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Abstract

In this work, we study the methodology for designing a data center solely powered by local renewable
energy and we investigate its sizing. After determining the necessary IT equipment for processing a given
IT workload, the supplying electrical infrastructure is defined using wind turbines, photovoltaic panels as
primary sources and batteries and hydrogen system as secondary sources. We provide different algorithms to
find the possible sizing and analyze them. Experiments using real IT workload traces and meteorological data
are conducted to illustrate the provided methodology to decision makers for choosing the best configuration
for their data center.
Keywords: Renewable energy; Infrastructure sizing; Green data center

1. Introduction

The growing demand for online services leads to
a significant increase in the power consumption of
data centers. In 2018, the global data center en-
ergy use has been recalibrated to 205 TWh, which
represents about 1% of the global electricity con-
sumption [24].

Economical, political and customer pressure pushes
data center operators to improve their carbon foot-
print. One way of coping with the related increase
of the carbon footprint is to add renewable energy
sources in the power supply chain.

Many companies, being either big players like
Google, Amazon, Facebook, etc, or smaller play-
ers, have moved to either partially operating with
renewable energies for a share of their energy con-
sumption, or rely on remote renewable power pro-
duction sites. Ultimately, the renewable energy
sources should be co-located with the data center
as it avoids losses in the transport and distribution
of electricity. Ideally renewable energy sources are

directly installed on site.

The question of the location and size of the data
center is nowadays mainly commercially directed
by the land costs, the financial advantages given by
the State, the market of electricity, the environmen-
tal conditions (mainly for cooling reasons), and the
power that can be drawn from the power line. It is
not a research area anymore, many consulting com-
panies offering their service to build a data center,
though the integration of renewable energies is still
in its infancy.

In general, the target IT workload is roughly esti-
mated, usually using a basic peak demand, in or-
der to cope with uncertainty and future probable
usage. The number of servers in server rooms is
adapted to this overestimate, leading to resource
waste when the actual load is run on the servers.
In the best case, and in the context of renewable
energy powered data centers without connection to
the grid, some authors [20], [7] and [33] proposed
dynamic management of the IT workload accord-
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ing to power availability, so that idle servers can
be shut down and the load consolidated on fewer
servers. [20] minimizes the makespan of High Per-
formance Computing (HPC) tasks, while [7] mini-
mizes the number of due date violations for batch
tasks, in both cases constrained by a power enve-
lope. Sharma et al. [33] propose a more optimistic
approach where web applications do not suffer from
the regular on/off power cycles of the machines,
while their execution is constrained by renewable
energy. Other existing approaches consider a “fol-
low the renewable” concept [23] and [22], by balanc-
ing the load among several data centers and using
the right mix of renewable energies. However, to
the best of our knowledge, the initial sizing of a
data center powered by renewable energy has never
been studied, and the existing works aim at coping
with the bad estimate: We support that the pres-
ence of renewable sources campaigns for less useless
servers and that the IT sizing must be revisited ac-
cordingly.

Conversely, more works have been conducted for
the sizing of a power plant integrating renewable
power sources. These include optimal solutions,
heuristics, or metaheuristics to find the proper
size and number of electrical components (see Sec-
tion 2). They are based on prediction models of
the weather conditions (solar and/or wind), some
of them in the context of data centers (solar pan-
els and batteries in [13]). However these studies
do not integrate the IT workload, and do not in-
clude several combinations for the on-site power
supply.

In this work, we design an on-site data center that is
solely powered by local renewable energy and we in-
vestigate its sizing. The sizing consists of two steps.
First, the necessary IT equipment for processing a
given IT workload is determined, giving the esti-
mated power needed for the IT infrastructure. In a
second step the electrical infrastructure is defined
to produce enough energy to power the IT infras-
tructure. We investigate the sizing of power-plants
consisting of wind turbines (WT) and photovoltaic
panels (PV) as primary sources. To cope with the
fluctuations in the energy production, we add bat-
teries for short term storage and hydrogen tanks for
long term storage and seasonal variations. Those
secondary sources are also taken into account for
the sizing.

The main contribution of our research is to provide

a methodology to propose a set of infrastructure siz-
ing combinations given an IT workload and a data
center location (and its weather conditions). These
different combinations can then be tested against a
variety of IT workloads to finally choose the best
one for the case at hand, depending on metrics se-
lected by the decision maker.

The rest of this paper is organized as follows: In
Section 2 we detail the related work in electrical siz-
ing with renewable energies. Section 3 provides the
decision problem description while Section 4 details
the IT and power supply models used. The sizing
methodology is described in Section 5. Section 6
is providing results of the methodology in differ-
ent IT workload and weather conditions. Finally
Section 7 concludes and gives perspectives on the
work.

2. Related work

The problem that we address in this paper is
twofold: designing and sizing an IT infrastructure
and a power plant including only renewable sources
as primary sources. As mentioned above, the prob-
lem of the initial IT sizing on this basis has never
been addressed before. On the other hand, a great
deal of work has been carried out by researchers for
more than ten years on the design of power supply
infrastructures only or partially based on renewable
energy, not only on sun and wind [35, 2]. In prac-
tice, sun and wind are the two main renewable ener-
gies that are commonly chosen for the construction
of such power plants even if other renewable ener-
gies exist [29, 9].

Therefore, due to the intermittency, sizing a Hy-
brid Renewable Energy System (HRES), whether
in grid connected or in standalone systems, is a very
important issue that many researchers around the
world studied or are still studying. Many review pa-
pers have been addressed and published on this hot
topic in order to find the more suited power infras-
tructure to the context of use and its appropriate
size, taking the power production intermittency and
its forecasts into account, allowing to maximize (or
minimize) predefined performance criteria, not only
the traditional economical cost, etc. For instance,
Sawle et al. in [31] published a literature analysis
where the design of HRES connected to the grid is
given. This review illustrates that hybrid systems
based on hybrid renewable sources give good indi-
cators in terms of energy cost and reliability. These
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results were also obtained by Erdinc and Uzunoglu
in [11] where the authors pointed out the advan-
tage of an optimal design for renewable energy in
terms of cost, after an analysis of “optimum sizing
approaches in the literature”.

In addition, since sun and wind are free and acces-
sible everywhere, it is advantageous and realistic
to create HRES based on stationary power gener-
ation for isolated areas. This point has been dis-
cussed by Anoune et al. in [2] where the authors
highlighted that separating sun and wind leads to
over-sizing, discussed the more common typologies,
presented mathematical models and comparisons
between existing implementations based on differ-
ent sub-optimal optimization techniques (nature in-
spired optimization techniques). Another analysis
about methods to optimize the sizing of standalone
HRES is given by Bernal-Agustín and Dufo-López
in [5]. This study shows that these systems have a
high availability when associated with back-up such
as batteries and then become a viable and credible
alternative to the classical energy sources.

To summarize, a state of the art on hybrid renew-
able energy source sizing is defined in the previous
reviews for all types of applications, and they do not
take particular features and usage of data centers
into account. Many researchers aim at proposing
various sizing methods in order to reach optimal so-
lutions of their own systems. These methods could
be categorized as follows.

2.1. Probabilistic method
Yang et al. [44] propose a probabilistic method in
which they prove the importance of choosing a suit-
able typical meteorological year (TMY) in order to
get an accurate assessment of performance in a hy-
brid PV-wind energy system. Another probabilis-
tic approach is also suggested by Tina et al. [38].
Their method is based on convolution techniques
using probability density functions to assess long
term performance of hybrid solar and wind power
systems.

2.2. Analytical method
Moreover, several computer tools have been devel-
oped in order to help decision makers to analyze
the integration of the sources for optimizing, design-
ing and evaluating the performance of PV-wind hy-
brid systems as discussed in comprehensive reviews
by Bernal-Agustín and Dufo-López [5], Erdinc and

Uzunoglu [11], Sinha and Chandel [36], by Al-Falahi
et al [1] and by Anoune et al. [2]. The most
popular and most used ones are the commercial
software named HOMER for Hybrid Optimization
Model for Electric Renewable, developed by the Na-
tional Renewable Energy Laboratory (NREL) [25]
and the Hybrid Power System Simulation Model
(HYBRID2) [31]. Indeed, HOMER is defined as
“the most powerful tools for this purpose” by the
authors of [4]. This paper is a state-of-the-art re-
view of existing work based on the use of HOMER
for HRES planning. However, these softwares have
strong limitations such as black box coding, differ-
ent working platforms, and they are also not as flex-
ible as optimization techniques which can be used
as per research criteria.

2.3. Iterative methods
Many hybrid renewable systems are designed using
genetic algorithms to achieve a sizing as close as
possible to the optimal solution, depending on the
target objective. For instance, Kaldellis et al. [19]
proposed to minimize the system cost by means of
electrical load under some design constraints. Sim-
ilar works can be found in Dufo-López and Bernal-
Agustín in [10] and in Yang et al. [43, 42]. Ashok [3]
obtained a hybrid system among different combi-
nations for a rural community, minimizing the to-
tal life cycle cost and ensuring system reliability:
a numerical algorithm based on the Quasi-Newton
method was used to solve the optimization prob-
lem [28]. Numerous methods are based on Parti-
cle Swarm Optimization (PSO). Sawle et al. [31]
mentioned studies using this popular optimization
techniques with results obtained using the HOMER
software.

2.4. Hybrid method
Finally, many researchers [6, 21, 34] modified ge-
netic algorithms in order to give the designer the
choice of the configuration. This was done by con-
sidering non-dominating Pareto sets in which a cri-
teria has to be selected in order to find the appropri-
ate solution. In [21] by Katsigiannis et al., the opti-
mization objective was twofold and consists in min-
imizing the system cost of energy and greenhouse
gas (GHG) emissions by six different constraints.
The main originality comes from the assessment of
GHG emissions based on life cycle analysis. A sim-
ilar work has been proposed by Wang and Singh
in [41] where the set of non-dominated Pareto so-
lutions was obtained using a PSO algorithm. The
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optimization objective was also twofold (technolog-
ical and economical), or even threefold (technical,
economical and environmental).

Nevertheless, even if Khalaj et al. present in [15]
a whole data center design by minimizing the total
amount of power consumption of the data center,
including cooling system, and based on an Integer
Linear Programming approach, none of these meth-
ods treats a crossed data center IT and HRES siz-
ing. This new proposed paradigm is the originality
of this paper. It allows taking into account the ex-
istence of a leverage between power demand and
power production for the sizing process.

3. Problem Statement

3.1. Framework

This work has been developed in the context of the
DATAZERO project [27]. The aim of the project is
to investigate the possible solutions to design and
operate a data center which is only supplied with re-
newable energy. The goal is to study how to build
and manage such a data center without any con-
nection to the grid while taking into account inter-
mittent power production over time. The complete
removal of the connection to the power grid imposes
new challenges, such as the sizing of storage devices
and renewable energy sources in order to provide
enough energy to the data center and to address
the client Quality of Service (QoS). The proposed
sizing approach aims at preventing over-sizing or
under-utilization of the data center by avoiding re-
dundant equipment.

The supply of the data center is divided into two
main types, primary and secondary sources (see
Figure 1). We focus on solar and wind for pri-
mary renewable sources, so we use photovoltaic
panels and wind turbines. To complement them,
it is mandatory to associate short- and long-term
storage devices as batteries and hydrogen systems
– electrolyzers (EZ) to store energy by producing
hydrogen using electrolysis into hydrogen tank, and
fuel cells (FC) to transform hydrogen into electric-
ity by the reverse chemical reaction. This is im-
posed by the fact that renewable energy is inter-
mittent by nature. As a matter of fact, the data
center must operate despite the alternation of day
and night and the differences in the production dur-
ing the seasons.

PV panels WT Turbine Batteries

DC/DC DC/AC DC/DC

DC bus

Fuel cells electrolyzer

IT loads

Thermal
loads

DC/DC DC/DC DC/AC

DC/AC

H2 tanks

primary
sources

secondary
sources

Figure 1: Electrical architecture of DATAZERO. Dark green
boxes indicate primary energy sources, secondary sources are
shaded in light green (source: Robin Roche).

3.2. Problem description and hypothesis
In this work we focus on the sizing of such a data
center. The sizing can be defined as a decision prob-
lem that aims at identifying the needed IT elements
and the associated electrical devices to satisfy a
given computation service that has to be provided
over time. We consider as inputs: (i) an estimate of
the user demands over time (one year) called “the
workload”, (ii) the location of the data center and
its historical weather conditions (solar and wind)
at least over one year, (iii) a desired Quality of Ser-
vice (QoS) for the running applications. We answer
to the following question: based on these inputs,
which IT and electrical infrastructures are needed
to process a given workload under a constrained
QoS? The answer to this question is called the siz-
ing of a standalone data center. It aims at comput-
ing: (i) the number of servers, (ii) the area of pho-
tovoltaic panels, (iii) the number of wind turbines,
(iv) the capacities and the power of the batteries,
(v) the size of the power hydrogen system (power
of electrolyzer and fuel cells) associated with the
hydrogen tank capacity.

3.3. Decision problems
This general problem can be addressed by the fol-
lowing steps: First, considering a workload and a
scheduling strategy, the decision problem is to find
the smallest set of servers that is able to process
the workload within a given QoS. This architecture
and the resulting schedule provide a power envelop
or profile. This profile is one input for a second de-
cision problem which consists in defining the power
supply architecture. Two levels are to be distin-
guished: (i) short- and (ii) long-term variation of
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the power production: (i) Because of the variation
of the daily power production, the battery capacity
is first sized considering the worst day conditions
(due to unbalanced workload and/or season and/or
bad weather). This problem can be viewed as a
min-max optimization problem (minimize the siz-
ing for the worst day). (ii) To take into account
the fluctuation of the renewable power production
along one year due to seasonal variations, we have
to consider long term energy storage. Consequently
since there is no connection to the power grid, the
data center should store the excess production when
it is possible in order to use it later. The decision
problem we face is to define several combinations of
primary sources (photovoltaic panels and wind tur-
bines) and short- and long-term storage elements
(batteries and hydrogen system) capable of ensur-
ing the autonomy of the data center. One combi-
nation can be selected later by the decision maker
using criteria such as the economical cost, the foot-
print, the loss of power supply probability of the
system, etc.

These criteria are either chosen individually or in
combination to help to select the right configuration
for the renewable energy system.

4. Models

In the description of the sizing decision problem, we
have introduced several inputs. This section is dedi-
cated to both IT and power supply models. First we
detail the models used in the IT decision part and
then the models used in the electrical decision part.
The decision horizon H within which decisions are
made is discretized into K indivisible time slots
whose duration are ∆t withH = K∆t. For the sake
of simplicity, we assume that one time slot takes one
unit of time (∆t = 1u.t.). In practice, we assume
in the following that H is one year (365 days, 8760
hours), ∆t = 1h and so K = 8760.

4.1. IT models

The role of a data center is to deliver digital ser-
vices, to produce results after processing tasks, etc.
This set of work that the data center has to pro-
cess is its workload. In the following we first give
the properties of the workload and then the archi-
tecture on which the workload is supposed to be
executed. Notations used in this part are given in
Table 1.

Table 1: Main notations for the IT model

H decision horizon H = K∆t
K number of time slots ∆t = 1h = 1u.t.
W the workload (W = S ∪ T )
S set of services, |S| = r
Si one service of S with 1 ≤ i ≤ r
wsi,k amount of work of Si at time k [MI]
wsk total amount of work of all services at

time k [MI]
T set of tasks, |T | = n
Ti one task of T with 1 ≤ i ≤ n
wtreq

i,k amount of work of Ti requested at time
k [MI]

wtreq
k amount of work of tasks requested at

time k [MI]
δ scheduling flexibility [u.t.]
wtsch

i,k amount of work of Ti when scheduled
during time slot k [MI]

wtsch
k total amount of work of tasks scheduled

at time slot k [MI]
csch

i completion time of Ti when scheduled
with csch

i − creq
i ≤ δ [u.t.]

m number of homogeneous machines
M set of homogeneous machines, |M| = m
Mj one machine ofM
pi = p max. power consumption of Mi [W]
nbI max. number of inst. of Mj during any

time slot (nbIj = nbI ∀j) [MI]
maxW max. number of inst. forM (maxW =

m× nbI) [MI]
PUE Power Usage Effectiveness constant
Dk power demand for the time slot k [W]
D ={Dk, 1 ≤ k ≤ K}

The workload is the result of users’ submissions
and consists of two distinguished types, (i) services
Si ∈ S = {S1, . . . , Sr} and (ii) tasks Ti ∈ T =
{T1, . . . , Tn}. The QoS requested by a user is dif-
ferent for services and tasks. (i) Each service Si

(such as web services, databases) is defined as a load
wsi,k over time with no flexibility, i.e., an amount
of work or number of million instructions (MI) to
be executed during the time slot k for all times t
such that (k − 1)∆t ≤ t < k∆t. We consider that
services can not be delayed as they are in a direct
interaction with users. (ii) Tasks are considered as
applications that can be delayed, providing flexibil-
ity and malleability. We define the flexibility as a
time window in which the execution of a task can be
deferred. We consider this flexibility as a constant
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δ for all tasks. Each task Ti has a requested num-
ber of instructions wtreq

i,k in MI at the time slot k
for all times t such that (k−1)∆t ≤ t < k∆t. Once
scheduled, tasks can be delayed up to a maximum
of δ u.t., i.e., csch

i − creq
i ≤ δ where creq

i and csch
i are

respectively the completion time of Ti, should Ti be
executed at its requested time (i.e., as soon as pos-
sible), and the completion time when Ti is actually
scheduled. The amount of instructions to perform
for task Ti when scheduled is now wtsch

i,k at each
time slot k with 1 ≤ k ≤ K. The malleability of a
task Ti means that at each time slot k the number
of processors in charge of computing instructions of
Ti can vary. The task model is a simplified version
of the models found in [39, 14].

Figure 2 presents an example of an incoming work-
load composed of batch tasks T (in blue) and ser-
vices S (in orange) over one year (8760 h). Actual
load (in green) represents the resulting workload af-
ter using the flexibility to delay batch tasks. The
red line represents the maximum number of instruc-
tions that the entire set of servers is able to execute
during one time slot.

We assume that the hardware IT architecture con-
sists of a set M of m homogeneous servers or ma-
chines Mj ∈ M = {M1, . . . ,Mm}. Each machine
Mj consumes a maximum of power pj = pWatts for
a corresponding maximum number of instructions
nbIj = nbI MI. The addressed sizing problem for
the IT part is to compute the smallest value for m
such that a schedule exists and is able to process the
workload W with the expected level of QoS.

We recall that the QoS is different for tasks and
services. Services can not be delayed whereas tasks
can be executed while their delay respects the flex-
ibility value δ. Given a number of servers m and
a possible schedule that meets the required QoS,
it is possible to know which amount of power is
needed at each time slot k for this schedule. The
power demand for each time slot k (1 ≤ k ≤ K),
denoted D = {D1, . . . , DK}, is another output ad-
ditional to the IT architecture sizing. Dk is pro-
portional to the number of instructions that are
executed during time slot k. Knowing that nbI
instructions are needed and the maximum power
consumption p for one machine, the average power
cost for one instruction can be approximated by
p/nbI [26]. Albeit this model is not precise [39] for
a small number of hosts as a single computer is not
power-proportional, with a larger number such as

the one aimed in this research, the error becomes
negligible. Please note that our approach does not
depend on the actual power-model used and would
stay valid using more precise power models [8]. Fi-
nally, the power demand has to take the cooling
and utilities into account. The constant PUE [30]
(Power Usage Effectiveness) measures this propor-
tional extra power cost. PUE is the ratio between
the total energy consumed by a data center and
the energy consumed only by the IT part. It is
assumed that idle nodes, that are switched off, con-
sume 0Watt.

Every power demand Dk needed for every time slot
k (1 ≤ k ≤ K) can be expressed by summing
the amount of instructions from services and tasks
scheduled at each time slot k multiplied by the
power consumption of one instruction. We recall
that wsi,k (resp. wtsch

i,k ) is the number of instruc-
tions of the service Si (resp. the task Ti) which is
scheduled onto machine Mi inM at time slot k or
equal to 0 otherwise. This power demand Dk can
be expressed as follow:

Dk = p

nbI

( r∑
i=1

wsi,k +
n∑

i=1
wtsch

i,k

)
× PUE (1)

The power profile D is then given by the set of all
the power demands made at time slot k (1 ≤ k ≤
K) such that D = {D1, . . . , DK}.

The rest of this section aims at defining the power
supply models that take D and weather conditions
as inputs and define electrical devices needed to
meet the data center power demand despite the re-
newable energy source intermittency.

4.2. Power supply models

The role of the power supply part of the data cen-
ter infrastructure is to provide the computing part
with electricity. The power supply models aim at
describing the electrical architecture that has to be
defined and sized to build a standalone data center
without connection with the classical power grid.
Table 2 gives the main notations used in the elec-
trical part and in the rest of the paper. The infras-
tructure consists of (i) primary sources that supply
the IT part of the data center with renewable en-
ergy sources as wind and sun, and (ii) secondary
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Figure 2: Example of the load (expressed as a histogram in number of requests per seconds) over time (in hours) which is
executed after the IT sizing. The requests for services are in orange, the one for batches in blue. It results in the green processed
requests using 1098 servers considering one year discretized into K = 8760 time slots of one hour and a flexibility of 3 hours.

sources that are back up power devices whose pur-
pose is to provide power to servers when the re-
newable energy is not sufficient or to store energy
otherwise.

As the data center is autonomous in terms of power
supply, the connection to the classical power grid
does not exist. So, in order to achieve its IT server
power demand, the on site power supply architec-
ture of the data center only consists of wind tur-
bines and photovoltaic panels to produce electric-
ity from wind and sun, and batteries and hydrogen
system (electrolyzers, fuel cells and hydrogen tank)
to assure the balance of the intermittency of the
primary sources.

Due to the seasonal (long-term) and the daily
(short-term) variations of the weather conditions
(wind and sun), we decide (i) to dedicate battery
usage to the day and night alternation – the hours of
overproduction will balance the hours of underpro-
duction during the same day (e.g. the production
will be smoothed over the day); (ii) to use hydro-
gen system to balance underproduction days with
overproduction days (e.g. the production will be
smoothed over the season).

The role of the power supply is to satisfy the power
demand D of the IT along the time horizon H dis-
cretized into K time slots. It is necessary to take
the weather conditions of the data center location

into account. The weather conditions are character-
ized by the solar irradiation Ik ∈ I = {I1, . . . , IK}
and the wind speed Vk ∈ V = {V1, . . . , VK} for ev-
ery time slot k (1 ≤ k ≤ K) of H. The goal of
the design of the power architecture is to define the
primary and secondary sources: number of wind
turbines, surface area of photovoltaic panels, maxi-
mal power of both electrolyzers and fuel cells as well
as batteries and hydrogen tank capacities.

Let q be the number of wind turbines of the same
type (homogeneous wind turbine architecture) and
Pr their rated power. The output power pro-
duction Pwk of the time slot k depends on the
wind speed Vk for all k (1 ≤ k ≤ K). Let
Pw = {Pw1, . . . , PwK} be the power production
of one wind turbine along H. A turbine starts at
the “cut-in” wind speed Vci, generating a power
linearly increasing with wind speed from Vci to the
rated wind speed Vr . When the wind speed varies
between Vr and the “cut-out” wind speed Vco, the
turbine produces a constant rated power Pr as an
output electrical power. Once the wind speed goes
beyond Vco, the turbine stops generating for safety
reasons. Thus, the power production Pwk of a wind
turbine at each time slot k is obtained using the for-
mula (2) (1 ≤ k ≤ K):
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Table 2: Main notations for power supply models

Vk wind speed at time slot k [m/s]
V ={Vk, 1 ≤ k ≤ K}
Ik solar irradiation at time slot k [W/m2]
I = {Ik, 1 ≤ k ≤ K}
q number of wind turbines
Pr the WT rated power production of one

WT [W]
Pwk WT power prod. at time slot k [W]
Pw = {Pwk, 1 ≤ k ≤ K}
Apv surface of the whole PV [m2]
ηpv PV efficiency
Ppvk PV power production at time slot k [W]
Ppv = {Ppvk, 1 ≤ k ≤ K}
Prek renewable power production Pwk +

Ppvk at time slot k [W]
Pre = {Prek, 1 ≤ k ≤ K}
BCk battery capacity at the end of the time

slot k with BC0 = BCinit [Wh]
BC = {BCk, 0 ≤ k ≤ K}
ηch battery charging efficiency
ηdch battery discharging efficiency
Pchk charging power of the batteries during

time slot k [W]
Pdchk discharging power of the batteries dur-

ing the time slot k [W]
LOHk level of H2 in the tank at the end of the

time slot k with LOH0 = LOHinit [kg]
ηez electrolyzer charging efficiency
ηfc fuel cell discharging efficiency
Pezk charging power of electrolyzers during

time slot k [W]
Pefk discharging power of fuel cells during

time slot k [W]

Pwk =


0 if Vk ≤ Vci

Pr
Vk −Vci
Vr −Vci if Vci < Vk ≤ Vr

Pr if Vr < Vk ≤ Vco
0 if Vco < Vk

(2)

Let Apv be the surface area of homogeneous pho-
tovoltaic panels and ηpv their associated efficiency.
The power produced Ppvk by a surface of photo-
voltaic panels Apv at time step k is computed using
the formula (3) for all k (1 ≤ k ≤ K):

Ppvk = Ik ×Apv × ηpv (3)

Let BCk be the capacity of the batteries at the end
of the time slot k (1 ≤ k ≤ K). It represents a given
energy level in Wh. Let BC0 = BCinit be the ini-
tial battery capacity at the beginning of the time
horizon H. BCk depends on the previous capacity
of the battery BCk−1 for all 1 ≤ k ≤ K and the
level of charge Pchk ×∆t or discharge Pdchk ×∆t
during the time slot k (with respective efficiencies
ηch and ηdch). Considering the fact that we as-
sume batteries are dedicated to daily balance the
over and under renewable energy production, the
state of charge is cyclic and returns to the same
level every 24 hours (every midnight for instance).
The consequence of this assumption is that the self
discharge of batteries on the duration of one day
is as small as it can be neglected, even if this dis-
charge remains within the model. Moreover, con-
sidering one time slot k if Pchk 6= 0, Pdchk = 0
and vice versa (i.e., no charge and discharge at the
same time slot). The formula (4) allows to com-
pute the battery capacity BCk for each time slot
k (1 ≤ k ≤ K) with BC0 = BCinit. Then these
values allows us to totally define the battery oper-
ations by computing the greatest amplitude BC of
BCk and by the greatest needed charge PCH and
discharge PDCH powers over one day in H. The
details of the computation of the battery sizing is
given in Section 5.2.3.

BCk = BCk−1(1−α)+
(
ηchPchk−

Pdchk

ηdch

)
∆t (4)

where α is the self discharge rate.

Let LOHk be the level of hydrogen in the tank at
the end of the time slot k for all k (1 ≤ k ≤ K). It
represents a given hydrogen mass in kilogram [kg].
Let LOH0 = LOHinit be the initial level of hydro-
gen at the beginning of the time horizon H. LOHk

depends on the previous level of hydrogen in the
tank LOHk−1 for all k (1 ≤ k ≤ K). Given the
time slot k (1 ≤ k ≤ K), given the electrolyzers’
charging power Pezk and the fuel cells’ discharging
power Pfck, the H2 mass density ρ (33 kWh.kg−1),
the levels of charge and discharge are respectively
ηezPezk×∆t/ρ and Pfck×∆t/ηfc/ρ. Considering
the fact that hydrogen is dedicated to balance the
seasonal renewable energy production, we assume
that the level of hydrogen is cyclic and returns to
the same level at the end of considered horizon H.
The formula (5) allows to give the level of hydro-
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gen LOHk for each time slot k (1 ≤ k ≤ K) with
LOH0 = LOHinit:

LOHk = LOHk−1 +
(ηezPezk

ρ
− Pfck

ηfcρ

)
∆t (5)

Both IT and power supply models are used in the
following in order to determine different data center
sizing configurations. A data center sizing configu-
ration corresponds to the number of servers, the
number of wind turbines, the photovoltaic panel
surface and the sizing of the short-term and long-
term storage devices (size and power) that allow
to meet the IT power demand D of the data center
given the level of QoS requirements of the data cen-
ter. The next section describes the sizing strategy
for the IT and the power supply parts.

5. Sizing Methodology

5.1. Sizing strategy IT
The IT sizing approach proposed here is based on
a scheduling algorithm of a workload consisting of
malleable tasks and rigid services. This case pro-
vides a good illustration of the workload adapta-
tion. The methodology remains the same if the
scheduling algorithm is replaced by another ver-
sion.

The aim of the proposed IT sizing process is to
find the minimum number of servers or machines
m necessary to respect the quality of service (QoS)
for both the set of services and the set of tasks,
i.e., to execute the set of tasks according to the
flexibility δ. In the following equations, wtreq

k , wtsch
k

and wsk represent respectively the amount of work
that is to be done by the IT platform concerning the
tasks before the scheduling process, the amount of
work that will be actually done after the scheduling
process decisions, and the services for every time
slot k (1 ≤ k ≤ K) within the time horizon H.
This amount of work is a number of instructions in
MI (million of instructions).

wtreq
k =

n∑
i=0

wtreq
i,k ∀k s.t. 1 ≤ k ≤ K (6)

wtsch
k =

n∑
i=0

wtsch
i,k ∀k s.t. 1 ≤ k ≤ K (7)

wsk =
r∑

i=0
wsi,k ∀k s.t. 1 ≤ k ≤ K (8)

The QoS implies that the completion time of any
scheduled task can not be delayed more than δ time
slots.

5.1.1. Motivating example
Figure 3 shows on the left the incoming workload
W = T ∪ S. The load is expressed as a number
of instructions for each time slot k = 1, . . . , 9. The
red bar represents the available computing capacity
(maxW ) of the IT platform such that maxW =
m× nbI.

Figure 3 on the right illustrates how the amount of
work can be moved from the requested time slot to
the scheduled time slot when it is possible to respect
the flexibility δ, i.e., for all tasks Ti, csch

i −creq
i ≤ δ.

The chosen workload example can be executed on
the considered IT platform with δ = 2u.t. because
after the scheduling process, the whole amount of
work never exceeds the constraintmaxW value and
respects by construction the QoS.

time

load

maxW

time

load

maxW

Figure 3: Workload before (wtreq
k

), left) and after (wtsch
k ,

right) the scheduling process considering a flexibility δ =
2u.t.. Colored boxes are the tasks and service demands for
each u.t.. The orange ones represent the (inflexible) services.

The next section presents the IT sizing methodol-
ogy based on the principles introduced here.

5.1.2. Optimal IT sizing algorithm
Considering a given workload W and a given flex-
ibility δ, we propose an optimal approach to mini-
mize the number of servers needed to proceed this
workload. This is a binary search approach that is
able to converge on the smallest IT platform size.
Algorithm 1 is a classical algorithm of the approach.
The optimal number of machinesm can be accessed
using this algorithm such that minM ≤ m ≤ maxM
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and its complexity is O(log2(maxM −minM + 1)).
These lower and upper bounds, which values are
respectively given by Equations (9) and (10), are
as tight as possible as proven respectively by Lem-
mas 5.1 and 5.2. The corollary of these two lemmas
is that the number of iterations to reach the optimal
value for m is minimal (see Corollary 5.2.1).

minM = max
1≤k≤K

dwsk/nbIe (9)

maxM = max
1≤k≤K

d(wtreq
k + wsk)/nbIe (10)

Lemma 5.1. minM is the largest lower bound
of the number of machines needed to complete a
given workload W considering a malleable execu-
tion model.

Proof. Services consist of instructions that cannot
be deferred in time. This means that it is not pos-
sible to delay their execution to another time slot.
Conversely, the execution of tasks can be deferred
in time and then in the most extreme case, it can
be considered that there are no more tasks to be
executed within a given time slot k. In this context
the minimum amount of work that has to be done
by the IT infrastructure is wsk at each time slot
k (1 ≤ k ≤ K). The minimum infrastructure size
(number of servers minM) is then given by the time
slot k in which the amount of work devoted to ser-
vices is the highest. As one machine can only pro-
ceed nbI instructions within one time slot, minM is
given by Equation (9).

Moreoverm can be equal tominM in the case where
h = argmax1≤k≤Kdwsk/nbIe and wtk +wsk ≤ wsh

with h 6= k and 1 ≤ k ≤ K. As cases could exist
such that m = minM, then minM is the largest
lower bound for m. This concludes the proof.

Lemma 5.2. maxM is the smallest upper bound
on the number of machines needed to complete a
given workloadW considering a malleable execution
model.

Proof. wtreq
k + wsk is amount of work at the time

of the workload submission of any time slot k
(1 ≤ k ≤ K). In a case where it is not possible to
move instructions from one time slot to another, the
largest amount of work that determines m is given
by m = maxM = max1≤k≤Kd(wsk + wtreq

k )/nbIe.

The scheduling step aims at ensuring that the work-
load always remains below maxM. To guarantee
that, the amount of work executed at time slot k
has to decrease according to the flexibility and the
scheduling strategy.

So m should be less than maxM as wtrep
k ≥ wtsch

k

(1 ≤ k ≤ K). This concludes the proof.

Corollary 5.2.1. The number of iterations of Al-
gorithm 1 to reach its results is minimal.

Proof. m is obtained by a binary search algorithm
such that minM ≤ m ≤ maxM in dlog2(maxM −
minM + 1)e iterations in the worst case. As the
bounds minM and maxM on m are respectively
as large and as small as possible (see Lemmas 5.1
and 5.2), the number of iterations is minimal. This
concludes the proof.

Algorithm 1: Binary search based IT sizing
algorithm that gives the minimum number of
servers to complete a given workload W consid-
ering a given constant flexibility δ
Input: W = T ∪ S: workload to complete
Input: p: the power consumption of one server
Input: δ: the QoS such that csch

i − creq
i ≤ δ

with 1 ≤ i ≤ n
1 Function IT_sizing(W, nbI, δ):
2 u← maxM
3 l← minM− 1
4 while u− l > 1 do
5 m← b(u+ l)/2c
6 valid← test_IT(T ,S,m× nbI, δ)
7 if valid then u← m
8 else l← m

9 return u

This binary search algorithm is based on Algo-
rithm 2 that returns true if it is possible to find
a schedule of W using only m machines and false if
not. As services cannot be delayed, we only move
tasks. The principle of Algorithm 2 is to consider
each time slot k of H defined by W and its amount
of work wtk as having been requested. As it is not
possible to delay tasks from the last time slot, we
start from the second last one (k = K − 1) (line 6)
and we finish backward by time slot k = 1 if the
scheduling process guarantees the flexibility and if
the workload execution using only m machines is
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possible. Given the time slot k, we seek to move as
much task instructions from time slot k to time slot
h = k+δ (limited by K (line 8)). If there is enough
room (line 10) on time slot h to execute an addi-
tion amount of charge wtk, wtk is moved to that
time slot and we can consider the next time slot
k − 1 with now wtk = 0. Otherwise, the amount of
charge of the targeted time slot h is fulfilled using all
the available room (lines 11 and 12) and the rest of
charge of wtk that has not been transferred yet (line
13) is considered now to fulfill the previous time slot
h − 1 (line 14), and so on until h remains strictly
greater than k. Then, the new computing quantity
wtk from time slot k is now less than or equal to
its value before this scheduling step. Therefore, if
wtk + wsk remains larger than the computing ca-
pacity maxW of the m machines within one time
slot (line 15), the scheduling process can stop and
returns false. On the other hand, if the process goes
to its conclusion, i.e., the amount of work from time
slot k = 1 is less than the available computing ca-
pacity maxW , m machines is enough to perform
W respecting the given flexibility δ. Algorithm 2
is then returning true. Depending on the response,
the binary search algorithm can test another config-
uration with more or less machines as before until
converging to the smallest value for m. wtk can be
considered as wtsch

k at the end of the process. Fi-
nally note that, by construction, instructions that
belong to wtk1 and wtk2 with k1 < k2 are pro-
ceeded respectively on the two time slots k1′ and
k2′ such that k1′ ≤ k2′.

Theorem 5.3. Algorithm 1 returns the smallest
value for the number m of machines that is able to
complete the workload W with the flexibility δ.

Proof. Algorithm 1 is a binary search that is able
to access each integer value m ∈ JminM,maxMK
even if the solution is either minM or maxM. The
key point of this algorithm is the test function
test_IT(W,maxW, δ) that is able to know if a
schedule is possible to execute the workload W us-
ing only m machines or not (maxW = m × nbI).
Algorithm 2 aims at delaying tasks as late as pos-
sible, i.e., at most δ u.t. This is a scheduling at the
latest, called L-scheduling in the following.

If such a delay is possible, the maximum amount
of work maxW of the target time slot is not ex-
ceeded and instructions are moved from their re-
quested time slot to the scheduled time slot (line
12 and line 13). If possible = true at line 17, it

Algorithm 2: Algorithm to check whether W
can be scheduled without ever exceeding a cer-
tain level of work maxW regardless of the time
slot of H, taking into account a given constant
flexibility δ and the IT models
Input: W = T ∪ S: the workload to complete;

maxW : maximal possible amount of
work [MI]; δ: the flexibility in u.t.

1 Function test_IT(W,maxW, δ):
2 wtk ←

∑n
i=0 wt

req
i,k ∀k 1 ≤ k ≤ K

3 wsk ←
∑r

i=0 wsi,k ∀k 1 ≤ k ≤ K
4 possible← true
5 K ← number of time slots of H
6 k ← K − 1
7 while k ≥ 1 & possible do
8 h← min(k + δ,K)
9 while h > k & wtk > 0 do

10 room← max(maxW −wsh−wth, 0)
11 work2Move← min(room, wtk)
12 wth ← wth + work2Move
13 wtk ← wtk − work2Move
14 h← h− 1
15 possible← wtk + wsk ≤ maxW
16 k ← k − 1
17 return possible

means that the IT platform has a sufficient com-
puting capacity maxW to execute W with respect
to δ.

Let W = T ∪ S a workload successfully scheduled
with the computing capacity maxW of the consid-
ered IT platform, but without using L-scheduling
approach.

Then
∑n

i=1 wt
req
i,k +

∑r
i=1 wsi,k ≤ maxW for ev-

ery time slot k (1 ≤ k ≤ K). Carry over a set
of instructions from one time slot k to a another
if there is room, and if the duration between the
end of their requested time slot and the end of the
target time slot does not exceed the flexibility δ of
W and respects the computing capacity. So, using
a L-scheduling does not change the value returned
by the test_IT function.

On the other hand, if the computing needs of one
time slot k exceedsmaxW of the platform, the com-
puting capacity is not sufficient for executing that
workload. Indeed, if at least one instruction I can
not be deferred to a another time slot k+δ, . . . , k+1,
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then wtsch
h +wsh is equal to maxW for any h such

that k+ 1 ≤ h ≤ k+ δ. The only possibility should
be to delay instructions in a given time slot h to
make room for the instruction I. But all instruc-
tions of time slot h (k + 1 ≤ h ≤ k + δ) have al-
ready been delayed as much as possible because the
L-scheduling begins by the end (k = K − 1, k =
K − 2, . . . , k = 1).

So if there is no room to move extra instructions
from a time slot k to any time slot h (k + 1 ≤
h ≤ k + δ), it means that it does not exist any
schedule using only a computing capacity maxW
that respects the flexibility δ to execute in time such
a workload. Algorithm 2 returns false if and only if
there does not exist a schedule to executeW in such
a computing capacity maxW and a given flexibility
δ.

Finally, the binary search is based on a test function
that gives true when the platform is large enough
and false only if the platform is not large enough. m
is then the smallest possible value for the platform.
This concludes the proof.

The next section proposes a methodology to design
the power supply architecture that is able to deliver
electrical power when the IT part of the data center
needs. Using wtk = wtsch

k also as a result of the IT
sizing process given by Algorithm 1, it is possible
to easily compute Dk for all k (1 ≤ k ≤ K). Indeed
wtsch

k =
∑n

i=1 wt
sch
i,k . We recall that D is one of the

inputs of the power supply sizing process.

5.2. Power supply sizing
In this section, the sizing methodology dedicated to
the electrical part of the data center is presented.
The power supply architecture sizing depends on
different inputs: the data center power demand D,
the weather conditions that give the solar irradia-
tion I and the wind speed V over the same time
horizon H including K time slots with duration ∆t
(H = K∆t). Our methodology aims at finding the
appropriated sizing for each element that composes
the power supply system of the standalone data cen-
ter: wind turbines, photovoltaic panels, batteries,
and hydrogen system. The methodology consists in
determining first the primary sources – number of
wind turbines and surface area of the photovoltaic
panels – and then designing the short- and long-
term storage devices to reach the power demand D
considering power supply models. The power sup-
ply of the data center is then only based on the

renewable power production during each time slot
Prek = Pwk + Ppvk (1 ≤ k ≤ K), the storage fa-
cilities being introduced to compensate for the in-
herent intermittency of sun and wind. To carry out
this sizing, it is mandatory to give the rule of the
game observed to manage the power supply day af-
ter day in order to make autonomous power supply
possible, year after year, taking into account the
lifespan of the infrastructure. The next section is
dedicated to this rule of the game.

5.2.1. Daily power supply management
During one day d (1 ≤ d ≤ 365) with Λ time slots
(as ∆t = 1h in practice, Λ = 24), and consider-
ing a given power demand D and a given primary
source architecture (nbWT wind turbines and a sur-
face area Apv of photovoltaic panels), it is pos-
sible to know if there is over or under renewable
power production for any time slot k of this day
(1 + (d− 1)Λ ≤ k ≤ d× Λ).

The rule of the game is that batteries aim at bal-
ancing day/night power production. To ensure it,
we assume that their level of charge has to be the
same at the beginning of each day. This initial level
of charge has to be defined during the sizing pro-
cess to prevent meteorological events and avoid the
shortage of the batteries.

Let Opd and Upd be respectively the amount of over
produced energy and the under produced energy
during the day d. Equations (11) and (12) allow to
compute Opd and Upd:

Opd =
d×Λ∑

k=1+(d−1)Λ

1[Dk,+∞[(Prek)(Prek −Dk)∆t

(11)

Upd =
d×Λ∑

k=1+(d−1)Λ

1[0,Dk[(Prek)(Dk − Prek)∆t (12)

where Prek = Pwk + Ppvk is the renewable
power production during the time slot k (1 + (d −
1)Λ ≤ k ≤ d × Λ), and where 1[Dk,+∞[(Prek)
and 1[0,Dk[(Prek) the two indicator functions of
Prek respectively for the Opd and Upd expressions
(1A(x) = 1 if x ∈ A and 0 if x /∈ A).
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A day d is qualified as an overproduction day if the
following condition (13) is true:

Opd × ηch × ηdch ≥ Upd (13)

Otherwise as d is an underproduction day when the
following condition (14) is true in turn:

Opd × ηch × ηdch < Upd (14)

Depending on the over- or under-production of
a day, the rule of the battery usage is not the
same:

• Overproduction day: batteries aim to supply
the servers of the IT part in addition to WT
and PV if needed to meet the power demand
(light green part below the power demand, the
red line in Figure 4 being constant for illus-
tration). Conversely, batteries are charged as
quickly as possible as soon as there is sufficient
renewable power production to bring the state
of charge to the same level as at the beginning
of that day as shown in Figure 4 as the deep
green part above the power demand. The hy-
drogen system, i.e., electrolyzer (EZ), has to
store the rest of the power overproduction in
form ofH2 (blue part above the power demand,
the red line in Figure 4);

• Underproduction day: unlike the day of over-
production, batteries are charged by using
power overproduction of every overproduction
time slot (deep green part in Figure 5) and sup-
ply the IT part in addition to primary sources
and fuel cells (FC) as quickly as possible and
as soon as possible as shown in Figure 5 by
the light green part. Then the FC take over
when the batteries have supplied the amount
of energy equivalent of the overproduction af-
ter considering charge and discharge efficien-
cies.

Note that in both cases, battery efficiencies, to
charge (ηch) or discharge (ηdch), have to be taken
into account. Figures 4 and 5 summarize both cases
described before giving the rules of the game ob-
served to use short term and long term storage de-
vices within one given day. Deep green and light
green parts take efficiencies into account. These
rules are the basis for the algorithm used to deter-
mine the amplitude of the battery state of charge
each day and the level of hydrogen at the end of

the time horizon H. The largest battery ampli-
tude gives the battery capacity BC for the short
term storage device and the amplitude of the level
of H2 gives the size of the tank of hydrogen of
the system considering a given power demand D
and the given renewable power production allowed
by weather conditions and the primary architec-
ture.

Let storageSizing(D,Pre) be such an algorithm
that returns the level of hydrogen at the end of H.
This algorithm is used day after day to size the pri-
mary sources such that the level of hydrogen LOHK

at the end of the time horizon has to be greater than
or equal to its level at the beginning LOH0 but as
close as possible. The sizing of the storage devices
is given in the subsequent section.
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Op ×ηch × ηdch = Up

Op ×ηez in H2

hours [h]
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r
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W

]
Renewable power Power demand

Op Extra energy to store in form of H2

Op Extra energy to store into batteries

Up Energy to supply from batteries

Figure 4: Rule of the game of an overproduction day for the
usage of batteries and the hydrogen system. Power demand
is constant for illustration purpose. The whole renewable
production that does not meet the power demand is supplied
thanks to batteries that are recharged using a fraction of the
overproduction.

5.2.2. Sizing of the primary sources using a binary
search approach

Primary sources consist of photovoltaic panels (PV)
and wind turbines (WT). As this architecture is ho-
mogeneous (only one type for PV and WT), the
number of configurations is not combinatorial. Pri-
mary sources aim at collaborating to supply the
power needed D by the data center to complete
its computation demand, i.e., the workload W. As
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Op Energy to supply from H2 tank
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Figure 5: Rule of the game of an underproduction day for
the usage of batteries and the hydrogen system. Power de-
mand is constant for illustration purpose. The whole power
production that exceeds the power demand is stored into
batteries so as to partially compensate the underproduction.

mentioned before, both power production of pho-
tovoltaic panels and wind turbines are added to
supply the data center and the back up power de-
vices. The size of the primary sources has to be
large enough to reach overproduction when the sun
is shining or the wind is blowing to allow sufficient
energy storage for time slots where primary power
production is not sufficient to power the entire data
center. The primary sources must compensate for
the day/night alternation as well as seasonal varia-
tions by a necessary over production.

Considering a given power demand D and weather
conditions I and V for one given year, the principle
is to find the appropriate primary source set that al-
lows to end the year with a hydrogen level (LOKK)
that has to be greater than or equal to the hydro-
gen level at the beginning of the same year (LOH0),
i.e., LOHK and LOH0 are as close as possible to
make the supply for an other year possible. The
following condition has to be respected:

LOHK − LOH0 ≥ 0 (15)

Let maxWT be the minimal number of WT that
does not need any PV to respect (15). Then, there
are onlymaxWT+1 different configurations includ-

ing respectivelymaxWT ,maxWT−1,maxWT−2,
. . ., 1, 0 WT. The maxWT last configurations
are complemented by the minimum surface area
of photovoltaic panels that allow to respect Con-
straint (15).

Computation of maxWT . The data center energy
need EDC can be evaluated by computing the inte-
gral of the power demand D on the considered time
horizon H. By choosing historical weather condi-
tions V on the same period of time, it is possible
to know which quantity of energy E1W T one WT is
able to produce. Indeed, maxWT is greater than or
equal to the upper integer part of the ratio between
EDC and E1W T :

maxWT ≥

⌈
EDC

E1W T

⌉
(16)

EDC =
K∑

k=1
Dk ×∆t (17)

E1W T =
K∑

k=1
Pwk ×∆t (18)

Since there is no reason for the data center power
demand to coincide with the wind power, it is nec-
essary to store a part of the produced energy. But
a significant part of wind energy is lost due to the
efficiency of the storage process. This loss can be
covered rounding up the ratio given above up to
the next integer value. If this is not enough, and
depending on the type of wind turbine, another tur-
bine may be necessary until Condition (15) becomes
true. The configuration with only maxWT WT,
without PV, is the first configuration. The config-
urations are given in the next paragraph.

The maxWT other configurations. Let Q =
{Q0, Q1, . . . , QmaxW T−1, QmaxW T } the set of possi-
ble configurations that correspond to themaxWT+
1 different options for the primary source configura-
tions for the power supply architecture of the data
center. The qth configuration Qq = (q, Apvq) con-
sists of a surface area Apvq in [m2] for the PV and q
WT (0 ≤ q ≤ maxWT ). Q0 and QmaxW T are two
special cases with respectively no WT or no PV.
To meet the data center power demand when the
number of WT is less than maxWT , the point is
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to find the appropriate surface area of PV. By con-
sidering the same historical weather conditions as
before (i.e., solar irradiation I and wind speed V),
a given surface area Apvq of PV and the number q
of WT of the qth configuration of Q, it is possible
to compute the overall renewable power production
for any time slot k (1 ≤ k ≤ K):

Prek = Ik ×Apvq × ηpv + q × Pwk (19)

Finally, by considering the daily power supply man-
agement rules (Section 5.2.1), it is possible to find
the level of hydrogen LOHK at the end of the hori-
zon H. If this level is higher than LOH0, Apvq is
too large and vice-versa.

Algorithm 3 is a binary search algorithm that is able
to find, for each possible number of WT, the small-
est value for the surface area of PV that respects
Constraint (15) and makes it possible to meet the
data center power demand. This algorithm com-
plexity is obviously logarithmic: O(log2(maxApv))
with maxApv the largest possible surface area for
PV. This algorithm returns the setQ ofmaxWT+1
configurations (q, Apvq) including a number of WT
q between 0 to maxWT and the corresponding sur-
face area values Apvq. Note that the configuration
with maxWT wind turbines does not contain any
photovoltaic panels.

A value of maxApv could be obtained by consid-
ering the surface area of PV required to produce
the total amount of energy EDC needed in the data
center only by using PV so that renewable power
production does not coincide with computer con-
sumption. In this worst case, energy production
could be stored first in hydrogen using electrolyz-
ers before being consumed by the data center using
fuel cells. In this case maxApv is given by Equa-
tion (20):

maxApv =
⌈

EDC

E1P V × ηez × ηfc

⌉
(20)

where E1P V is the energy obtained by using spv =
1m2 of PV during time horizon H.

E1P V =
K∑

k=1
Ik × spv × ηpv ×∆t (21)

Algorithm 3: Computation of the set Q of pos-
sible configurations that respect Condition (15)
Input: maxWT , Pw, D
Output: Q = {(0, Apv0), . . . , (q, Apvq), . . .}

1 Function Electrical_sizing():
2 Q = ∅
3 for q = 0 to maxWT − 1 do
4 u← maxApv
5 l← −1
6 LOH0 ← LOHinit
7 LOHK ← 0
8 while u− l > 1 & LOHK 6= LOH0 do
9 apv ← b(u+ l)/2c

10 Ppv ← I × apv × ηpv (vector operation)
11 Pre← Ppv + q× Pw (vector operation)
12 LOHK ← storageSizing(D, P re)
13 if LOHK < LOH0 then
14 l← apv

15 else
16 u← apv

17 Q← Q ∪ {(q, u)}
18 return Q ∪ {(maxWT, 0)}

Now, considering a given primary source configura-
tion (x WT and a surface area APVx of PV), it is
possible to size the storage devices, batteries and
hydrogen system.

5.2.3. Sizing of the storage system:
The strategy to design the storage system relies on
computing time slots of overproduction and under-
production for each day during the time horizon.
As a reminder of the rules of the storage usage given
in Section 5.2.1, the batteries are used during the
day to balance the hours of overproduction and un-
derproduction (fluctuations between day and night)
and the hydrogen system composed of electrolyzers
and fuel cells is used to balance days of overpro-
duction and days of underproduction (seasonal off-
set).

Storage capacity. As the batteries operate on a day
scale, the difference between the maximum and the
minimum values of their capacity within the same
given day determines the sizing of the battery for
that day. The capacity BC of the batteries is equal
to the maximum computed daily capacities:
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BC = max
1≤d≤K/Λ

(maxBCd) (22)

with ∀h such that 1 + (d− 1)Λ ≤ h ≤ d×Λ:

maxBCd = max
h

(BCh)−min
h

(BCh) (23)

As the hydrogen system operates on the seasonal
scale, the sizing of the tank is equal to the difference
between the maximum and the minimum level of
hydrogen. This is expressed as follows for all k (1 ≤
k ≤ K):

LOH = max
0≤k≤K

(LOHk)− min
0≤k≤K

(LOHk) (24)

As it was not possible to imagine before the sizing
process the initial level for batteries and hydrogen
tank to supply the data center using the mentioned
input data, they were set to 0. But after the pro-
cess it is then possible to set these initial levels,
BCinit at the beginning of each day and LOHinit
at the beginning of the year. They are computed
as absolute values of the minimum values for BCk

(respectively LOHk), 1 ≤ k ≤ K, since at least
one is necessary negative or null at that step of the
process:

BCinit =
∣∣∣∣ min

1≤k≤K
BCk

∣∣∣∣ (25)

LOHinit =
∣∣∣∣ min

1≤k≤K
LOHk

∣∣∣∣ (26)

Power of storage devices. To complete the sizing of
the storage system, batteries, and hydrogen system,
the power required for each device has to be defined
to be sure that the appropriate power is delivered
when the renewable sources are able to meet the
data center power demand. Considering the daily
storage usage as defined by the rules of the game
(Section 5.2.1), day after day for the entire duration
of the time horizon H, the nominal required power
globally for each device (PCH and PDCH for the
power the batteries, PEZ for electrolyzers, PFC for
fuel cells) are:

PCH = max
1≤k≤K

(Pchk)
PDCH = max

1≤k≤K
(Pdchk)

PEZ = max
1≤k≤K

(Pezk)
PFC = max

1≤k≤K
(Pfck)

(27)

5.3. IT and Power supply sizing summary
As a result, the optimal number of servers is given.
The power supply sizing process is able to propose
maxWT+1 configurations, one only with wind tur-
bines (full WT configuration), one only with pho-
tovoltaic panels (full PV configuration), and the
others with both primary sources (1 WT, 2WT,
etc.). Each configuration is known by its number
of wind turbines, its surface area of photovoltaic
panels, and for each of them the associated stor-
age devices, power and capacity for the batteries as
a short term storage device, power and hydrogen
tank size for the hydrogen system as a long term
storage device (electrolyzers and fuel cells).

In the remainder of the paper, experiments show
the behavior and characteristics of these configura-
tions to help decision makers to choose the appro-
priate configuration for a standalone data center
only supplied with renewable energy.

6. Experiments

6.1. Input data
In this section, we explain the data used in the ex-
periments:

Workload The workloadW is generated following
the data from user requests recorded during
the Soccer World Cup in 1998 and available on
the web site1. We have used the same method-
ology as in [40].

The days with a high load in the trace (days 45
to 79) are first selected, then the load for each
of the 365 days of our workload is randomly
chosen among those selected days. The flexi-
bility of the tasks δ is set to 3 hours. Service
load is generated with a uniform distribution
requesting an equivalent of work in the 100-400
servers range;

1WorldCup’98 logs. http://ita.ee.lbl.gov/html/
contrib/WorldCup.html
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Figure 6: Renewable power production in 2004 for each possible configuration found by the sizing algorithm to meet the data
center demand.

Servers The servers are quad-core processors run-
ning at 2.5GHZ and consuming 350W .

Weather conditions To simulate the power pro-
duction of the primary sources (PV and WT),
one needs to download meteorological data
such as the irradiance I and wind speed V for
one year. These data can be obtained online
from various databases. In our case, the irra-
diance data is downloaded from the National
Solar Radiation Database (NSRDB) [32], and
the wind speed data is downloaded from the
wind prospector from the national Renewable
Energy Laboratory (NREL) [12]. These data
are collected hourly, every day from 2004 to
2012. The chosen localization is Los Angeles
with the coordinates: Latitude: 34.57; Longi-
tude -118.02; Elevation 807.

Power sources The input values of the primary
sources used in the power supply sizing process
are summarized in Table 3.

6.2. Sizing of the IT part

The resulting sizing reaches 1098 servers with a
maximum power consumption of 384.3 kW. The re-
sult is shown in Figure 2 with the initial workload
(services in orange and batch tasks in blue) along
with the shifted load (due to the limited number
of servers) using Algorithms 1 and 2 which results
in an actual load is green. The peak power con-

Table 3: Input values of the power supply sizing process

Notation Value Units
Pr 400 [kW ]
Vr 14 [m/s]
Vci 4 [m/s]
Vco 25 [m/s]
ηfc 0.6 –
ηez 0.6 –
ηch 0.8 –
ηdch 0.8 –
ηpv 0.15 –

sumption is 499.59 kW including the environmental
consumption (PUE of 1.3).

6.3. Sizing of the power supply part
In the following, as an illustrative case, the chosen
year of reference to size the power supply of the
data center is 2004 using the IT workload W pre-
sented before. As shown in [17], mathematical mod-
els based on time series are possible to model solar
irradiation but are more difficult to apply with the
wind. We have also shown that the obtained power
supply sizing is different depending on the reference
year. The choice of the year 2004 is leaded by the
fact that during this reference year, the production
of electrical power by the photovoltaic panels and
the one by the wind turbines exhibit a complemen-
tarity, emphasizing the effect of the hybridization
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Figure 7: Renewable power production in February 2004 for
each possible configuration found by the sizing algorithm to
meet the data center demand.

of both primary sources. Indeed the power supply
sizing depends on the weather conditions and then
on the data center location. This work intends to
show how the sizing process works and does not
intend to infer general rules for the sizing itself.
This latter choice stays with the decision maker
who could iterate on this process to take his deci-
sion using different locations and therefore weather
conditions.

Considering one reference year for the weather con-
ditions, a target workload demand, different con-
figurations are obtained for primary and secondary
sources. For the year 2004, Table 4 illustrates the
possible configurations starting from a configura-
tion with only photovoltaic panels (full PV), reach-
ing a configuration with only wind turbines (full
WT) and exploring configurations with both PV
and WT. Each configuration is described by the
number of WT, the surface area of PV, the power
of electrolyzers and fuel cells and storage capacity
(batteries and hydrogen tank).

As can be seen on Table 3, the choice of one pri-
mary source configuration (i.e., the surface of PV
and the number of WT) has a huge impact on the
secondary sources (i.e., the batteries and the hydro-
gen components).
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Figure 8: Renewable power production in June 2004 for each
possible configuration found by the sizing algorithm to meet
the data center demand.

Table 4: Four different sizing for power supply based on the
year 2004 and the workload of the 1998 soccer world cup
servers.

config q Apvq [m2] BC [kWh]
#0 0 7285 5387
#1 1 3154 3050
#2 2 203 3889
#3 3 0 5613

config PEZ [kW] PFC [kW] H2 tank [kg]
#0 632 836 6296
#1 482 836 2884
#2 442 836 2216
#3 676 836 14643

6.3.1. Influence of the primary source configuration
on the annual power production

The algorithm 3 has computed each possible pri-
mary source configuration to face the data center
demand during the year 2004, considering the sun
and the wind profiles. Figure 6 shows the power
supplied by these primary sources, day after day
for the four different configurations obtained, the
power demand (in red) being the same. As ex-
pected, the power profile in the full PV configu-
ration (#0) follows a bell shaped curve, due to the
seasonal alternation of the day duration: the max-
imum is reached in summer and the lowest level in
winter but from day to day, the evolution of the
power production is smooth. On the contrary, in
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the full WT configuration (#3), the mean value
of the power production is much more regular all
along the year, even if a seasonality is sensible with
a slight deficit of wind in summer (see Figures 7
and 8). But its variability is much higher from one
day to another. In configuration #1 and configu-
ration #2, the variability of the WT turbine pro-
duction dominates, but the higher the PV surface
area, the lower the production peaks.

6.3.2. Influence of the primary source configuration
on the battery sizing

The rule governing the battery sizing is that its
charge should return to its initial state at the end
of each day. The initial state has been set to an
intermediate value between fully charged and fully
discharged, the reason being that it should be able
to face any situation at dawn, a sunny day or a
cloudy one. Then, the sizing of the battery de-
pends on a daily variation. In the configuration full
PV, the longer nights in winter are dominant in the
sizing of the battery, i.e., the 172nd day of the year
at the summer solstice, leading to a 5387 kWh ca-
pacity. In the configuration full WT, the highest
variation of the power production from one day to
another governs it, leading to the largest capacity
5613 kWh, being of the same order than configura-
tion #0. Configuration #1 and #2 lead to lower ca-
pacities as they take advantage of the complemen-
tary of the primary production, the photovoltaic
panels smoothing the daily variability of the sun
and the wind power smoothing the seasonal varia-
tion of the PV production.

6.3.3. Influence of the primary source configuration
on the hydrogen component sizing

It can be seen that the configuration has no influ-
ence on the sizing of the fuel cell. Indeed, for each
configuration, there is one solely time slot in the
IT workload which sets this value at the same peak
power demand, according to Equation (27).

Concerning the hydrogen tank and the electrolyzer,
their sizing is governed by two rules. First, all the
renewable energy should be stored and cannot be
lost. It means that the disconnection of a wind
turbine or a PV module is not considered. Once
the battery is fully charged, the electrolyzer has to
convert all the primary power produced and all the
energy should be stored in the hydrogen tank. Sec-
ond, the level of the hydrogen tank should tend to

go back to its initial level as imposed by Condi-
tion (15).

Figure 9 shows the evolution of the hydrogen stor-
age during the year. The hydrogen storage of the
full WT configuration diverges. As a matter of fact,
the number of WT is set to comply with the de-
mand of the data center but the power produced
by one turbine cannot be modulated. It leads to
an oversizing of the installation, as the third WT
is used in place of only 203m2 of PV. Then, the
constraint on the level of the hydrogen tank at the
end of the year cannot be respected. To convert all
the power overproduced by the oversized WT set,
the electrolyzer sizing reaches the highest value of
676 kW.

In the case of the full PV configuration (#0), the
constraint on the level of hydrogen back to its ini-
tial value is respected. The evolution of the storage
follows the seasonal bell shaped curve of the solar
production, the lowest storage level being reached
at the winter solstice (i.e., 172nd day of the year)
and the highest at the summer solstice (i.e., 355th

day of the year). As the gap between the primary
power available in summer and the power avail-
able in winter is rather high, the power of the elec-
trolyzer needed is of the same order than the full
WT case (#3).

In the configuration #1, the amplitude of the stor-
age is reduced compared to the full PV but the evo-
lution is still dominated by the seasonality. In the
configuration #2, the seasonality between summer
and winter is almost damped and the constraint of
the level of hydrogen back to the initial value is re-
spected. In both cases, the power of the electrolyzer
is about the same, about 30% reduced compared to
full PV or full WT cases.

6.4. Sizing assessment
In this section, in order to evaluate the sizing as-
sessment, the same IT load used in the previous
section is shifted by one hour during a day until
reaching a shift of 23 hours. As a result, we obtain
23 new IT power demands. These loads are used as
inputs of the proposed sizing methodology.

6.4.1. 24 IT loads
First of all, in order to identify the nature of the
workload used (i.e., if the demand is greater dur-
ing the night or during the day), the mean of the
load has been calculated per hour over the year.
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Figure 9: Evolution of the level of hydrogen in tons for each
configuration day after day during year 2004.

This computation provides the hourly average de-
mand of power considering the whole year (Fig-
ure 10).
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Figure 10: The average hours accumulated over the year of
the IT load. Hour 0 corresponds to 0:00 am.

One can see that the majority of the power demand
is executed after the second part of the afternoon.
By shifting this workload hour by hour, the impact
on the sizing of the power supply infrastructure is
identified.

6.4.2. Power supply infrastructure
Based on the results obtained by Algorithm 3, one
can see in Figure 11 that the configuration of the
primary sources is hardly changed. As a matter
of fact, the energy supplied to the load over the

whole year is produced by the primary sources, i.e.,
the wind turbines and the photovoltaic panels. The
shifting of the load has not changed a lot the global
need of energy over the year, the impact is indi-
rect due to the efficiency of the power conversion
involving the storage. In Figure 11, it can be seen
that the surface of PV is slightly decreased around
the 9 hours shift in the full PV and the 1WT con-
figuration because it corresponds to a load profile
following more or less the bell shaped profile of the
solar illumination. The maximal number of wind
turbines is submitted to Constraint (16): it remains
equal to 3 because the variation of the annual en-
ergy load induced by the efficiency of the storage
conversions is much smaller than the yearly pro-
duction of one additional wind turbine.
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Figure 11: Evolution of the surface area of the photovoltaic
panels as a function of the shift of the IT load.

In the same way, the capacity of the hydrogen tank
is almost stable. Indeed, shifting the workload dur-
ing the day only affects the daily but not the annual
imbalance between demand and power supply. In
Figure 12, one can see that the load shift has a
strong impact on the battery sizing. In fact, from
a shift of one hour to another, the battery capac-
ity significantly changes. As expected, the high-
est impact concerns the full PV configuration when
shifting the initial workload by 8 hours makes the
workload following the bell shaped solar produc-
tion, reducing the need for the daily storage. This
synchronization is still sensible for the configura-
tion #1. The effect of the shifting on battery sizing
in the configurations #2 and #3 is lower but ex-
ists and is more complex to analyze as the wind
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profile is not as regular as the solar one. Neverthe-
less, there is a better synchronization between the
workload and the wind production with a shifting
beyond 10 hours.

To conclude, the variation of the IT load during
the hours of the day has an impact only on the siz-
ing of the battery capacity which balances the day
and night alternation. The proposed sizing method-
ology provides different possible configurations for
the renewable primary sources that are not affected
by workload variations. The overall approach leads
to a robust sizing. In case the workload has more
variability, a negotiation can be initiated at runtime
between IT scheduling and power supply storage
management to adapt the power demand (i.e., by
changing the task scheduling of the current work-
load) and to make possible the supply of the data
center demand [37].
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Figure 12: Evolution of the battery capacity as a function of
the shift of the IT load.

6.5. Discussion
Now that we have analyzed the influence on dif-
ferent parameters on the sizing, it is legitimate
to question the robustness of the approach de-
fended in the paper and to extend this discussion
to external parameters such as weather conditions
(sun and wind) and submitted workloads day after
day.

The first question concerns the influence of mete-
orological conditions. There is no reason that the
meteorological conditions of future years should be

the same as the one used for sizing the power supply
part of the data center. What is the risk in such an
unavoidable case? If the wind blows often enough,
especially in winter and if the sun shines without
clouds, the primary renewable energy production
will be higher than expected by the sizing process.
In this case, either the hydrogen level at the end of
the year of the considered horizon H will be larger
than expected or, in a worst case, the hydrogen
tank capacity will not be large enough to store the
whole energy overproduction. Indeed, the overpro-
duction is stored in form of hydrogen as shown in
Figure 4. Conversely, if the wind does not blow and
the sky is cloudy especially in summer, the part of
the renewable energy supplying directly the data
center demand will be reduced compared to the ex-
pected. Then the hydrogen storage will be more
frequently solicited to compensate the shortage of
power. The stored hydrogen level will decrease and
will not be regenerated enough by the overproduc-
tion days. So, it appears, that the risk of having
meteorological conditions that differ from the one
on which the sizing process is based on, is that the
tank could be full or empty sooner than expected.
A way to cope with this problem is to buy or sell
hydrogen. The capacity of the tanks is high (we
consider tons of hydrogen), so this decision can be
easily scheduled without risking to jeopardize the
safety of the data center supply. This decision has
not to be seen as a failure in the data center man-
agement: the hydrogen market exists and new hy-
drogen usage is expanding, especially in the vehicle
domain, electrical bus or cars using fuel cells and
batteries [18]. Moreover, buying certified green hy-
drogen (i.e., hydrogen certified to be produced from
renewable energy and not from fossil fuels) is con-
venient and keeps the computation within the data
center totally green.

Another possible way to deal with meteological con-
ditions is to apply the generic methodology pro-
posed on several years to cover different meteorolog-
ical scenarios and to prevent such a situation. But
as shown in Sections 4 and 5, the primary source
combination depends on the whole energy that has
to be produced so as to meet the power demand us-
ing more or less storage facilities. So the sizing pro-
cess will result in a worst case solution only based
on the year with adverse weather conditions which
leads to an oversizing of the infrastructure in most
cases as shown by M. Haddad in her PhD thesis [16].
This oversizing versus most of the annual weather
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conditions leads to an oversized total cost of owner-
ship and is hardly acceptable from the economical
point of view. In any case, situations can occur in
which the hydrogen tank will never be large enough
and the data center becomes a hydrogen producer
and uses a small part of the hydrogen produced to
supply the computation facilities. But this is an-
other economical model beyond this study.

An alternative is to consider each sizing combina-
tion set, one for each reference year, and to propose
the average sizing to the decision makers. In this
case, M. Haddad also shows in [16] that the hydro-
gen shortage or hydrogen overproduction is reduced
when considering a year with either adverse or fa-
vorable weather conditions. In this case, the volume
of hydrogen to buy or to sell each year for keeping
Constraint 15 true is not huge. In some cases, a
small oversize of the tank capacity could be toler-
ated in order to increase the system resilience some-
what. This is a promising option because using the
most representative year in terms of weather condi-
tions is very difficult. Indeed, weather models are
very difficult to built, especially for the wind [17],
and remain extremely location-dependent.

Finally, the last situation in which the sizing can be
not as efficient as expected is when the data cen-
ter power demand is not that what it was foreseen,
i.e., the computation demand. If the demand is low,
the power supply part will produce more than the
data center consumes and hydrogen will be sold or
stored, waiting for days where the demand will be
higher. But this is not the most probable scenario.
Conversely, if the demand is increasing day after
day knowing that digital services and applications
are more present everywhere each day, and know-
ing that the power supply infrastructure is built
for years, buying hydrogen is not the right answer.
In the particular case where computation demands
are exceptionally high, they can be regulated using
a negotiation process between parts at runtime as
mentioned before. In the other cases, one option
is to overestimate the demand but the risk is now
to oversize the power supply part. On the other
hand, since the life cycle of the servers is about five
years, much less than the wind turbines (between
thirty and fifty years), and since the computation
efficiency of servers increases while their power con-
sumption decreases, the increased demand can be
contained by the power supply part even if designed
years before. In addition, PUE today is smaller
than it was ten years ago and thanks other cool-

ing technologies, it may decrease again. Changing
partially a given surface area of photovoltaic panels
will also be mandatory because of ageing and acts to
increase the global efficiency of the platform.

To conclude, it does not seem impossible to use the
initial sizing for years using these recommendations,
if the initial specifications of the data center are the
right ones.

7. Conclusion and Future Work

In this research work, we designed an on-site data
center solely powered by local renewable energy
(sun and wind) and using short term and long term
energy backup. The hybrid renewable energy sys-
tem consists of photovoltaic panels and wind tur-
bines as primary sources. Batteries and hydrogen
system aim at storing energy to overcome the lack of
primary sources energy during days and to compen-
sate seasonal variations in the renewable power pro-
duction. Moreover, the IT power demand is also not
constant. The proposed sizing methodology allows
following the data center power demand day after
day and provides the necessary production by the
primary sources to start each year with the same
level of hydrogen.

Specifically, we investigated both the IT and power
supply infrastructures. This study was divided in
two steps: (1) determining optimally the necessary
number of servers of the data center for processing
a given IT workload and (2) giving a set a power
supply infrastructure needed to meet the IT power
demand. To the best of our knowledge, this study is
the first of its kind, proposing a proven optimal IT
sizing together with associated power supply com-
binations. One originality of the paper is to pro-
pose a generic methodology for both IT and elec-
trical sizing. First, the workload and the scheduling
that obtain the minimal needed number of servers
to perform it by respecting a given quality of service
could be replaced by others depending on the tar-
get IT applications or IT models without impact-
ing the methodology. Second, the meteorological
conditions of a reference year and the yearly power
demand (hour by hour) could be changed, resulting
in different power sizing.

Another originality of this work is that the output
of the sizing process is a set of infrastructure sizing
combinations, given an IT workload and a data cen-
ter location with its weather conditions. Indeed the
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specificity of the WT in comparison with PV is that
the WT can be considered as a discrete entity (0, 1,
2 or 3 WT) while PV as continuous value (surface
area): For each possible number of WT corresponds
a surface area of PV and associated energy storage.
Comprehensive experiments are conducted to show
the pros and cons of each possible PV-wind combi-
nation. A discussion allows the decision maker to
select the best data center infrastructure depending
on the context.

Finally, we showed that the workload peak within
the day has only an influence on the battery ca-
pacity, the other sizing being robust. This corrobo-
rates the fact that a better synchronisation between
the power demand and the renewable power pro-
duction leads to a smaller battery oversizing. This
is a very promising perspective to increase cross-
dependencies between IT and HRES sizing. More-
over, discarding extreme values (power demand and
weather conditions) while using our proposed sizing
methodology could probably reduce the sizing with
only a small percentage of QoS violations.
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