
HAL Id: hal-03110285
https://hal.science/hal-03110285

Submitted on 14 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Semantic Information to Improve Generalization
of Reinforcement Learning Policies for Autonomous

Driving
Florence Carton, David Filliat, Jaonary Rabarisoa, Quoc Cuong Pham

To cite this version:
Florence Carton, David Filliat, Jaonary Rabarisoa, Quoc Cuong Pham. Using Semantic Information
to Improve Generalization of Reinforcement Learning Policies for Autonomous Driving. IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV) Workshops, Jan 2021, Hawaii (on
line), United States. �hal-03110285�

https://hal.science/hal-03110285
https://hal.archives-ouvertes.fr

Using Semantic Information to Improve Generalization of Reinforcement

Learning Policies for Autonomous Driving

Florence Carton

Université Paris-Saclay

CEA, List, F-91120,

Palaiseau, France

florence.carton@cea.fr

David Filliat

U2IS, ENSTA Paris

INRIA FLOWERS

Institut Polytechnique de Paris

Palaiseau, France

david.filliat@ensta.fr

Jaonary Rabarisoa

Université Paris-Saclay

CEA, List, F-91120,

Palaiseau, France

jaonary.rabarisoa@cea.fr

Quoc Cuong Pham

Université Paris-Saclay

CEA, List, F-91120,

Palaiseau, France

quoc-cuong.pham@cea.fr

Abstract

The problem of generalization of reinforcement learning

policies to new environments is seldom addressed but essen-

tial in practical applications. We focus on this problem in

an autonomous driving context using the CARLA simulator

and first show that semantic information is the key to a good

generalization for this task. We then explore and compare

different ways to exploit semantic information at training

time in order to improve generalization in an unseen en-

vironment without finetuning, showing that using semantic

segmentation as an auxiliary task is the most efficient ap-

proach.

1. Introduction

Since ALVINN [23] in the 90s, autonomous driving

based on visual input has seen significant advances over

the past few years. Traditionally, two approaches can be

distinguished (see Figure 1). The first one consists of a

modular pipeline, which breaks down driving into interme-

diate tasks, such as perception, path planning, and control.

This allows monitoring all stages of the decision-making

process but needs individual optimization for every subsys-

tem, making it difficult to find an overall optimal solution.

The second approach that has recently become popular is

end-to-end driving, where the system directly maps raw in-

put, such as road images, to driving controls. The advantage

of end-to-end learning is the reduction of intermediate op-

eration, especially as these are mostly designed for human

Input
(image,
speed...)

Detection
(lanes,
cars,...)

Path
planning Controller

Action
(steer,

throttle,
brake,...)

(a) Traditional autonomous driving architecture

Input
(image,
speed...)

Action
(steer,

throttle,
brake,...)

Direct optimization

(b) End-to-end autonomous driving architecture

Figure 1: Traditional vs end-to-end learning

drivers. It can reduce time and complexity not only during

training, but also in later application, as no extra features

are computed. Besides, no human bias is added.

Many of the end-to-end autonomous driving approaches

rely on imitation learning [2, 23, 6, 25], where the system

aims at imitating expert behavior. Although relatively sta-

ble, it requires a large amount of annotated data and suffers

from distributional shift. Indeed the system sees only good

behaviors, learns to imitate them, and will never learn how

to react in problematic situations, which are rare or even

absent from the dataset. Some extend their dataset to add

erroneous trajectories (drone crashes in [10], or extra cam-

era to simulate a come off the road in [2]), but these are

specific cases and it seems impossible to predict all error

cases.

Reinforcement learning on the other hand, makes the

144

agent learn by trial and errors, only sending a reward signal

to indicate good or bad behavior. The agent experiments

by itself and thus learns how to act with less human inter-

vention than imitation learning, and also sees a lot more of

error cases. With the success of Alpha Go in 2016 [29], re-

inforcement learning has experienced huge success in ma-

chine learning research, but only few approaches are using

it for autonomous driving task [22, 30, 14, 16]. Reinforce-

ment learning has indeed several drawbacks such as long

training time, poor data efficiency and instability. However

in several domains, such as Go, reinforcement learning has

proven to outperform supervised learning, and recent work

has established that learning to drive using reinforcement

learning could achieve high performance [30, 16], even if

most of the approaches are still in simulation, for example

using the CARLA driving simulator [9].

Yet very often in reinforcement learning frame-

work, the test environment is the same as the training

environment,[5], which leaves aside the problem of overfit-

ting and generalization. However in the case of autonomous

driving, generalization is essential. We need autonomous

cars to handle unseen situations, from unseen towns to dif-

ferent driving conditions.

In this paper, we explore the relative interest of various

ways to increase the generalization performance of a driving

agent having learned with reinforcement learning. In a first

part, we show that semantic segmentation contains almost

all the necessary information, except for traffic signs and

traffic light state, and that using semantic segmentation as

input (instead of RGB image) is enough to achieve perfect

score in generalization on the CARLA CoRL benchmark

[6]. This shows that the main generalization problem is to

learn to correctly segment the target environment, and not

to adapt the decision part going from the semantic segmen-

tation to the controls.

In a second part, we therefore explore how to use se-

mantic information in the training environment. We will

then measure the improvement of generalization in an un-

familiar environment of an agent using input images with

reinforcement learning. To explore properly the different

options, we chose to simplify the problem, and deal with

urban driving without obstacles in a first step.

2. Related Work

2.1. Autonomous Driving with Reinforcement
Learning and Generalization

Reinforcement learning (RL) consists in learning by trial

and error. For obvious safety reasons, most of the work

in autonomous driving with reinforcement learning is con-

ducted in simulation. The two most widely used simulators

in the literature are TORCS [31] and CARLA [9], and the

latter is increasingly used since TORCS is a racing game

and CARLA does offer various urban environments.

When introducing CARLA driving simulator [9], the au-

thors compared the performance on goal-directed driving

task between supervised and reinforcement learning. Their

baseline in reinforcement learning, trained with A3C, was

much worse than imitation learning. A more recent ap-

proach called CIRL combines both supervised learning and

reinforcement learning by pretraining the network with su-

pervised learning [16]. Although they use classical training

approaches such as data augmentation, the unseen town’s

performance remains a lot lower than the ones in training

conditions.

Even if the number of work on autonomous driving

keeps growing, only a handful concentrates on autonomous

driving with reinforcement learning. Kendall et al. in [14]

are among the first to tackle this problem. Their agent learns

to perform lane following in both simulation and real world.

A few data augmentation is performed in the simulation ex-

periment (road texture, lane marking, and road topology),

but test roads are used as validation to stop training. In Vir-

tual to Real Reinforcement Learning for Autonomous Driv-

ing[20], Pan et al. propose a framework to transfer a vir-

tually trained agent to real world. They use a translation

network to convert virtual frame to realistic ones, and the

driving agent is trained on the realistic images, which allows

a smooth transfer to real world driving. Both [14] and [20]

agents drive in real world, but they only deal with the lane

following task, whereas generalization seems to be more

critical in navigation task. The performance achieved by

CIRL [16] when it comes to going straight ahead is identi-

cal in training and test town, but a huge drop in performance

can be observed in the navigation task (-40%).

Recent work [30] showed significant improvement on

autonomous driving with reinforcement learning, training

a network with affordances (like semantic segmentation, or

traffic light state), and then use these affordances to train a

reinforcement learning agent. An ablation study is made to

compare the performance on unseen town when using one

or several training town(s). Unsurprisingly, performance

increase with the addition of data, but the highest perfor-

mance achieved in an unseen town reaches 58.4% of suc-

cessful driving episodes. Therefore, even with the high per-

formance of their agent in the CARLA challenge, we argue

that generalization is still an open problem for autonomous

driving with reinforcement learning. Moreover, fixing the

backbone network comes down to separately training dif-

ferent sub-system (one for perception, one for driving), and

gets a little bit closer to a modular pipeline approach, where

each subsystem needs to be optimized separately.

Another approach with reinforcement learning reaches

high score on the CoRL benchmark : Learning to drive us-

ing waypoints [1]. It generalizes well on unseen town, but

uses bird-view segmented image as well as waypoints as

145

input for the RL algorithms, which is unrealizable in real

world. Perfect score is also achieved by Learning by cheat-

ing [4], which is an imitation learning approach. A privi-

leged agent is trained with expert trajectories, and has ac-

cess to the layout of the environment (birdview, other ac-

tors positions, etc...). This privileged agent then trains an

agent that only has access to raw image input and no other

groundtruth information. This framework has shown effec-

tive generalization in the unseen town, but privileged in-

formation such as birdview or other actors states are again

not available in real environment. All these algorithms cer-

tainly achieve a high generalization score, however we want

to focus on approaches that exploit only visual input for re-

inforcement learning and are therefore easily transferable to

other fields.

In a broader context, generalization is a key element in

computer vision. However, as mentioned in Quantifying

Generalization in Reinforcement Learning [5], it is com-

mon to use the same environment for training and test in re-

inforcement learning benchmarks. Both [15] and [5] study

the problem of generalization and the way to apply the

classical methods (data augmentation, L2 regularization,

dropout...) to reinforcement learning training. They both

conclude that classical techniques used in supervised learn-

ing can be successfully applied in reinforcement learning

with some notable success of data augmentation and batch-

normalization.

2.2. Use of Additional Information to Improve
Training and Generalization

Learning to drive is a very difficult task. An autonomous

vehicle must operate in a dynamic environment, and take

into account many external elements to make a decision.

Therefore using extra information is a commonly used tech-

nique. A very standard practice is to pretrain the neural net-

work, either with the same task (autonomous driving in [9]),

or with different task (collision probability in [26] for drone

navigation).

To simplify the driving problem, learning affordances,

i.e. learning intermediate representation of the input, is be-

coming more and more used in both supervised and rein-

forcement learning for autonomous driving [32, 30, 27, 17].

Indeed, using affordances is extracting useful information,

and thus reduces the state space size. Nevertheless it re-

quires human intervention, for both choosing the affor-

dances that are necessary, and training the supervised af-

fordances.

To improve generalization, data augmentation is a

widely used practice in deep learning. However even if it is

unavoidable in supervised learning, it is less the case in rein-

forcement learning. When comparing the baselines in both

imitation and reinforcement learning in autonomous driv-

ing, CARLA authors [6] do apply data augmentation and

regularization techniques (dropout) during imitation learn-

ing training, and not during reinforcement learning.

Last but not least, an auxiliary loss (or multi-task train-

ing) was first used in [13] with deep reinforcement learning,

and it showed improved performance. However, no study

on generalization capabilities is made. The idea is to train

several task at the same time, the main one is trained with

reinforcement learning, and the auxiliary tasks are trained

with supervised or unsupervised learning. Auxiliary loss is

also used with reinforcement learning in Learning to nav-

igate in complex environment [18] to predict depth to help

an agent navigate in a maze.

After showing that the availability of the semantic seg-

mentation information in the target environment essentially

solves the generalization problem in autonomous driving,

we propose here to compare these methods to exploit this

information during training only and analyze their impact

on generalization.

3. Methodology

We present here the details of the components used in

our experiments where we trained RL agents with image or

segmentation as input. Seeing the good results of the latter,

we trained a network to predict the segmentation from the

image. This network was used for two different purposes:

first, to train an RL agent with this learned segmentation,

and second, we used the encoder weights as pre-training for

an agent using the image as input. Finally, we experimented

with segmentation as an auxiliary task, which consists in

learning in parallel the segmentation and the driving, and

thus building an intermediate representation that would be

efficient for both. We also detail our data augmentation.

3.1. RL Algorithm and Network

In reinforcement learning, an agent interacts with an en-

vironment. The environment produces a state st at each

timestep t, and when receiving the current state st, the agent

reacts with an action at. The agent acts according to a pol-

icy π(at|st), which represents the probability to take an ac-

tion a when being in state s.

After the agent has taken the action at, the environment

provides a new state st+1 alongside a reward rt, which in-

dicates how good the new state is. The goal of the agent is

to maximize the cumulative rewards, the return, often using

a discount factor γ to avoid exploding sums (eq. 1).

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =

∞
∑

k=0

γkrt+k+1. (1)

For this study, we chose the PPO algorithm [28], as it

showed good results on classical problems with image input

and continuous actions. PPO is an actor-critic reinforce-

ment learning algorithm, where the policy modification is

146

Resnet 34

speed

steering angle

fully

connected

layers

(FC)

concat

fully

connected

layer

(FC)

fully

connected

layers

(FC)

Action at
(acc/brake,

θ)

fully

connected

layers

(FC)

Value vt

other branches

tu
rn

le
ft

Figure 2: Reinforcement learning architecture with input image

constrained in a trust region. In other words, the step size is

forced to stay in a specific range for each policy update to

improve stability and reliability. To stay as close as possi-

ble to human driving, we decided to work with continuous

actions. The state is a combination of the current RGB im-

age of the road and some measurement (current speed and

angle of the wheels). The agent outputs acceleration/brake,

and variation of steering angle. We use a conditional net-

work like [9] to take the driving command in account. This

means that the model consists of branches at the output of

the CNN. Each branch corresponds to a control command

(turn right, follow lane, ...). The branches are composed of

fully connected layers (FC).

The backbone network used is a well-studied

Resnet34 [11] since it has proven to be effective in

the autonomous driving task in [7]. The general archi-

tecture is detailed in Figure 2. For the experiment with

semantic segmentation as input, the network is a much

smaller CNN from [19], which we call NatureCNN, with

3 convolutionnal layers. We use stable baselines [24]

implementations for the reinforcement learning algorithm.

Since we use an on-policy algorithm, no replay buffer is

used, but to accelerate training, several instances of CARLA

simulator run in parallel to collect images. Input images are

small (192 × 64 × 3) to speed up training. Details on the

hyperparameters used are presented in the supplementary

material.

3.2. Reward Function

Our reward function is the weighted sum of several

terms: the difference between current speed and objective

speed, the cross-track error cte (i.e. distance to road center),

and the angle between the car and the road (in degrees). The

objective speed is variable, 35km/h in general, and 15km/h

at crossings. There is also a negative reward when the car

collides with an obstacle, runs off the track, or stops for no

reason.

rt =

{

rspeed + rangle + rcte
rpunish when collision, offroad, bad stop.

(2)

We modified the reward so that it is mostly positive (it

experimentally leads to better results). Details on the re-

ward can be found in supplementary material. The reward

is scaled during training using log scaling [12] :

ragent = sign(r)log(1 + |r|). (3)

Moreover, we use partial episodes bootstrapping from [21].

It consists in modifying the reward for a terminal state if

the termination is due to time limit and it leads to a better

convergence of the value loss. More precisely, the reward is

modified with value of the next state v(s′) (weighted with

the discount factor γ) when episode termination is due to a

timeout :

rterminal state =

r at environmental

termination

r + γv(s′) at timeout.
(4)

3.3. Semantic Segmentation Training

The network used for semantic segmentation of RGB

images is a Linknet [3] since it is based on Resnet34 we

already use for RL. Data for training are collected in train-

ing conditions only, in Town01 with training weathers. 140

000 images are used, divided in train and validation set with

the ration 0.8/0.2. Images are collected with three cameras

to perform viewpoint augmentation. We used one forward-

looking camera, and two with a ±30° angle like in End to

End Learning for Self-Driving Cars [2]. Five categories

are trained : road, roadlines, vehicles, sidewalk and back-

ground. Loss function is categorical cross-entropy, and op-

timizer is Adam. The learning rate is 10−3, and we used a

batch size of 32.

147

Resnet34

Decoder

speed
steering angle FC

concat

FC

FC
Action
at

FC
Value
vt

other
branches

tu
rn

le
ft

Figure 3: Reinforcement learning architecture with auxil-

iary task

3.4. Auxiliary Task

Auxiliary tasks consists in training a different task than

the main one at the same time in order to improve its perfor-

mance. In our case, we train semantic segmentation along

with driving. The general architecture (see Figure 3), as

well as the inputs and outputs of the reinforcement train-

ing are identical to the previous one (see Figure 2). The

Linknet [3] decoder is added to compute the segmentation

of the image. The decoder outputs St ∈ [0, 1]W∗H∗c with c

the number of classes to segment. For a given pixel on the

original image, the output is the probability to belong to the

different classes. The 5 classes are the same as previously :

road, roadlines, vehicle, sidewalk and background. One of

the challenge is to combine both learnings at the same time,

and not having one prevailing on the other. The simplest

loss is a weighted sum of the different losses :

l = λrllrl + λauxlaux. (5)

In equation 5, lrl is PPO loss, laux the semantic cross en-

tropy loss, and λrl and λaux their respective weights. How-

ever, in [14] is described a more efficient loss combination

to perform automatic loss balance in multi-task learning.

We set σrl and σaux two trainable parameters, and the loss

function becomes :

l = e−σrl × lrl + σrl + e−σaux × laux + σaux. (6)

This homoscedastic loss was used for training reinforce-

ment learning with auxiliary task.

3.5. Data Augmentation

Our data augmentation includes random variation in hue

and saturation, brightness and contrast, along with conver-

sion to gray scale, partial erasing of the image, salt and pep-

per noise, and Gaussian blur. This data augmentation is in-

spired from the one used in the original CARLA paper for

Figure 4: Examples of data augmentation

the supervised learning training [9]. We also explore a se-

mantic data augmentation, that consists in randomly chang-

ing the color of one semantic part of the image (Figure 4).

The data augmentation is applied to each image indepen-

dently, so it changes along an episode. The different data

augmentation are combined in a random order, and also in

a random way, the most frequent being the variation of con-

trast, hue and saturation (half of the time), and the least fre-

quent being Gaussian blur and gray-scale (10% of the im-

ages).

4. Experiments and Results

We now present our different experiments. Performance

is measured using the original CoRL benchmark from [6].

We focus on the navigation task only, and measure the per-

centage of successful episode in training conditions (train-

ing town and training weathers) and in new weathers, new

town, and new town and new weathers conditions. Some

examples of training and test conditions are shown on fig-

ure 5.

The first experiments are made with semantic segmen-

tation as input - instead of the RGB image. We compare

the generalization performance using the perfect segmenta-

tion generated by CARLA simulator and the segmentation

we trained with a Linknet [3]. Then we explore the influ-

ence of data augmentation, and notably the data augmen-

tation with semantic information. Finally, we compare the

relative influence of pre-training and auxiliary task on the

generalization ability of our agent. Training are made up to

20 Millions steps, and we report the best performance for

each model.

4.1. Segmentation

Training Training New weather New town New Town

Conditions & weather

Ground truth seg 100% 100% 100% 100%
Learned seg 100% 100% 89% 86%

Table 1: Performances with semantic segmentation as input.

This first experiment shows the importance of the seman-

tic information in generalization. Indeed, training an algo-

148

Figure 5: Examples of training and test environments. Right

: training town and training weathers. Left : test town and

test weathers.

rithm with the semantic image as an input achieves perfect

training and generalization performance (first line in table

1). This approach is not useful in practice as perfect seman-

tic segmentation is usually not available in the target envi-

ronments, but shows that the bottleneck in generalization is

mainly on the image analysis part, and not in the driving

decision that generalizes perfectly.

A natural solution to this problem is to train a semantic

segmentation in the training conditions and rely on its gen-

eralization capacity to the new environment. However, this

approach shows that this is not sufficient to keep the gen-

eralization capacity of the previous approach (second line

in table 1). It is also probably an upper bound on the gen-

eralization performances that could be reached using this

reinforcement learning approach.

4.2. Data Augmentation

Training Training New weather New town New Town

conditions & weather

No da 34% 6% 9% 2%
Classic da 57% 60% 22% 4%
Da w/ seg 67% 60% 34% 28%

Table 2: Baseline results for navigation task with different

data augmentation

We compare in table 2 the results between training with

no data augmentation (no da), and 2 different data augmen-

tations : the first one is classical (classic da), adding noise

in the image (gaussian blur, salt and pepper, etc...), and the

second one (da w/ seg) includes in addition the semantic

component, where a semantic part of the image changes

color randomly. We first notice that learning without data

augmentation is not efficient at all (we are barely higher

than the RL baseline from the original CARLA paper [6]),

even under training conditions. Classic data augmentation

allows to increase the performance, both in training condi-

tions and in the new city, but does not really reduce the gap

between the training city and the new city. If we look closer

at the results of training without data augmentation, we no-

tice that with a few exceptions, only the episodes with the

easiest weather (ClearNoon) were successful. The addition

of noise (classic da) in the input image has therefore made

it possible to better learn the different meteorological con-

ditions, even if they are all seen during the training. The

addition of segmentation in the data augmentation allows

to reduce the generalization gap a bit, even if it is still im-

portant. Highlighting the semantic elements of the image

allows the agent to make the link with the reward function,

and thus to better generalize. However, even if progress is

made compared to the training without data augmentation,

the gap between training town and test town is still huge.

4.3. Pretraining and Auxiliary Task

Training Training New weather New town New Town

conditions & weather

Pretraining 82% 98% 49% 40%
Auxiliary task 90% 92% 78% 68%

Table 3: Pretraining and auxiliary task performance

In table 3, we compare the relative effects of pre-training

and auxiliary task. Concerning the pre-training, we trained

a Linknet to segment the image, and the weights of the

Resnet34 were initialized with it. The network is then

trained for the driving task in the same way as before. We

notice an improvement of the results, both on the training

conditions and on the generalization to the new city. How-

ever, the pre-training does not reduce the large gap that still

exists between the train and the test. It simply improves

performances. The auxiliary task seems more promising,

as it significantly reduces the gap between the training city

and the test city. Moreover, contrary to [8] for example, we

noticed that training auxiliary task simultaneously tends to

stabilize the training.

5. Conclusion and Future Work

We analyzed the influence on performance, and in par-

ticular on the generalization, of different methods based on

semantic segmentation. Indeed, semantic segmentation al-

lows an agent to learn how to drive and to generalize to

roads it has not seen. However, basing oneself solely on

the generalization capacity of segmentation means separat-

ing perception and control, which is not in the spirit of end

to end driving. We have therefore experimented with differ-

ent ways of adding this segmentation information: in data

149

augmentation, through pre-training, and finally with an aux-

iliary task. We have shown that it is only the latter method

that reduces the gap between the training conditions and

the test environments. Pre-training or applying a rigorously

chosen data augmentation allows us to improve the perfor-

mance of our agent in general, but does not solve the prob-

lem of generalization. Learning at the same time the image

segmentation, while sharing a part of the network, has on

the other hand improved generalization.

Training New Weather New Town New Town

Condition & Weather

RL [9] 14% 2% 3% 6%

CIRL [16] 93% 86% 53% 68%

Auxiliary task 90% 92% 78% 68%

Table 4: CoRL Benchmark and comparison with SOTA on

the task navigation

To conclude, table 4 compares our results with the RL

baseline from the original CARLA paper [9], and CIRL

[16]. Our training with auxiliary task has outperformed

the original baseline by far, and is competitive with CIRL,

knowing that CIRL has been trained with both supervision

and reinforcement. Our approach even outperforms CIRL

in terms of generalization to unseen environment, but needs

however longer training, since no supervised learning for

driving is used. In a future work, we plan to improve the

performance of the auxiliary task by studying the effect of

the architecture (How many blocks should be shared be-

tween the auxiliary task and the driving task? Should we

use the Linknet skip connections?) and more complex data

augmentation.

References

[1] Tanmay Agarwal, Hitesh Arora, Tanvir Parhar, Shubhankar

Deshpande, and Jeff Schneider. Learning to Drive using

Waypoints. (NeurIPS), 2019.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,

Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin

Zhang, Jake Zhao, and Karol Zieba. End to End Learning

for Self-Driving Cars. pages 1–9, 2016.

[3] Abhishek Chaurasia and Eugenio Culurciello. LinkNet: Ex-

ploiting encoder representations for efficient semantic seg-

mentation. 2017 IEEE Visual Communications and Image

Processing, VCIP 2017, 2018-Janua:1–4, 2018.

[4] Dian Chen, Zhou Brady, Koltun Vladlen, and Krähenbühl

Hilipp. Learning by Cheating. CoRL, (CoRL):1–10, 2019.

[5] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and

John Schulman. Quantifying generalization in reinforcement

learning. 36th International Conference on Machine Learn-

ing, ICML 2019, 2019-June:2280–2293, 2019.

[6] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen

Koltun, and Alexey Dosovitskiy. End-to-end Driving via

Conditional Imitation Learning. Proceedings ICRA, 2018,

2017.

[7] Felipe Codevilla, Eder Santana, Antonio M. López, and

Adrien Gaidon. Exploring the Limitations of Behavior

Cloning for Autonomous Driving. (Cvc), 2019.

[8] Tim De Bruin, Jens Kober, Karl Tuyls, and Robert Babuska.

Integrating State Representation Learning into Deep Rein-

forcement Learning. IEEE Robotics and Automation Letters,

3(3):1394–1401, 2018.

[9] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Anto-

nio Lopez, and Vladlen Koltun. CARLA: An Open Urban

Driving Simulator. (CoRL):1–16, 2017.

[10] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. Learning

to fly by crashing. IEEE International Conference on Intel-

ligent Robots and Systems, 2017-Septe:3948–3955, 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. Proceedings of

the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2016-Decem:770–778, 2016.

[12] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot,

Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew

Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Aga-

piou, Joel Z. Leibo, and Audrunas Gruslys. Deep Q-learning

from Demonstrations. 2017.

[13] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-

necki, Tom Schaul, Joel Z Leibo, David Silver, and Koray

Kavukcuoglu. Reinforcement Learning with Unsupervised

Auxiliary Tasks. pages 1–14, 2016.

[14] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw

Mazur, Daniele Reda, John-Mark Allen, Vinh-Dieu Lam,

Alex Bewley, and Amar Shah. Learning to Drive in a Day.

2018.

[15] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto,

Pieter Abbeel, and Aravind Srinivas. Reinforcement Learn-

ing with Augmented Data. 2020.

[16] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing.

CIRL: Controllable Imitative Reinforcement Learning for

Vision-based Self-driving. 2018.

[17] Ashish Mehta, Adithya Subramanian, and Anbumani Sub-

ramanian. Learning End-to-end Autonomous Driving using

Guided Auxiliary Supervision. 2018.

[18] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer,

Andrew J. Ballard, Andrea Banino, Misha Denil, Ross

Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Ku-

maran, and Raia Hadsell. Learning to Navigate in Complex

Environments. 2016.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-

drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostro-

vski, Stig Petersen, Charles Beattie, Amir Sadik, Ioan-

nis Antonoglou, Helen King, Dharshan Kumaran, Daan

Wierstra, Shane Legg, and Demis Hassabis. Human-

level control through deep reinforcement learning. Nature,

518(7540):529–33, 2015.

150

[20] Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual

to Real Reinforcement Learning for Autonomous Driving.

2017.

[21] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kor-

mushev. Time Limits in Reinforcement Learning. 2017.

[22] Etienne Perot, Maximilian Jaritz, Marin Toromanoff, and

Raoul De Charette. End-to-End Driving in a Realistic Racing

Game with Deep Reinforcement Learning. IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition Workshops, 2017-July:474–475, 2017.

[23] Dean A. Pomerleau. ALVINN: an autonomous land vehicle

in a neural network. pages 305–313, 1989.

[24] Antonin Raffin and Ashley Hill. Stable baselines.

https://stable-baselines.readthedocs.

io/en/master/.

[25] Nicholas Rhinehart, Rowan McAllister, and Sergey Levine.

Deep Imitative Models for Flexible Inference, Planning, and

Control. pages 1–12, 2018.

[26] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real

Single-Image Flight without a Single Real Image. 2016.

[27] Axel Sauer, Nikolay Savinov, and Andreas Geiger. Condi-

tional Affordance Learning for Driving in Urban Environ-

ments. (CoRL):1–16, 2018.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-

ford, and Oleg Klimov. Proximal Policy Optimization Algo-

rithms. pages 1–12, 2017.

[29] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,

Laurent Sifre, George van den Driessche, Julian Schrit-

twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal

Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine

Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Has-

sabis. Mastering the game of Go with deep neural networks

and tree search. Nature, 529(7587):484–9, 2016.

[30] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde.

End-to-End Model-Free Reinforcement Learning for Urban

Driving using Implicit Affordances. (Il), 2019.

[31] Bernhard Wymann, Eric Espié, Christophe Guionneau, Dim-

itrakakis Christos, Coulom Rémi, and Sumner Andrew.

TORCS: The Open Racing Car Simulator. pages 1–5, 2014.

[32] Jingwei Zhang, Jost Tobias Springenberg, Joschka

Boedecker, and Wolfram Burgard. Deep reinforcement

learning with successor features for navigation across

similar environments. IEEE International Conference on

Intelligent Robots and Systems, 2017-Septe:2371–2378,

2017.

A. Supplementary Material

A.1. Reward Details

Here we present the reward function used in more detail.

It is an additive reward function :

rt =

{

rspeed + rangle + rcte
rpunish when collision, offroad, bad stop.

(7)

The weights for every component were determined ex-

perimentally, and constants are used to make the reward

mostly positive (for instance, when the car has a cross-track

error that is less than one meter, rcte will remain positive).

rspeed = wspeed(sobj−|sobj−st|) = 1.0×(sobj−|sobj−st|),
(8)

with st the current speed in km/h,, sobj the objective speed,

set at 35km/h (15 at intersections)

rangle = wangle(ma − at) = 0.1× (15− at), (9)

with at the current angle of the car with the road in degrees

rcte = wcte(mcte − ctet) = 10× (1− ctet), (10)

with ctet the current cross-track error (ie the distance in me-

ters from the road center) and

rpunish = −100. (11)

A.2. Hyperparameters for Reinforcement Learning
Training

In reinforcement learning, hyperparameters tuning is

crucial. We go through all the hyperparameters that are

used during RL training, using notation from [28] : ǫ is the

clipping parameter, γ is the discount factor, c1 is the value

function loss weight, N is the number of environments, M

the number of minibatch used for backpropagation, and T

the number of collected data per environment :

hyperparameter value

ǫ 0.2

γ 0.99

c1 0.5

N 16

M 16

T 128

The standard deviation (stdev) of action distribution is

also set (i.e. not trainable) in a such way that the log(stdev)

is linearly decreasing over the training. We also set an expo-

nentially decreasing learning rate (from 5×10−4 to 5×10−8

over training)

151

