
HAL Id: hal-03110213
https://hal.science/hal-03110213v1

Preprint submitted on 14 Jan 2021 (v1), last revised 12 Nov 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global implicit function theorems and the online
expectation-maximisation algorithm

Hien Duy Nguyen, Florence Forbes

To cite this version:
Hien Duy Nguyen, Florence Forbes. Global implicit function theorems and the online expectation-
maximisation algorithm. 2021. �hal-03110213v1�

https://hal.science/hal-03110213v1
https://hal.archives-ouvertes.fr


Global implicit function theorems and the online
expectation–maximisation algorithm

Hien Duy Nguyen Florence Forbes

La Trobe University and Inria Grenoble Rhône-Alpes

Abstract
The expectation–maximisation (EM) algorithm is an important tool for statistical computation. Due to the

changing nature of data, online and mini-batch variants of EM and EM-like algorithms have become increasingly
popular. The consistency of the estimator sequences that are produced by these EM variants often rely on
an assumption regarding the continuous differentiability of a parameter update function. In many cases, the
parameter update function is often not in closed form and may only be defined implicitly, which makes the
verification of the continuous differentiability property difficult. We demonstrate how a global implicit function
theorem can be used to verify such properties in the cases of finite mixtures of distributions in the exponential
family and more generally when the component specific distribution admits a data augmentation scheme in the
exponential family. We demonstrate the use of such a theorem in the case of mixtures of beta distributions,
gamma distributions, fully-visible Boltzmann machines and Student distributions. Via numerical simulations,
we provide empirical evidence towards the consistency of the online EM algorithm parameter estimates in such
cases.

1 Introduction
Since their introduction by Dempster et al. (1977), expectation–maximisation (EM) algorithms have become an
important tool for the conduct of maximum likelihood estimation (MLE) for complex statistical models. Compre-
hensive accounts of EM algorithms and their variants can be found in the volumes of McLachlan & Krishnan (2008)
and Lange (2016).

Due to the changing nature of the acquisition and volume of data, online and incremental variants of EM and
EM-like algorithms have become increasingly popular. Examples of such algorithms include those described in
Cappé & Moulines (2009), Maire et al. (2017), Karimi et al. (2019a,b), Fort et al. (2020), Kuhn et al. (2020), and
Nguyen et al. (2020), among others. As an archetype of such algorithms, we shall consider the online EM algorithm
of Cappé & Moulines (2009) as a primary example.

Suppose that we observe a sequence of n independent and identically distributed (IID) replicates of some random
variable Y ∈ Y ⊆ Rd, for d ∈ N (i.e., (Yi)

n
i=1), where Y is the visible component of the pair X> =

(
Y >,Z>

)
,

where Z ∈ H is a hidden (latent) variable, and H ⊆ Rl, for l ∈ N. That is, each Yi (i ∈ [n] = {1, . . . , n}) is the
visible component of a pair X>i =

(
Y >i ,Z

>
i

)
. In the context of online learning, we observe the sequence (Yi)

n
i=1

one observation at a time, in sequential order.
Suppose that Y arises from some data generating process (DGP) that is characterised by a probability density

function (PDF) f (y;θ), that is parameterised by a parameter vector θ ∈ T ⊆ Rp, for p ∈ N. Specifically, the
sequence of data arises from a DGP that is characterized by an unknown parameter vector θ0 ∈ T. Using the
sequence (Yi)

n
i=1, one wishes to sequentially estimate the parameter vector θ0. The method of Cappé & Moulines

(2009) assumes the following restrictions regarding the DGP of Y .

(A1) The complete-data likelihood corresponding to the pair X is of the exponential family form:

f (x;θ) = h (x) exp
{

[s (x)]
>
φ (θ)−ψ (θ)

}
, (1)

where h : Rd+l → [0,∞), ψ : Rp → R, s : Rd+l → Rq, and φ : Rp → Rq, for q ∈ N.

(A2) The function

s̄ (y;θ) = Eθ [s (X) |Y = y] (2)
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is well-defined for all y ∈ Y and θ ∈ T, where Eθ [·|Y = y] is the conditional expectation under the
assumption that X arises from the DGP characterised by θ.

(A3) There is a convex subset S ⊆ Rq, which satisfies the properties:

(i) for all s ∈ S, y ∈ Y, and θ ∈ T,

(1− γ) s+ γs̄ (y;θ) ∈ S,

for any γ ∈ (0, 1), and
(ii) for any s ∈ S, the function

Q (s;θ) = s>φ (θ)− ψ (θ) (3)

has a unique global maximiser on T, which is denote by

θ̄ (s) = arg max
θ∈T

Q (s;θ) . (4)

Let (γi)
n
i=1 be a sequence of learning rates in (0, 1) and let θ(0) ∈ T be an initial estimate of θ0. For each i ∈ [n],

the method of Cappé & Moulines (2009) proceeds by computing

s(i) = γis̄
(
Yi;θ

(i−1)
)

+ (1− γi) s(i−1), (5)

and

θ(i) = θ̄
(
s(i)
)
, (6)

where s(0) = s̄
(
Y1;θ(0)

)
. As an output, the algorithm produces a sequence of estimators of θ0:

(
θ(i)
)n
i=1

.
Suppose that the true DGP of (Yi)

n
i=1 is characterised by the probability distribution F0, where we write EF0

to indicate the expectation according to this DGP. We write

η (s) = EF0

[
s̄
(
Y ; θ̄ (s)

)]
− s,

and define the roots of η as O = {s ∈ S : η (s) = 0}. Further, let

l (θ) = EF0 [log f (Y ;θ)]

and define the sets
UO=

{
l
(
θ̄ (s)

)
: s ∈ O

}
and

MT =

{
θ̂ ∈ T :

∂l

∂θ
(θ̂) = 0

}
.

Denote the distance between the real vector a and the set B by

dist (a,B) = inf
b∈B
‖a− b‖ ,

where ‖·‖ is the Euclidean norm, denote the complement of set B by B{, make the following assumptions:

(A4) The set T is convex and open, and φ and ψ are both twice continuously differentiable with respect to
θ ∈ T.

(A5) The function θ̄ is continuously differentiable, with respect to s ∈ S.

(A6) For some r > 2 and compact subset K ⊂ S,

sup
s∈K

EF0

[∣∣s̄ (Y ; θ̄ (s)
)∣∣r] <∞.

(A7) The sequence (γi)
∞
i=1 satisfies the condition that γi ∈ (0, 1) for each i ∈ N,

∞∑
i=1

γi =∞, and
∞∑
i=1

γ2i <∞.
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(A8) The value s(0) is in S, and, with probability 1,

lim sup
i→∞

∥∥∥s(i)∥∥∥ <∞, and lim inf
i→∞

dist
(
s(i),S{

)
= 0.

(A9) The set UO is nowhere dense.

Under Assumptions (A1)–(A9), Cappé & Moulines (2009) proved that the sequences
(
s(i)
)∞
i=1

and
(
θ(i)
)∞
i=1

com-
puted via the algorithm defined by (5) and (6), permits the conclusion that

lim
i→∞

dist
(
s(i),O

)
= 0, and lim

i→∞
dist

(
θ(i),MT

)
= 0, (7)

with probability 1, when computed using an IID sequence (Yi)
∞
i=1, with DGP characterised by distribution F0 (cf.

Cappé & Moulines, 2009, Thm. 1).
The result can be interpreted as a type of consistency for the estimator θ(n), as n → ∞. Indeed if F0 can be

characterised by the PDF f (y;θ0) in the family of PDFs f (y;θ), where the family is identifiable in the sense that
f (y;θ) = f (y;θ0) for all y ∈ Y, if and only if θ = θ0, then the result guarantees that θ(n) → θ0, as n→∞.

It is evident that Assumptions (A1)–(A9) together provide a strong guarantee of correctness for the online EM
algorithm and thus it is desirable to validate them in any particular application. In this work, we are particularly
interested in the validation of (A5), since it is a key assumption in the algorithm of Cappé & Moulines (2009) and
variants of it are also assumed in order to provided theoretical guarantees for many online and mini-batch EM-like
algorithms, including those that appear in the works that have been cited above.

In typical applications, the validation of (A5) is conducted by demonstrating that Q (θ; s) can be maximised in
closed form, and then showing that the closed form maximiser θ̄ (s) is a continuously differentiable functions and
hence satisfies (A5). This can be seen, for example, in the Poisson mixture model and normal mixture regression
model examples of Cappé & Moulines (2009) and the exponential mixture model and multivariate normal mixture
model examples of Nguyen et al. (2020).

However, in some important scenarios, no closed form solution for θ̄ (s) exists, such as when Y arises from beta
or gamma mixture distributions, when Y has a Boltzmann law (cf. Sundberg, 2019, Ch. 6), such as when Y arises
from a fully-visible Boltzmann machine (cf. Hyvarinen, 2006, and Bagnall et al., 2020), or when data arise from
variance mixtures of normal distributions. In such cases, by (4), we can define θ̄ (s) as the root of the first-order
condition

Jφ (θ) s− ∂ψ

∂θ
= 0, (8)

where Jφ (θ) = ∂φ/∂θ is the Jacobian of φ, with respect to θ, as a function of θ.
To verify (A5), we are required to show that there exists a continuously differentiable function θ̄ (s) that satisfies

(8), in the sense that

Jφ
(
θ̄ (s)

)
s− ∂ψ

∂θ

(
θ̄ (s)

)
= 0,

for all s ∈ S. Such a result can be established via the use of a global implicit function theorem.
Recently, global implicit function theorems have been used in the theory of indirect inference to establish limit

theorems for implicitly defined estimators (see, e.g., Phillips, 2012, and Frazier et al., 2019). In this work, we
demonstrate how the global implicit function theorem of Arutyunov & Zhukovskiy (2019) can be used to validate
(A5) when applying the online EM algorithm of Cappé & Moulines (2009) to compute the MLE when data arise
from the beta, gamma, and Student distributions, or from a fully-visible Boltzmann machine. Simulation results
are presented to provide empirical evidence towards the exhibition of theoretical guarantee (7). Discussions are
also provided regarding the implementation of online EM algorithms to mean, variance, and mean and variance
mixtures of normal distributions (see, e.g., Lee & McLachlan 2021 for details regarding such distributions).

The remainder of the paper proceeds as follows. In Section 2, we provide a discussion regarding global implicit
function theorems and present the main tool that we will use for the verification of (A5). In Section 3, we apply
the global implicit theorem to verify (A5), in the context of the online EM algorithm for the computation of the
MLE in the beta, gamma, and Student distribution, and the fully-visible Boltzmann machine contexts. Numerical
simulations are presented in Section 4. Conclusions are finally drawn in Section 5. Additional technical results are
provided in the Appendix.
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2 Global implicit function theorems
Implicit function theorems are among the most important analytical results from the perspective of applied math-
ematics; see, for example, the extensive exposition of Krantz & Parks (2003). The following statement from Zhang
& Ge (2006) is a typical (local) implicit function theorem for real-valued functions.

Theorem 1 (Local implicit function theorem). Let g : Rq × Rp → Rp be a function and V ×W ⊂ Rq × Rp be
a neighbourhood of (v0,w0) ∈ Rq × Rp, for p, q ∈ N. Further, let g be continuous on V ×W and continuously
differentiable with respect to w ∈W, for each v ∈ V. If

g (v0,w0) = 0 and det

[
∂g

∂w
(v0,w0)

]
6= 0,

then there exists a neighbourhood V0 ⊂ V of v0 and a unique continuous mapping χ : V0 → Rp, such that
g (v,χ (v)) = 0 and χ (v0) = w0. Moreover, if g is also continuously differentiable, jointly with respect to (v,w) ∈
V×W, then χ is also continuously differentiable.

We note that Theorem 1 is local in the sense that the existence of the continuously differentiable mapping χ
is only guaranteed within an unknown neighbourhood V0 of the root v0. This is insufficient for the validation of
(A5), since (in context) the existence of a continuously differentiable mapping is required to be guaranteed to exist
for all V, regardless of the location of the root v0.

Since the initial works of Sandberg (1981) and Ichiraku (1985), the study of conditions under which global
versions of Theorem 1 can be established has become popular in the mathematics literature. Some state-of-the-art
variants of global implicit function theorems for real-valued functions can be found in the works of Zhang & Ge
(2006), Galewski & Koniorczyk (2016), Cristea (2017), and Arutyunov & Zhukovskiy (2019), among many others.
In this work, we make use of the following version of Arutyunov & Zhukovskiy (2019, Thm. 6), and note that other
circumstances may call for different global implicit function theorems.

Theorem 2 (Global implicit function theorem). Let g : V×Rp → Rr, where V ⊆ Rq and p, q, r ∈ N and make the
following assumptions:

(B1) The mapping g is continuous.

(B2) The mapping g (v, ·) is twice continuously differentiable with respect to w ∈ Rp, for each v ∈ V.

(B3) The mappings ∂g/∂w and ∂2g/∂w2 are continuous, jointly with respect to (v,w) ∈ V× Rp.

(B4) There exists a root (v0,w0) ∈ V× Rp of the mapping g, in the sense that g (v0,w0) = 0.

(B5) For all pairs (v′,w′) ∈ V × Rp, the linear operator defined by the Jacobian evaluated at (v′,w′):
∂g/∂w (v′,w′), is surjective.

Under Assumptions (B1)–(B5), there exists a continuous mapping χ : V → Rp, such that χ (v0) = w0 and
g (v,χ (v)) = 0, for any v ∈ V. Furthermore, if V is an open subset of Rd and the mapping g is twice continuously
differentiable, jointly with respect to (v,w) ∈ V× Rp, then χ can be chosen to be continuously differentiable.

We note that the stronger conclusions of Theorem 2 requires stronger hypotheses on the function g, when
compared to Theorem 1. Namely, it is required that g has continuous second-order derivatives in all arguments
in Theorem 2, whereas only the first derivatives are required in Theorem 1. Assumption (B5) may be abstract in
nature, but can be replaced by the practical condition that

det
[
∂g

∂w
(v′,w′)

]
6= 0, (9)

for all (v′,w′) ∈ V×Rp, since a matrix operator is bijective if and only if it is invertible. We thus observe that the
assumptions of Theorem 2, although strong, are relatively simple to check.
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3 Applications of the global implicit function theorem
We recall the notation from Section 1. Suppose that Y is a random variable that has a DGP characterised by a
K ∈ N component finite mixture model (cf. McLachlan & Peel, 2000), where each mixture component has a PDF
of the form f (y;ϑz), for z ∈ [K], and f (y;ϑz) has exponential family form, as defined in (A1). That is, Y has
PDF

f (y;θ) =

K∑
z=1

πzf (y;ϑz) =

K∑
z=1

πzh (y) exp
{

[s (y)]
>
φ (ϑz)− ψ (ϑz)

}
, (10)

where πz > 0 and
∑K
z=1 πz = 1, and θ contains the concatenation of elements (πz,ϑz), for z ∈ [K].

Remark 1. We note that the component density f (y;ϑz) in (10) can be replaced by a complete-data likelihood
f (x′;ϑz) of exponential family form, where X ′ = (Y ,U)

> is a further latent variable representation via the
augmented random variable U , and where Y is the observed random variable, as previously denoted. This is the
case when Y arises from a mixture of Student distributions. Although the Student distribution is not within the
exponential family, its complete-data likelihood, when considered as a Gaussian scale mixture, can be written as a
product of a scaled Gaussian PDF and a gamma PDF, which can be expressed in an exponential family form. We
illustrate this scenario in Section 3.4.1.

Let Z ∈ [K] be a categorical latent random variable, such that Pr (Z = z) = πz. Then, upon defining X> =(
Y >, Z

)
, we can write the complete-data likelihood in the exponential family form (cf. Nguyen et al., 2020, Prop.

2):

f (x;θ) = h (y) exp


K∑
ζ=1

1{z=ζ}

[
log πζ + [s (y)]

>
φ (ϑζ)− ψ (ϑζ)

]
= hm (x) exp

{
[sm (x)]

>
φm (θ)− ψm (θ)

}
,

where the subscript m stands for ‘mixture’, and where hm (x) = h (y), ψm (θ) = 0,

sm (x) =


1{z=1}

1{z=1}s (y)
...

1{z=K}
1{z=K}s (y)

 , and φm (θ) =


log π1 − ψ (ϑ1)

φ (ϑ1)
...

log πK − ψ (ϑK)
φ (ϑK)

 . (11)

We now proceed to demonstrate how Theorem 2 can be used to validate Assumption (A5) for the application of
the online EM algorithm in various mixture scenarios of interest. Recall that θ contains the pairs (πz,ϑz) (z ∈ [K])
and q ∈ N is the dimension of the component specific sufficient statistics s(y). We introduce the following notation,
for z ∈ [K],

s>z = (s1z, . . . , sqz),

and s>m = (s01, s
>
1 , . . . , s0K , s

>
K),

where sz ∈ S for an appropriate open convex set S, as defined in (A3). Then sm ∈ Sm, where Sm = ((0,∞)× S)
K

is an open and convex product space.
As noted by Cappé & Moulines (2009), the mixture example points out the importance of the role played by

the set S (and thus Sm) in Assumption (A3). In the sequel, we require that s0z is strictly positive, for each z ∈ [K].
These constraints define Sm, which is open and convex if S is. Via (11), the objective function Qm for the mixture
complete-data likelihood, of form (3), can be written as

Qm(sm,θ) = s>mφm(θ) =

K∑
z=1

s0z(log πz − ψ(ϑz)) + s>z φ(ϑz).

Whatever the form of the component PDF, the maximisation with respect to πz yields the mapping

π̄z(sm) =
s0z
K∑
ζ=1

s0ζ

.
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Then for each z ∈ [K],

∂Qm
∂ϑz

(sm,θ) = −s0z
∂ψ

∂ϑz
+ Jφ(ϑz)sz

= s0z

(
Jφ(ϑz)

[
sz
s0z

]
− ∂ψ

∂ϑz

)
= s0z

∂Q

∂ϑz

([
sz
s0z

]
,ϑz

)
,

where Q is the objective function of form (3) corresponding to the component PDFs. Since s0z > 0, for all z ∈ [K],
it follows that the maximisation of Qm can be conducted by solving

∂Q

∂ϑz

([
sz
s0z

]
,ϑz

)
= 0,

with respect to ϑz, for each z. Therefore, it is enough to show that for the component PDFs, there exists a
continuously differentiable root of the equation above, ϑ̄(s), with respect to s, in order to verify (A5) for the
maximiser of the mixture objective Qm. That is, we can set

θ̄m(sm) =


π̄1(sm)
ϑ̄ (s1/s01)

...
π̄K(sm)

ϑ̄ (sK/s0K)

 ,

which is continuously differentiable if ϑ̄ is. In the sequel, we illustrate how Theorem 2 can be applied, with V = S,
to establish the existence of continuous and differentiable functions ϑ̄ in various scenarios.

3.1 The gamma distribution
We firstly suppose that Y ∈ (0,∞) is characterised by the PDF

f (y;θ) = ς (y; k, θ) =
1

Γ (k) θk
yk−1 exp {−y/θ} ,

where θ> = (θ, k) ∈ (0,∞)
2, which has an exponential family form, with h (y) = 1, ψ (θ) = log Γ (k) + k log θ,

s (y) = (log y, y)
>, and φ (θ) = (k − 1,−1/θ)

>. Here, Γ (·) denotes the gamma function. The objective function Q
in (A3) can be written as

Q (s;θ) = s1 (k − 1)− s2
θ
− log Γ (k)− k log θ,

where s> = (s1, s2) ∈ R× (0,∞).
The existence of a unique function θ̄, as defined as per (A3), is guaranteed by the strict concavity property of

the objective Q, with respect to the canonical parameter φ = (θ, k)> (cf. Sundberg, 2019, Prop. 3.10). Using the
first-order condition (8), we can define θ̄ as a solution of the system of equations:

∂Q

∂k
= s1 −Ψ(0) (k)− log θ = 0, (12)

∂Q

∂θ
=
s2
θ2
− k

θ
= 0, (13)

where Ψ(r) (k) = dr+1 log Γ (k) /dkr+1, is the rth-order polygamma function (see, e.g., Olver et al., 2010, Sec. 5.15).
We can solve (13) with respect to θ, to obtain

θ =
s2
k
, (14)

which substitutes into (12) to yield:
s1 −Ψ(0) (k)− log s2 + log k = 0. (15)
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Notice that θ, as defined by (14), is continuously differentiable with respect to k, and thus if k is a continuously
differentiable function of s, then θ is also a continuous differentiable function of s. Hence, we are required to show
that there exists a continuously differentiable root of (15), with respect to k, as a function of s.

We wish to apply Theorem 2 to show that there exists a continuously differentiable solution of (15). Let

g (s, w) = s1 −Ψ(0) (ew)− log s2 + w, (16)

where k = ew. We reparameterise with respect to w, since Theorem 2 requires the parameter to be defined over
the entire domain R. Notice that (B1)–(B3) are easily satisfied by considering existence and continuity of Ψ(r) over
(0,∞), for all r ≥ 0. Assumption (B4) is satisfied by the strict concavity of Q. Next, to assess (B5), we require the
derivative:

∂g

∂w
= 1− ewΨ(1) (ew) = 1− kΨ(1) (k) . (17)

By the main result of Ronning (1986), we have the fact that −kΨ(1) (k) is strictly increasing for all k > 0. Using
an asymptotic expansion, it can be shown that −kΨ(1) (k) → −1, as k → ∞ (see the proof of Batir, 2005, Lem.
1.2). Thus, (17) is positive for all w, implying that (B5) is validated.

Finally, we establish the existence of a continuously differentiable function χ (s), such that g (s, χ (s)) = 0 by
noting that g is twice continuously differentiable jointly in (s, w). We thus validate (A5) in this scenario by setting

θ̄ (s) =

[
s2/ exp {χ (s)}

exp {χ (s)}

]
,

where χ (s) is a continuously differentiable root of (16), as guaranteed by Theorem 2.

3.2 The beta distribution
We now consider a beta distributed random variable Y ∈ (0, 1), characterised by the PDF

f (y;θ) =
Γ (α+ β)

Γ (α) Γ (β)
yα−1 (1− y)

β−1 ,

where θ> = (α, β) ∈ (0,∞)
2, which has an exponential family form with h (y) = y−1 (1− y)

−1, ψ (θ) = log Γ (α) +

log Γ (β)− log Γ (α+ β), s (y) = (log y, log (1− y))
>, and φ (θ) = (α, β)

>. The objective function Q in (A3) can be
written as

Q (s;θ) = s1α+ s2β − log Γ (α)− log Γ (β) + log Γ (α+ β) ,

where s ∈ R2.
As in Section 3.1, the existence of θ̄ is guaranteed by the strict concavity of Q, and can be defined as the solution

of the first-order condition (8):
∂Q

∂α
= s1 −Ψ(0) (α) + Ψ(0) (α+ β) = 0,

∂Q

∂β
= s2 −Ψ(0) (β) + Ψ(0) (α+ β) = 0.

To apply Theorem 2, we write

g (s,w) =

[
g1 (s,w)
g2 (s,w)

]
=

[
s1 −Ψ(0) (ea) + Ψ(0)

(
ea + eb

)
s2 −Ψ(0)

(
eb
)

+ Ψ(0)
(
ea + eb

) ] , (18)

where w> = (a, b) ∈ R2 and (α, β) =
(
ea, eb

)
. As in Section 3.1, (B1)–(B3) are validated by the existence and

continuity of Ψ(r), for all r ≥ 0. Assumption (B4) is verified due the strict convexity of Q. To assess (B5), we
require the Jacobian

∂g

∂w
=

[
∂g1
∂a

∂g1
∂b

∂g2
∂a

∂g2
∂b

]
=

[
−αΨ(1) (α) + αΨ(1) (α+ β) βΨ(1) (α+ β)

αΨ(1) (α+ β) −βΨ(1) (β) + βΨ(1) (α+ β)

]
,
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which has determinant

det
[
∂g

∂w

]
= αβ

{
Ψ(1) (α) Ψ(1) (β)−

[
Ψ(1) (α) + Ψ(1) (β)

]
Ψ(1) (α+ β)

}
. (19)

Here, we know that
Ψ(1) (α) Ψ(1) (β)−

[
Ψ(1) (α) + Ψ(1) (β)

]
Ψ(1) (α+ β) 6= 0, (20)

since Q is strictly concave and the left-hand side of (20) is the determinant of its Hessian, and thus (19) is non-zero
since α, β > 0, thus verifying (B5), using condition (9).

We confirm that there exists a continuously differentiable mapping χ (s), such that g (s,χ (s)) = 0, by noting
that g is twice differentially continuous in (s,w) and thus (A5) is validated, by setting

θ̄ (s) =

[
exp {χ1 (s)}
exp {χ2 (s)}

]
,

where χ (s) = (χ1 (s) , χ2 (s))
> is a continuously differentiable root of (18), as guaranteed by Theorem 2.

3.3 The fully-visible Boltzmann machine

We next consider a multivariate example, where Y > = (Y1, . . . , Yd) ∈ {−1, 1}d, characterised by the Boltzmann
law PDF

f (y;θ) =
exp

(∑d
j=1 ajyj +

∑d
j=1

∑j−1
k=1 bjkyjyk

)
κ (θ)

, (21)

where

κ (θ) =
∑

ζ∈{−1,1}d
exp

 d∑
j=1

ajζj +

d∑
j=1

j−1∑
k=1

bjkζjζk

 ,

θ> = (a1, . . . , ad, b12, b13, . . . , bd−1,d) ∈ Rd(d+1)/2, and ζ> = (ζ1, . . . , ζd), which has an exponential family form with
h (y) = 1, ψ (θ) = log κ (θ), s (y) = (y1, . . . , yd, y1y2, y13, . . . , yd−1,d)

>, and φ (θ) = θ. Models of form (21) are
often referred to as fully-visible Boltzmann machines in the machine learning literature (see, e.g., Bagnall et al.,
2020).

The objective function Q can be written as:

Q (s;θ) =

d(d+1)/2∑
j=1

θjsj − log κ (θ) ,

where s> =
(
s1, . . . , sd(d+1)/2

)
, and is guaranteed to have a maximiser θ̄ since it is strictly concave.

To apply Theorem (2), we simply set

g (s,w) =
∂Q

∂θ
(s,w) . (22)

Using w = θ, and noting that θ ∈ Rd(d+1)/2, we conclude that no change of variables is necessary. Since f is
composed of the exponential function, with elementary compositions, (B1)–(B3) can be validated. Assumption
(B4) is validated, as before via the strict concavity of Q. Similarly, (B5) is also validated since the Jacobian of g is
the Hessian of Q, which has non-zero determinant since Q is strictly concave.

Thus, there exists a continuously differentiable mapping χ (s), such that g (s,χ (s)) = 0, since g is twice
differentially continuous in (s,w). Therefore (A5) is validated by setting

θ̄ (s) = χ (s) ,

where χ (s) is a continuously differentiable root of (22), as guaranteed by Theorem 2.
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3.4 Variance mixtures of normal distributions
Variance, or scale mixtures of normal distributions refer to the family of distributions with PDFs that are generated
by scaling the covariance matrix of a Gaussian PDF by a positive scalar random variable U . A recent review of
such distributions can be found in Lee & McLachlan (2021). Although such distributions are not necessarily in the
exponential family, we show that they can be handled within the online EM setting presented in this paper.

Indeed, if U admits an exponential family form, a variance mixture of normal distribution admits a hierarchical
representation whose joint distribution, after data augmentation, belongs to the exponential family. We present the
general form in this section and illustrate its use by deriving an online EM algorithm for the Student distribution.

Let fu(u;θu) denote the PDF of U , depending on some parameters θu, and admitting an exponential family
representation

fu(u; θu) = hu (u) exp
{

[su (u)]
>
φu (θu)− ψu (θu)

}
.

If Y is a variance mixture of a normal distribution, then with x> = (y>, u) and θ> = (µ>, vec(Σ)>,θ>u ), we can
write f(x;θ) as the product of a scaled Gaussian PDF and fu:

f(x;θ) = ϕ(y;µ,Σ/u) fu(u;θu),

where ϕ(y;µ,Σ/u) is the PDF of a Gaussian distribution with mean µ and covariance matrix Σ/u. Here, vec(·)
denotes the vectorisation operator, which converts matrices to column vectors.

Using the exponential family forms of both PDFs (see Nguyen et al. 2020 for the Gaussian representation), it
follows that

f (x;θ) = h (x) exp
{

[s (x)]
>
φ (θ)− ψ (θ)

}
,

where h (x) = (2π/u)−d/2hu(u), ψ (θ) = log det [Σ] /2 + ψu(θu),

s (x) =


uy

uvec(yy>)
u

su(u)

 and φ (θ) =


Σ−1µ

− 1
2vec(Σ

−1)
− 1

2µ
>Σ−1µ

φu(θu)

 . (23)

Depending on the statistics defining su(u), the representation above can be made more compact; see, for example,
the Student distribution case, below.

Consider the objective function Q(s;θ), as per (A3), with s> = (s>1 , vec(S2)>, s3, s
>
4 ), where s1 and s4 are real

vectors, S2 is a matrix (all of appropriate dimensions) and s3 is a strictly positive scalar. An interesting property
is that whatever the mixing PDF fu, when maximising Q, closed-form expressions are available for µ and Σ,

µ̄(s) =
s1
s3

(24)

Σ̄(s) = S2 −
s1s
>
1

s3
. (25)

The rest of the expression of θ̄u(s) depends on the specific choice of fu, as illustrated in the sequel.

Remark 2. Similarly, others families of distributions can be generated by considering mean mixtures, and mean
and variance mixtures of normal distributions. If the mixing distribution belongs to the exponential family, the
corresponding complete-data likelihood also belongs to the exponential family and can be handled in a similar manner
as above. These exponential family forms are provided in Appendices A.2 and A.3. Examples of such distributions
are listed in Lee & McLachlan (2021) but are not discussed further in this work.

3.4.1 The Student distribution

In contrast to the three previous examples, the case of the Student distribution requires the introduction of an
additional positive scalar latent variable U . The Student distribution is a variance mixture of normal distributions,
where U follows a gamma distribution with parameters, in the previous notation of Section 3.1, k = ν/2 and
θ = 2/ν, where ν is commonly referred to as the degree-of-freedom parameter (dof).
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Remark 3. When the two parameters of the gamma distribution are not linked via the joint parameter ν we
obtain a slightly more general form of the Student distribution, which is often referred to as the Pearson type VII or
generalised Student distribution. Although this later case may appear more general, the Pearson type VII distribution
suffers from an identifiability issue that requires a constraint be placed upon the parameters values, which effectively
makes it equivalent in practice to the usual Student distribution. See Fang et al. (1990, Sec. 3.3) for a detailed
account regarding the Pearson type VII distribution.

Maximum likelihood estimation of a Student distribution is usually performed via an EM algorithm. As noted
in the previous section, the Student distribution does not belong to the exponential family, but the complete-data
likelihood after data augmentation by U does have exponential family form. Indeed f(x;θ) is the product of a scaled
Gaussian and a gamma PDF, which both belong to the exponential family. More specifically, with x> = (y>, u)
and θ> = (µ>, vec(Σ)>, ν):

f(x;θ) = ϕ(y;µ,Σ/u) ς

(
u;
ν

2
,

2

ν

)
.

It follows from the more general case (23), that

f (x;θ) = h (x) exp
{

[s (x)]
>
φ (θ)− ψ (θ)

}
,

where h (x) = (2π/u)−d/2, ψ (θ) = log det [Σ] /2 + log Γ(ν/2)− (ν/2) log(ν/2),

s (x) =


uy

uvec(yy>)
u

log u

 , and φ (θ) =


Σ−1µ

− 1
2vec(Σ

−1)
− 1

2µ
>Σ−1µ− ν

2
ν
2 − 1

 . (26)

The closed-form expressions for µ̄ and Σ̄ are given in (24) and (25), while for the dof parameter, we obtain similar
equations as in Section 3.1, which leads to defining ν̄(s) as the solution, with respect to ν, of

s4 −Ψ(0)
(ν

2

)
− s3 + 1 + log

ν

2
= 0 .

With the necessary restrictions on S (i.e., s3 > 0), the same arguments as in Section 3.1 apply and provide verification
of (A5). A complete derivation of the online EM algorithm is detailed in Appendix A.1 and a numerical illustration
is provided in the next section.

4 Numerical Simulations
We now present empirical evidence towards the exhibition of the consistency conclusion (7) of Cappé & Moulines
(2009, Thm. 1). When applying the online EM algorithm to the first three scenarios described in Section 3, it is
sufficient to illustrate the online EM algorithm results for MLE of single component cases of the respective distri-
butions. When considering finite mixtures of these distributions, since the parameter elements that require implicit
solutions in the three cases that have been considered are each separable with respect to mixture components,
similar experimental observations would hold. The same comment holds for the Student distribution example, but
the estimation of a single such distribution already requires an online EM algorithm, due to the scale mixture form,
which is detailed in Appendix A.1.

The numerical simulations are all conducted in the R programming environment (R Core Team, 2020). In each
of the cases, we follow Nguyen et al. (2020) in using the learning rates (γi)

∞
i=1, defined by γi =

(
1− 10−10

)
× i−6/10,

which satisfies (A7). For each of the four cases, we run the online EM algorithms for n = 100000 iterations (i.e.,
using a sequence of observations (Yi)

n
i=1, where n = 100000). Where required, the mappings θ̄ are numerically

computed using the optim function, which adequately solves the respective optimisation problems, as defined by
(4). Random beta and gamma observations are generated using the rbeta and rgamma functions, respectively,
whereas observations from the fully-visible Boltzmann machine are generated using the rfvbm from the package
BoltzMM (Jones et al., 2019). Random Student observations are generated hierarchically using the rnorm and
rgamma functions.

For the gamma distribution scenario, we generate data using the parameter vector θ>0 = (θ0, k0) = (5, 1), and
initialise the algorithm with θ(0) = (3, 3)

>. For the beta distribution scenario, we generate data using the parameter
vector θ>0 = (α0, β0) = (2, 4), and initialise the algorithm with θ(0) = (10, 10)

>.
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Figure 1: Example of an online EM algorithm sequence of estimator θ(i) =
(
θ(i), k(i)

)>
for gamma distributed data.

The dashed lines indicates the parameter values of the DGP.

To demonstrate the online EM algorithm for the fully-visible Boltzmann machine, we consider the d = 2 case
and generate data using the parameter vector θ>0 = (a01, a02, b012) = (1, 0,−1), and initialise the algorithm with
θ(0) = (2, 2, 2)

>. We restrict our attention to the d = 1 case of the Student distribution, whereupon we generate
data using the vector θ>0 =

(
µ0, σ

2
0 , ν0

)
= (0, 1, 3) (note that in the d = 1 case, Σ is a scalar, which we denote by

σ2 > 0), and we initialise the algorithm with θ(0) = (1, 2, 1)
>.

Example sequences of online EM parameter estimates
(
θ(i)
)n
i=1

for the gamma, beta, fully-visible Boltzmann
machine, and Student simulations are presented in Figures 1–4, respectively. As suggested by Cappé & Moulines
(2009), the parameter vector is not updated for the first 20 iterations. That is, for i ≤ 20, θ(i) = θ(0), and for
i > 20, θ(i) = θ̄

(
s(i)
)
. This is to ensure that the initial elements of the sufficient statistic sequence is stable. For

all examples, we do not plot the first 1000 iterations of the sequences due to the high volatility at the starts.
From the four figures, we notice that the sequences each approach and fluctuate around the respective generative

parameter values θ0. This provides empirical evidence towards the correctness of conclusion (7) of Cappé & Moulines
(2009, Thm. 1), in the cases considered in Section 3. In each of the figures, we also observe the decrease in volatility
as the iterations increase. This may be explained by the asymptotic normality of the sequences (cf. Cappé &
Moulines, 2009, Thm. 2), which is generally true under the assumptions of Cappé & Moulines (2009, Thm. 1).

5 Conclusion
Assumptions regarding the continuous differentiability of mappings are common for the establishment of consistency
results for online and mini-batch EM and EM-like algorithms. As an archetype of such algorithms, we studied the
online EM algorithm of Cappé & Moulines (2009), which requires the verification of Assumption (A5) in order
for consistency to be establish. We demonstrated that (A5) can be verified in the interesting scenarios when data
arises from mixtures of beta distributions, gamma distributions, fully-visible Boltzmann machines and Student
distributions, using a global implicit function theorem. Via numerical simulations, we also provide empirical evidence
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for beta distributed data.
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of the consistency of the online EM algorithm in the aforementioned scenarios.
Furthermore, our technique can be used to verify (A5) for other exponential family distributions of interest, that

do not have closed form estimators, such as the inverse gamma and Wishart distributions, which are widely used
in practice. Other models for which our method is applicable include the wide variety of variance, and mean and
variance mixtures of normal distributions. We leave the exploration of these potential directions to future work.

A Appendix

A.1 Online EM algorithm for the Student distribution
We provide details regarding the updating equations of s(i) and θ(i), as defined in (5) and (6). Let (yi)

n
i=1 be n

realisations of Y , introduced sequentially in the algorithm, starting from y1. At iteration i, for previous iteration
of the parameter values θ(i−1) = (µ(i−1)>, vec

(
Σ(i−1))> , ν(i−1))>, we first need to compute

s̄
(
yi;θ

(i−1)
)

=


u
(i−1)
i yi

u(i−1)vec(yiy>i )
u(i−1)

ũ(i−1)

 ,
where u(i−1)i = Eθ(i−1) [U |Y = yi] and ũ

(i−1)
i = Eθ(i−1) [logU |Y = yi]. Both these quantities have closed-form

expressions (see, e.g., Forbes & Wraith 2014):

u
(i−1)
i =

ν(i−1) + 1

ν(i−1) + (yi − µ(i−1))>Σ(i−1)−1(yi − µ(i−1))
,

ũ
(i−1)
i = Ψ(0)

(
ν(i−1)

2
+

1

2

)
− log

(
ν(i−1)

2
+

1

2
(yi − µ(i−1))>Σ(i−1)−1(yi − µ(i−1))

)
.

It follows that

s
(i)
1 = γi u

(i−1)
i yi + (1− γi) s(i−1)1 ,

S
(i)
2 = γi u

(i−1)
i yiy

>
i + (1− γi) S(i−1)

2 ,

s
(i)
3 = γi u

(i−1)
i + (1− γi) s(i−1)3 ,

s
(i)
4 = γi ũ

(i−1)
i + (1− γi) s(i−1)4 .

Starting from

s
(1)
1 = u

(0)
1 y1,

S
(1)
2 = u

(0)
1 y1y

>
1 ,

s
(1)
3 = u

(0)
1 ,

s
(1)
4 = ũ

(0)
1 ,

it follows, with γ̃j = γj
∏

j<`≤i
(1− γ`), that

s
(i)
1 =

i∑
j=1

γ̃j u
(j−1)
j yj ,

S
(i)
2 =

i∑
j=1

γ̃j u
(j−1)
j yjy

>
j ,

s
(i)
3 =

i∑
j=1

γ̃j u
(j−1)
j ,

s
(i)
4 =

i∑
j=1

γ̃j ũ
(j−1)
j .
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Using the formulas found in Section 3.4.1, we get parameter updates similar to those for the standard EM (see,
e.g., McLachlan & Peel (2000)):

µ(i) =
s
(i)
1

s
(i)
3

=

∑i
j=1 γ̃j u

(j−1)
j yj∑i

j=1 γ̃j u
(j−1)
j

,

Σ(i) =

i∑
j=1

γ̃j u
(j−1)
j yjy

>
j − s

(i)
3 µ(i)µ(i)>,

which are made of typical weighted sums of the observations, where the weights are inversely proportional to the
Mahalanobis distance of the observation to the current center of the distribution. The dof parameter update ν(i) is
then defined as the solution, with respect to ν, of

s
(i)
4 −Ψ(0)

(ν
2

)
− s(i)3 + 1 + log

ν

2
= 0 .

A.2 Mean mixtures of normal distributions
In this section we provide the exponential family form of the complete-data likelihoods for mean mixtures of
normal distributions and the first steps towards the implementation of an online EM algorithm for the MLE of
these distributions. Like the variance mixtures, mean mixtures involve an additional mixing variable U . The full
description of the algorithm requires the specification of the mixing distribution and is not provided here.

If Y follows a mean mixture of normal distributions, then with x> = (y>, u) and θ> = (µ>, vec(Σ)>, δ>,θ>u ),
where δ is an additional real vector parameter, f(x;θ) can be written as the following product of PDFs:

f(x;θ) = ϕ(y;µ+ uδ,Σ) fu(u;θu).

Using the exponential family forms of both distributions, it follows that

f (x;θ) = h (x) exp
{

[s (x)]
>
φ (θ)− ψ (θ)

}
,

where h (x) = (2π)−d/2 hu(u), ψ (θ) = µ>Σ−1µ/2 + log det [Σ] /2 + ψu(θu),

s (x) =


y

vec(yy>)
uy
u2

u
su(u)

 , and φ (θ) =


Σ−1µ

− 1
2vec(Σ

−1)
Σ−1δ

− 1
2δ
>Σ−1δ

−µ>Σ−1δ
φu(θu)

 . (27)

Depending on the statistics defining su(u), the representation above can be made more compact.
Considering the objective function Q(s;θ), as per (A3), with s denoted by s> = (s>1 , vec(S2)>, s>3 , s4, s5, s

>
6 ),

where s1, s3, s6 are vectors, S2 is a matrix (all of appropriate dimensions), and s4, s5 are scalar values. Whatever
the mixing distribution fu, when maximising Q, closed-form expressions are available for µ,Σ and δ:

δ̄ =
s5s1 − s3
s25 − s4

,

µ̄ = s1 − s5δ̄,
Σ̄ = S2 − µ̄µ̄> − s4δ̄δ̄> − 2s5µ̄δ̄

>.

The rest of the expression of θ̄u(s) then depends on fu.
From the expressions above, it is possible to derive an online EM algorithm, depending on the tractability of

the computation of s̄(y;θ). This quantity requires the computation of conditional moments (e.g., E[U |Y = y] and
E[U2|Y = y]), which may not always be straightforward. As an illustration, this computation is closed-form for a
normal mean mixture considered by Abdi et al. (2021), obtained when fu is set to an exponential distribution with
fixed known parameter (e.g., a standard exponential distribution, with unit rate).
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A.3 Mean and variance mixtures of normal distributions
Mean and variance mixtures of normal distributions combine both the mean and variance mixture cases. This
family include in particular a variety of skewed and heavy tailed distributions. Examples and related references are
given by Lee & McLachlan (2021).

For a mean and variance mixture of normal variable Y , with x> = (y>, u) and θ> = (µ>, vec(Σ)>, δ>,θ>u ),
the complete-date likelihood f(x;θ) can be written as the following product of PDFs (note that in the variance
part, u is now appearing as a factor):

f(x;θ) = ϕ(y;µ+ uδ, uΣ) fu(u;θu).

Using expressions (27), replacing Σ by uΣ, it follows that

f (x;θ) = h (x) exp
{

[s (x)]
>
φ (θ)− ψ (θ)

}
,

where h (x) = (u2π)−d/2 hu(u), ψ (θ) = µ>Σ−1δ + log det [Σ] /2 + ψu(θu),

s (x) =


u−1y

u−1vec(yy>)
y
u
u−1

su(u)

 , and φ (θ) =


Σ−1µ

− 1
2vec(Σ

−1)
Σ−1δ

− 1
2δ
>Σ−1δ

− 1
2µ
>Σ−1µ

φu(θu)

 . (28)

Depending on the statistics defining su(u), the representation above can be made more compact.
Similar derivations as in the previous section can then be carried out leading to closed-form expressions for

updating µ,Σ and δ, whatever the mixing distribution fu:

δ̄ =
s1 − s5s3
1− s5s4

,

µ̄ = s3 − s4δ̄,
Σ̄ = S2 − s1µ̄> − s3δ̄>.

The remainder of the expression of θ̄u(s) depends on fu.
In particular, the mean variance mixtures include the case of generalised hyperbolic and normal inverse Gaussian

(NIG) distributions, which correspond to fu being the PDF of a generalised inverse gaussian and inverse gaussian
distributions, respectively. In the NIG case, the required conditional moments to implement an online EM algorithm,
E[U |Y = y] and E[U−1|Y = y], are given in the Appendix of Karlis & Santourian (2009). If fu is assumed to be
an inverse gaussian distribution, with parameters α and β, then the updates ᾱ = (s4s5)−1 and β̄ = s−15 are also
closed-form.
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