adapted from Vassilopoulos et al. (2019). E, Correlative imaging of cell-cell junctions
in cryofixed cerebellar granule neurons: cryo-SIM (top) of the junctional protein JAM-C (green, revealed by SNAP-JF549i) and drebrin-2�-mVenus (magenta) combined with focused ion beam
milling/scanning EM (second panel, with segmented plasma membrane in cyan, intracellular components in orange, and cell-cell junction in gray). Bottom panels, Zooms on the cell-cell junc-
tion area. White box dimensions are 9.7mm� 4.7mm� 1.1mm. Adapted from Hoffman et al. (2020).
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mobility of individual actin-binding proteins to be tracked
within spines, using a technique called sptPALM; this revealed
distinct localization and mechanisms of actin nucleation (Fig.
11B, from Chazeau et al., 2014). Expansion microscopy coupled
to fast, large-volume lattice light-sheet microscopy recently pro-
vided stunning images of whole cortical volumes with thousands
of identified spines and their associated synapses (Fig. 11C, from
Gao et al., 2019). STED microscopy can visualize the reticulated
architecture of actin within spines using probes such as fluores-
cent LifeAct in cultures (Fig. 11D, from Chevy et al., 2015) and
in organotypic slices (Fig. 11E, from Urban et al., 2011). SIM has
also been used to image the activity-dependent structural plastic-
ity at spines (Fig. 11F, from Guo et al., 2018). Finally, super-reso-
lution imaging of spines and their associated synapses is now
possible directly in the cortex of living animals, using transgenic
mice and/or viral transduction of probes (Fig. 11G, from Masch
et al., 2018).

While super-resolution microscopy refined our knowledge of
known structures, such as growth cones and dendritic spines, it
also revealed a completely new cytoskeletal organization in axons
(Leterrier et al., 2017). An early SIM observation in Drosophila
had reported that ankyrin, a submembrane scaffold protein,
formed patterns along the axon shaft with a ;200 nm regularity
(Fig. 12A, from Pielage et al., 2008). In 2013, optimized STORM
in cultured neurons and organotypic slices revealed that actin
forms circumferential rings, regularly spaced every 190nm along
axons (Fig. 12B, from Xu et al., 2013). Actin rings are found
along all axons, including myelinated ones (Fig. 12C, from
D’Este et al., 2016), in a variety of neuronal types and organisms
(Papandréou and Leterrier, 2018). The 190 nm distance corre-
sponds to the length of spectrin tetramers that connect adjacent
rings, forming a periodic submembrane scaffold that appears as
alternating bands of spectrin and actin on 2-color SMLM images
(Fig. 12D, from Vassilopoulos et al., 2019). Spectrin periodicity
has been observed along the axon of living neurons using PALM
of photo-activable b 2-spectrin (Fig. 12E, from Zhong et al.,
2014). Spectrin tetramers are composed of two a and two b sub-
units, with a2-spectrin associating with b 4-spectrin in the initial
segment (Fig. 12F, from Huang et al., 2017), whereas tetramers
are made of a2- and b 2-spectrin along the distal axon (Fig.
12D). Finally, platinum replica EM after unroofing (mechanical
removal of the dorsal part of the cell) (Mazia et al., 1975) was
recently able to visualize rings as regularly spaced actin “braids”
connected by a submembrane spectrin mesh in unroofed axons
of cultured neurons (Fig. 12G, from Vassilopoulos et al., 2019).

Looking back at images of the neuronal cytoskeleton from the
beautiful drawings of the 19th century to the fantastically
detailed electron and optical microscopy techniques of our time,
one can only be excited about the next steps in this journey.
Beyond faster, gentler, higher-resolution imaging, one direction
that is poised to bring new crucial insights is the capacity to
image multiple targets using multiplexed, multimodal and cor-
relative approaches. Techniques, such as DNA-PAINT, where
fluorescent labels are transiently attached to DNA-coupled
probes, can now sequentially image �10 proteins, allowing high-
content mapping of the neuronal architecture (Fig. 13A, from
Guo et al., 2019). Multiple super-resolution techniques, such as
STED, STORM, and single-particle tracking, can be combined to
reveal the dynamic interplay that underlies synaptic physiology
(Fig. 13B, from Inavalli et al., 2019) or the role of the periodic
submembrane scaffold in the diffusion of axonal membrane pro-
teins (Fig. 13C, from Albrecht et al., 2016). Correlative super-re-
solution imaging and EM demonstrated that the actin braids

visualized by platinum replica EM along the periodic scaffold
were indeed the actin rings imaged by STORM (Fig. 13D, from
Vassilopoulos et al., 2019), and visualized the three-dimensional
details of cell-cell contacts in granule cells by superimposing the
molecular specificity of SIM with the ultrastructure context from
focused ion beam milling/scanning EM (Fig. 13E, from
Hoffman et al., 2020). Advances in engineering and instru-
mentation, as well as the ever-growing capabilities for data
processing, quantification, and analysis, will undoubtedly
revolutionize our understanding of the neuronal cytoskele-
ton in the years to come. But fundamentally, the key to new
discoveries will remain the eye of the experimenter, be it lit-
eral or metaphorical: the talent of scientists throughout the
years to extract meaningful information and knowledge from
the fascinating images of shimmering butterflies.
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