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This paper presents an analytical model to study the electrostatic scattering of sub-wavelength radially inhomogeneous spheres whose permittivity can be expressed as a general polynomial function of the radial distance r. This technique is particularly well suited to characterize the electrostatic resonance, also known as surface plasmon resonance, of radially inhomogeneous negative permittivity spheres.

I. INTRODUCTION

S UB-WAVELENGTH particles are known to exhibit scat- tering peculiarities when their relative permittivity reach negative values [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF]. Indeed, strong electrostatic resonance occurs in homogeneous sphere when ε r = -2 [START_REF] Alù | Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers[END_REF], [START_REF] Sihvola | Character of surface plasmons in layered spherical structures[END_REF]. This specific feature has been suggested to design microwave electrically small antennas [START_REF] Stuart | Electrically small antenna elements using negative permittivity resonators[END_REF], optical nanoantennas [START_REF] Kühn | Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna[END_REF], [START_REF] Agio | Optical Antennas[END_REF], or to study atmospheric re-entry blackout problem [START_REF] Lin | Radiation from a spherical antenna covered by a layer of lossy hot plasma. Theory and experiment[END_REF], [START_REF] Gao | A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle[END_REF]. Although many studies on this effect have been performed assuming a homogeneous sphere, it is noteworthy to derive radially inhomogeneous models.

The EM scattering of a radially inhomogeneous dielectric sphere has been widely studied through Mie theory [START_REF] Wyatt | Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects[END_REF]- [START_REF] Shalashov | Simple approach to electromagnetic scattering by small radially inhomogeneous spheres[END_REF], but these approaches usually require advanced numerical techniques with extensive computational analysis. When considering sub-wavelength spheres, it is usually more convenient to focus on the electrostatic scattering problem, thus simplifying the problem to the resolution of the Laplace equation. In this way, piecewise multilayered models have been proposed to analyze sub-wavelength radially inhomogeneous spheres [START_REF] Sihvola | Transmission line analogy for calculating the effective permittivity of mixtures with spherical multilayer scatterers[END_REF]. However, they usually misrepresent the electrostatic resonance and its inherent local field amplifications [START_REF] Shalashov | Simple approach to electromagnetic scattering by small radially inhomogeneous spheres[END_REF]. To that extent, specific models have been developed for continuous media whose permittivity is a linear or single-powered function of the radial distance r [START_REF] Wei | Effective dielectric response of graded spherical composites[END_REF], [START_REF] Dong | First-principles approach to dielectric response of graded spherical particles[END_REF].

In this paper, an analytical model is proposed to study the electrostatic resonance of sub-wavelength radially inhomogeneous spheres whose permittivity is expressed as a general polynomial function of the radial distance r.

II. THEORETICAL MODELING A. Statement of the problem

The general problem is depicted in Fig. 1. It consists in the EM scattering of a sub-wavelength radially inhomogeneous sphere of radius a immersed in a vertically polarized electric field E 0 . Its frequency-dependent relative permittivity is represented by the following lossless Drude model [START_REF] Lieberman | Principles of Plasma Discharges and Materials Processing[END_REF]:

ε r (r, ω)= 1 - ω 2 p (r) ω 2 (1)
where ω is the angular frequency of the incident wave and ω p is the plasma angular frequency that accounts for the radial inhomogeneity of the sphere. It is assumed that ω p (r) can be expressed as a polynomial function of the radial distance r. Thus, the relative permittivity of the sphere is also defined as a polynomial function of r whose general expression at a given angular frequency ω 0 is:

ε r (r, ω 0 ) = ε r,0 + ε r,1 r + ε r,2 r 2 + • • • + ε r,m r m (2)
where all ε r,i are real coefficients. As long as the radius a of the sphere is small compared with the free-space wavelength of the incident wave, i.e., ka 1 where k is the free-space wavenumber, the problem can be reduced to the computation of the scalar potential Φ(r, θ, φ) using the Laplace equation. Note that the influence of a on the electrostatic assumption has been raised in [START_REF] Mei | A study of negative permittivity and permeability for small sphere[END_REF].

The method of separation of variables allows us to quickly find the angular component of Φ. Only the first spherical harmonic is non-zero, which highlights a dipole-like response of the sphere [START_REF] Sihvola | Transmission line analogy for calculating the effective permittivity of mixtures with spherical multilayer scatterers[END_REF]. Finally, the scalar potential in each region is thus expressed as

Φ sphere (r, θ)=R 1 (r) cos θ (3a) Φ out (r, θ)=-E 0 r cos θ + B out r 2 cos θ (3b)
where B out , the dipole coefficient in the outer region, and R 1 (r) are to be determined.

B. Solution for the scalar potential

Inside the sphere, the Laplace equation for the radial component R 1 (r) does not reduce to a single power of r, as it is the case for a homogeneous sphere [START_REF] Dong | First-principles approach to dielectric response of graded spherical particles[END_REF], and the following general equation must be solved:

ε r (r) d dr r 2 dR 1 dr T1 + r 2 dε r (r) dr dR 1 dr T2 -2ε r (r)R 1 T3 = 0 (4) 
Assuming a general normalized power-law solution R 1 (r) = l C l r l , only positive powers of r are non-zero as negative values exhibit a pole at the origin. For the sake of simplicity, (4) can be normalized to the first term in the expansion of ε r so that, with no loss of generality, we can assume that

εr (r) = m q=0 b q
rq where r = r a and b q = ε r,q ε r,0 a q . (5)

Similarly, R 1 is normalized to the first term C 0 in its expansion so that ( 4) is now solved with:

R1 (r) = l 0 Cl rl+s , with Cl = C l C 0 a l+s (6) 
where s is a positive integer that is found by polynomial identification on the lowest power of r (which is rs ) in the development of (4). This leads to the following characteristic equation, as presented in [START_REF] Dong | First-principles approach to dielectric response of graded spherical particles[END_REF]:

s(s + 1) -2 = 0 (7) 
From [START_REF] Lin | Radiation from a spherical antenna covered by a layer of lossy hot plasma. Theory and experiment[END_REF], it is clear that s = 1. Developing (4) according to the powers of r and substituting each power to obtain only sums of rl+1 , the T 1,2,3 terms can be expressed as follows:

T 1 = l 0 m q=0 (l + 1 -q)(l + 2 -q)b q Cl-q rl+1 T 2 = l 0 m q=1 q(l + 1 -q)b q Cl-q rl+1 (8) 
T 3 = l 0 m q=0 2b q Cl-q rl+1
By identification and after brief manipulations, the following recurrence relation can be derived:

Cl + min(l,m) q=1 l 2 + 3l -lq -2q l(l + 3) b q Cl-q = 0 (9) 
Dong et al. first suggested this approach in [START_REF] Dong | First-principles approach to dielectric response of graded spherical particles[END_REF] but restrained the resolution to linear and single-powered radial profile. Though, when considering linear profile, i.e., m = 1, (9) becomes:

Cl + l 2 + 2l -2 l(l + 3) b 1 Cl-1 = 0 (10)
which is consistent with [START_REF] Dong | First-principles approach to dielectric response of graded spherical particles[END_REF]. In the end, using (3) and the boundary conditions at r = a on the scalar potential and the electric displacement field between the sphere and the surrounding medium restore E 0 and yield to:

C 0 = -3E 0 ε r (a) d R1 dr r=1 + 2 R1 (1) (11) 
and:

B out = ε r (a) d R1 dr r=1 -R1 (1) ε r (a) d R1 dr r=1 + 2 R1 (1)
a 3 E 0 (12) 
When all b q>0 are zeros, i.e., for a homogeneous sphere, it can be seen from the recurrence relation ( 9) that all Cl>0 are also zeros and R1 (r) = r. This way, B out simplifies to:

B out = ε r,0 -1 ε r,0 + 2 a 3 E 0 ( 13 
)
which is the classic dipole factor of a homogeneous sphere that highlights the electrostatic resonance for ε r,0 = -2 [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF]. This model can be further extended to study more sophisticated structures involving any radially inhomogeneous sphere embedded inside multiple dielectric layers. In this case, the scalar potential is likely derived applying the same boundary conditions as before at the interfaces between each different medium [START_REF] Sihvola | Transmission line analogy for calculating the effective permittivity of mixtures with spherical multilayer scatterers[END_REF].

C. Discussion on the validity of the proposed model

The main benefit of considering a generic polynomial permittivity profile inside the sphere, as in [START_REF] Alù | Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers[END_REF], lies in its ability to uniformly approximate any continuous function on a closed interval according to the Stone-Weierstrass theorem.

However, as it complicates the resolution of the Laplace equation, the series R1 may not have a finite limit. It is therefore necessary to find a domain of convergence D within which R1 is unambiguous and well-defined. It is here proven that a valid domain of convergence is:

D = {b i } i∈[0,m] | f b = m q=1 |b q | < 1 (14) 
Developing [START_REF] Wyatt | Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects[END_REF] for the first m-1 terms, it can be seen stepby-step that each term is smaller than f b in absolute value, and thus by recurrence:

∀l 1, Cl m q=1 |b q | (15) 
Likewise, considering the following terms (l > m) from ( 9) and using the inequality derived above by recurrence, a new upper bound can be derived:

Cl>m m q=1 |b q | Cl-q m q=1 |b q | ( 16 
)
The same technique can be used for each sequence of m terms. Between each sequence the upper bound is tightened by f b so that:

∀l > 0, Cl m q=1 |b q | l/m +1 (17) 
where • denotes the floor function. Eq. ( 17) proves that { Cl } l>0 are converging to 0. Now grouping each sequence of m terms in the expression of R1 and using [START_REF] Mei | A study of negative permittivity and permeability for small sphere[END_REF], an upper bound can be derived:

R1 m-1 l=0 Cl + 2m-1 l=m Cl + 3m-1 l=2m Cl • • • R1 m + m m q=1 |b q | + m m q=1 |b q | 2 • • • R1 m 1 1 -f b
In the end, R1 is bounded and its terms are converging to 0. Thus, as it takes its values in a Cauchy space, namely the closed interval [0, 1], it converges.

As it will be raised in Section III-A, the theoretical case of a material whose permittivity is locally equal to 0 is singular. Mathematically, if at a certain radial distance r1 in the sphere εr (r 1 ) = 0, then (5) can be written as:

εr (r 1 ) = 1 + m q=1 b q rq 1 = 0 (18) 
which yields:

1 = m q=1 b q rq 1 m q=1 |b q | = f b (19) 
In other words, if the permittivity is locally equal to 0 inside the sphere, the domain of convergence D is no longer respected and the proposed model is not applicable.

III. NUMERICAL RESULTS

A. Computation of the resonant frequency

The following non-trivial profile for ω p is now considered as an example, with a = 10 mm:

ω 2 p (r) ω 2 p (0) = 1 - 1 20 r a - 1 10 
r a 2 -d r a 3 ( 20 
)
where ω p (0) is the plasma angular frequency at the center. The coefficient d is a smaller-than-1 positive integer that will vary to study the reliability of the model and prove its necessity. Solving the Laplace equation with the proposed algorithm, the normalized dipole coefficient |B OU T | from (3) is calculated and represented in Fig. 2 as a function of the electrical size ka of the sphere and ω p (0) for d = 0.5. The dipole coefficient strongly increases locally which reflects a dipole resonance. For example, using Fig. 2 for ω p (0) = 10 10 rad.s -1 , the resonance occurs at ka = 0.155, i.e. f = 740 MHz.

Note that the white area from Fig. 2 corresponds to divergent cases for which the permittivity is locally equal to 0, as seen in Section II-C. Anyhow, as the electrostatic resonance is obtained for purely negative permittivity sphere, the proposed algorithm allows either the computation of its resonant frequency assuming the material function ω p or the opposite way.

B. Influence of the gradient on the resonance

As seen before, when ω p (0) varies, the corresponding resonant electrical size ka changes similarly. Likewise, for a given ω p (0), considering a different plasma angular frequency gradient shifts the resonant ka. Fig. 3 depicts this matter where the resonant parameters ω p (0) and ka have been calculated for several profiles with different values of d, the normalized coefficient of the highest power of r in (20). These resonant sets of parameters have been compared with the classic homogeneous sphere that resonates when ε r = -2. It is clear from Fig. 3 that the larger the gradient is (i.e., larger d), the stronger the shift from the homogeneous case is. This trend confirms the need to derive continuous models that deal with radial inhomogeneity, especially for resonant structures. 

C. Comparison with full-wave simulation

Finally, the previously derived model is compared to numerical simulations held with the commercial full-wave software Ansys HFSS. The structure from Fig. 1 is considered with ka = 0.05 and a = 10 mm, as assumed in III-A. This defines the theoretical resonant frequency f th = 239 MHz. The corresponding ω p (0) that is required to obtain a resonant sphere is then computed from Fig. 3 for each d in (20).

Since inhomogeneous materials cannot be simulated with Ansys HFSS, the sphere must be split into several homogeneous parts. Considering radial inhomogeneity only, the sphere is modeled as N concentric spherical layers of uniform thickness a/N . These spherical layers are excited by a plane wave propagating along y-direction, as depicted in Fig. 4. The dielectric permittivity is supposed to be constant inside each spherical layer. To avoid numerical instabilities, small losses have been added which, assuming a lossy Drude model, leads to the following dispersive relative permittivity and bulk conductivity for each spherical layer in Ansys HFSS:

ε rn (ω) = 1 - ω 2 pn ω 2 + ν 2 , and σ n (ω) = ε 0 ω 2 pn ν ω 2 + ν 2 (21)
where ν = 0.01ω p (0) represents the losses and ω pn the plasma angular frequency inside the n-th spherical layer and is equal to the median value of ω p in this layer, computed with (20).

As the electrostatic resonance of a sphere results in a strong amplification of the electric field E at the poles, the numerical resonant frequency f num is defined as the frequency which maximizes | E| at z = a. These calculations were performed for several values of N and compared to the analytical frequency f an derived with the proposed model. Fig. 5 represents the relative error ∆ f = |1 -f num /f th | in the estimation of f num obtained for different N and d. Small N strongly misrepresent the electrostatic resonance of the radially inhomogeneous sphere because of numerical singularities that skew the computed electric field. Although increasing N prevents these numerical instabilities and provides decent results for small d, it is clear that piecewise multilayered representations are not suitable for large gradients. In our case, when d gets closer to 1, the sphere is strongly inhomogeneous and the numerical convergence is extremely slow. The proposed model overcomes this issue and allows to easily compute the resonant frequency of any sub-wavelength radially inhomogeneous sphere.

IV. CONCLUSION

A generalized approach using polynomial graded relative permittivity profiles has been proposed to solve the Laplace equation inside sub-wavelength radially inhomogeneous negative permittivity spheres. This model provides an accurate estimation of the resonant frequency of such spheres. It has been compared with commercial numerical solver and appears to be well-suited to study their electrostatic resonance. An analytical criterion has also been established to ensure its reliability and convergence.
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 1 Fig. 1. EM scattering of a radially inhomogeneous sphere immersed in a vertically polarized electric field E 0
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 2 Fig. 2. Normalized dipole coefficient |B OU T | (in dB) calculated for different ka and ωp(0) assuming the profile from (20) with d = 0.5. The dipole resonance is depicted by the yellow line.
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 83 Fig. 3. Locus of {ka, ωp(0)} exhibiting the dipole resonance, derived for the profile (20) with different d and for the homogeneous case ωp(r) = ωp(0).
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 4 Fig.[START_REF] Stuart | Electrically small antenna elements using negative permittivity resonators[END_REF]. Simulated sphere of N layers with constant permittivity in Ansys HFSS excited by a plane wave propagating along y-direction. Note that 3 planes of symmetry were used and the sphere comprises at least 20000 tetrahedra (depending on the value of N ).
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 5 Fig. 5. Relative error (in %) in the evaluation of the resonant frequency using Ansys HFSS for different numbers of spherical layers N .
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