IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Modélisation évolutive de la conductivité effective de mélange EVA-ATH

Caractérisation et modélisation de la morphologie et de la conductivité thermique selon l'état de dégradation pour la simulation de la pyrolyse

J. Shi^{1,2}, G. Boyer¹, J-F. Thovert², V. Mourzenko²

¹ Institut de Radioprotection et de Sûreté Nucléaire
 ² Institut Pprime

MEMBRE DE

Introduction

Introduction

Objectifs: Améliorer la prédiction de la pyrolyse des matériaux à résidu poreux

Matériau d'intérêt

- Gaine commerciale à base de polyéthylène et d'acétate de vinyle (EVA) contenant une charge minérale trihydroxyde d'aluminium (ATH, Al(OH)₃)
- > Epaisseur 3 mm, 60% en masse d'ATH
- > Dégradation thermique en deux étapes:

 $\begin{cases} Materiau initial \rightarrow Intermédiaire + Vapeur d'eau \\ Intermédiaire \rightarrow Résidu final + gaz coombustible \end{cases}$

Materiau initial → Intermédiaire + Vapeur d'eau Intermédiaire → Résidu final + gaz coombustible

- I. Caractérisation morphologique par microscopie électronique à balayage (MEB) et imagerie tomographique à rayon X (TOMO)
 - Caractère morphologique: volume, porosité, anisotropie, granulométrie, ...
- **II.** Modèle conceptuel géométrique : modèle d'inclusion multi-échelle
- III. Modélisation de la conductivité effective du mélange EVA-ATH
 - Conductivité du solide apparent
 - Conductivité effective du matériau : couplée avec le modèle géométrique
- IV. Validation de la modélisation

Observation sous microscopie électronique à balayage (MEB)

Etat initial - MEB 100 μm

Etat intermédiaire - MEB $100 \mu m$

Résidu final - MEB $100\mu m$

| Observation sous microscopie électronique à balayage (MEB)

Conclusion sur la caractérisation sous MEB

- Présence de la charge minérale d'Aluminium Tri-Hydraté (ATH)
- Distribution uniforme des grains (faible dispersion -> 12%)
- Pores multi-échelle
- La déshydratation de l'ATH et décomposition du polymère EVA n'affectent pas la morphologie des grains (forme, taille, distribution, ...)

Etat initial - MEB 100µm

Etat intermédiaire - MEB $100 \mu m$

Résidu final - MEB $100\mu m$

Observation sous microscopie électronique à balayage (MEB)

Conversion de la masse: $2 \operatorname{Al}(OH)_3 \rightarrow \operatorname{Al}_2O_3 + 3 \operatorname{H}_2O$ ATH \rightarrow Alumine + Vapeur d'eau

Mesure globale - porosité et fonction de corrélation

> Identification du contour et détermination de la porosité visible

Tomographie pour l'EVA-ATH à l'état intermédiaire(droite) et final(gauche)

Echantillon Initial Intermédiaire Final porosité visible $\phi_{visible}$ 0 0.2570 0.5190 1.2 10⁸ voxel 6 10⁶ voxel Volume V \ (≈115mm³) $(\approx 7 \text{mm}^3)$ Hauteur H 3 mm 4.2 mm 4.2 mm Microporosité ϕ_{μ} 0.029 0 0.213

Identification de l'intumescence

Facteur d'intumescence retrouvé par le changement de la hauteur:

 $\beta = \frac{V_{inter}}{V_{ini}} = \frac{H_{inter}}{H_{ini}} = 1.4$ (forme cylindrique, intumescence axiale)

Hypothèse:

$$V_{EVA}^{ini} = V_{EVA}^{inter}$$
 et $V_{inter} = V_{final}$

Détermination de la microporosité ϕ_{μ} (porosité non-visible à la tomographie)

$$\phi_{\mu}^{inter} = 0.029$$
$$\phi_{\mu}^{final} = 0.213$$

🗕 🔹 💻 solide apparent (partie solide de la tomographie)

Spectre granulométrique 3D

> Mesure de la granulométrie par le rayon de couverture R_c

 R_c : rayon de la plus grande sphère contenue dans l'espace des pores qui peut recouvrir un point

Etat intermédiaire

Etat final

Échantillon	porosité apparente	Seuil R _c	méso porosité	macro porosité
Intermédiaire	0.2570	3.0	0.0715	0.1855
Résidu final	0.5190	3.0	0.1782	0.3408

IRSN

10/22 GDR FEU - JIANWEI SHI - LILLE - 13/02/2020

IRSN

Tailles et formes des pores individuels

- Anisotropie des pores: caractérisée par la fonction de corrélation
- Mésopores isotropes --> seront modélisés par des sphères
- Macropores anisotropes --> seront modélisés par des ellipsoïdes
 - Macropores caractérisés par leurs moments d'inertie : parallèles, biaxiaux oblates

- **Représentation moyenne:**
 - Méso pores sphériques: rayon $R = 30 \mu m$
 - Macro pores : *

acro pores :
• rapport d'aspect moyen
$$\eta = \frac{\sum_{i=1}^{N} V_i \frac{B_i + C_i}{2A_i}}{\sum_{i=1}^{N} V_i}$$

demi-axe représentatif $A = \sqrt[3]{\frac{3\overline{V}}{4\pi n^2}}$, $B = C = \eta A$, avec \overline{V} le volume moyen des pores

- I. Caractérisation morphologique par microscopie électronique à balayage (MEB) et imagerie tomographique à rayon X (TOMO)
 - Caractère morphologique: volume, porosité, anisotropie, granulométrie, ...
- II. Modèle conceptuel géométrique : modèle d'inclusion multi-échelle
- III. Modélisation de la conductivité effective du mélange EVA-ATH
 - Conductivité du solide apparent
 - Conductivité effective du matériau : couplée avec le modèle géométrique
- IV. Validation de la modélisation

II. Modèle géométrique conceptuel : PEM/PSM

- Modèle Booléen: positionnement aléatoire d'objets
- Recouvrement autorisé
- Méso pores sphériques (PSM, Penetrable Sphere Model)
 - mono-disperses
- Macro pores ellipsoïdaux (PEM, Penetrable Ellipsoid Model)
 - ♦ biaxiaux oblats ($\eta A = B = C$), parallèles entre eux
- Paramètres d'entrée :

Echantillon	ϕ_m	Méso pore rayon <i>R</i>	$\phi_{\scriptscriptstyle M}$	Macro pore demi-axe A	Macro pore ŋ
Intermédiaire	0.0715	30 voxel	0.1855	70 voxel	5.5
Final	0.1782	30 voxel	0.3408	47 voxel	2.9

Illustration 3D :

IRSN

- I. Caractérisation morphologique par microscopie électronique à balayage (MEB) et imagerie tomographique à rayon X (TOMO)
 - Caractère morphologique: volume, porosité, anisotropie, granulométrie, ...
- **II.** Modèle conceptuel géométrique : modèle d'inclusion multi-échelle
- III. Modélisation de la conductivité effective du mélange EVA-ATH
 - Conductivité du solide apparent
 - Conductivité effective du matériau : couplée avec le modèle géométrique
- IV. Validation de la modélisation

IV. Modélisation de la conductivité effective du mélange EVA-ATH

Evaluation de la conductivité par homogénéisation successifs

- 1) Evaluer la conductivité des grains (grains d'alumine nano poreuse, taille de l'ordre de 2 μm)
- 2) Evaluer la conductivité du polymère EVA poreux (à cause de la décomposition du polymère, la fraction volumique d'EVA tend vers zéro à la fin de la pyrolyse)
- 3) Evaluer la conductivité du solide apparent (mélange du polymère EVA poreux et des grains)
- 4) Evaluer la conductivité effective du matériau EVA-ATH (à partir de la morphologie observée sur les tomographies)

IV. Modélisation de la conductivité effective du solide apparent

Modélisation de Λ_{SA} en fonction des paramètres d'avancement de la pyrolyse

- > Premier upscaling calcul de la conductivité d'un grain minéral : modèle SSC
- Deuxième upscaling calcul de la conductivité du polymère poreux : phase de déshydratation : modèle DEM phase de décomposition : modèle DEM ou modèle SSC, selon l'état de percolation

Troisième upscaling - calcul de la conductivité effective du solide apparent : phase de déshydratation : modèle DEM

phase de décomposition : modèle DEM ou modèle SSC, selon l'état de percolation

IRSN

IV. Modélisation de la conductivité effective du mélange EVA-ATH

Modélisation de la conductivité à partir du modèle géométrique PEM/PSM

- > Le solide mésoporeux se comporte comme un matériau homogène isotrope
- Conductivité effective anisotrope, directions principales déterminées par les macropores ellipsoïdaux

$$\begin{cases} \Lambda_{iso} = \Lambda_{SA} \psi_{DEM} \left(\frac{\lambda_{gaz}}{\Lambda_{SA}}, \frac{\phi_m}{1 - \phi_M}, \eta = 1 \right) \\ \overline{\Lambda_{eff}} = \Lambda_{iso} \psi_{DEM} \left(\frac{\lambda_{gaz}}{\Lambda_{iso}}, \phi_M, \eta(\phi_M) \right) \end{cases}$$

Nano porosité à l'intérieur des grains: $\phi_n = f_n(\alpha_1, \alpha_2)$ Micro pores non visible à la tomographie: $\phi_\mu = f_\mu(\alpha_1, \alpha_2)$

Conductivité du solide apparent:

 $\lambda_{SA} = f_{SA}(\phi_n, \phi_\mu, \lambda_s, \lambda_g, \eta = 1)$

Méso pores sphériques $\phi_m = f_m(\alpha_1, \alpha_2)$ Macro pores ellipsoïdaux $\phi_M = f_M(\alpha_1, \alpha_2)$

Macro pores rapport d'aspect $\eta = f_{\eta}(\phi_M)$

$$\overline{\Lambda_{eff}} = \Lambda_{SA} \psi_{DEM} \left(\frac{\lambda_{gaz}}{\Lambda_{SA}}, \frac{\phi_m}{1 - \phi_M}, \eta = 1 \right) \psi_{DEM} \left(\frac{\lambda_{gaz}}{\Lambda_{SA} \psi_{DEM}} \left(\frac{\lambda_{gaz}}{\Lambda_{SA}}, \frac{\phi_m}{1 - \phi_M}, \eta = 1 \right), \phi_M, \eta(\phi_M) \right)$$

IV. Modélisation de la conductivité effective du mélange EVA-ATH

Modélisation de Λ_{eff} evolutive

> Description en continue l'évolution de la conductivité effective

et de la connectivité

Plan de la présentation

- I. Caractérisation morphologique par microscopie électronique à balayage (MEB) et imagerie tomographique à rayon X (TOMO)
 - Caractère morphologique: volume, porosité, anisotropie, granulométrie, ...
- **II.** Modèle conceptuel géométrique : modèle d'inclusion multi-échelle
- III. Modélisation de la conductivité effective du mélange EVA-ATH
 - Conductivité du solide apparent
 - Conductivité effective du matériau : couplée avec le modèle géométrique
- IV. Validation de la modélisation

Présentation de Germain Boyer:

'Simulation de la pyrolyse de mélange EVA-ATH et étude de sensibilité aux incertitudes de modélisation'

Conclusions

- Caractérisation morphologique de deux états du matériau au cours de sa dégradation à l'aide d'imagerie MEB et de tomographies
- Développement d'un modèle conceptuel géométrique anisotrope multi-échelles permettant de représenter l'évolution de la structure du matériau au cours de sa dégradation
- > Développement d'un modèle évolutif de la conductivité effective du matériau EVA-ATH valable tout au long de sa dégradation

Perspectives

- > Amélioration de l'acquisition des tomographies (meilleure résolution et 3D -> 4D)
- > Amélioration de la description multi-échelle
- > Vérification/amélioration du scénario d'évolution

Merci !

(mailto: jianwei.shi@outlook.com)

23/22 GDR FEU - JIANWEI SHI - LILLE - 13/02/2020

III. Modélisation de l'évolution de la porosité du mélange EVA-ATH

Modèle évolutif de la porosité et du rapport d'aspect moyen

- > Pendant la déshydratation de l'ATH:
 - Le volume des grains ne change pas → nanoporosité apparaît à l'intérieur des grains
 - Vapeur d'eau pénètre l'EVA (liquide à cette température), sous forme de petites bulles
 - Petites bulles coalescent et en forment de plus grosses
 - <u>Scenario</u>: développement successif de micro, méso puis macroporosité jusqu'à un chemin vers l'extérieur est formé
- Pendant la dégradation du polymère EVA:
 - Pores créés par la dégradation de l'EVA (volume de l'EVA remplacé par les pores)
- Evolution des porosités à multi-échelle:
 - Evolution successive des porosités en fonction des paramètres d'avancement α₁ et α₂:

$$\alpha_1 = rac{m_{ini}}{m_{ini}^0}$$
, $\alpha_2 = rac{m_{inter}}{m_{inter}^0}$

- Evolution du rapport d'aspect η des macropores:
 - Evolution linéaire en fonction de la macro porosité

IV. Modélisation de la conductivité effective du mélange EVA-ATH

Résolution numérique directe (DNS) à partir des images tomographiques

Principe: résolution de

 $\nabla . \left(\lambda \nabla T \right) = 0$

sur la géométrie 3D issue des tomographies ou modèle conceptuel

- Gradient de T imposé successivement selon les directions x, y, z pour déduire le <u>tenseur</u> de conductivité complet.
- > Ampleur des calculs:
 - 2 sous-domaines parallélépipédique fournie par la tomographie
 - 6*2 domaines de la combinaison de morphologie réelle et conceptuelle
 - Différentes conditions aux limites imposées et testées
 - conditions périodique, conditions de Dirichlet, condition au milieu effectif
 - Différents ratios Λ_{SA} / λ_g pour pouvoir faire face à toutes les situations
 - ratio $\frac{\Lambda_{SA}}{\lambda_g}$ inferieur à 20 pour le mélange EVA-ATH, élargi jusqu'à 1000 pour quantifier la réponse du modèle

Dans le plage pratique d'application ($\lambda_s \setminus \lambda_g < 20$), la différence entre Λ_{\min} de DNS et de la modélisation est **0.4%** pour l'état **intermédiaire** et **0.3%** pour l'état **fina**l

V. Validation de la modélisation

Simulation pseudo disque chaud de la mesure de conductivité réalisée par Girardin et al.

V. Validation de la modélisation

Simulation des essais sous cône du mélange EVA-ATH testé par Sonnier et al.

Plus d'information dans la présentation de G. Boyer

IRSN

INITIAL

27/22 GDR FEU - JIANWEI SHI - LILLE - 13/02/2020

IV. Modélisation de la conductivité effective du mélange EVA-ATH

Evaluation de la conductivité par homogénéisation successifs

- 1) Evaluer la conductivité des grains (grains d'alumine nano poreuse, taille de l'ordre de 2 µm)
- 2) Evaluer la conductivité du polymère EVA poreux (à cause de la décomposition du polymère, la fraction volumique d'EVA tend vers zéro à la fin de la pyrolyse)
- 3) Evaluer la conductivité du solide apparent (mélange du polymère EVA poreux et des grains)
- 4) Evaluer la conductivité effective du matériau EVA-ATH (à partir de la morphologie observée sur les tomographies)

V. Modélisation de la conductivité effective du mélange EVA-ATH

Résolution numérique directe (DNS) à partir des images tomographiques

Principe: résolution de

 $\nabla . \left(\lambda \nabla T \right) = 0$

sur la géométrie 3D issue des tomographies ou modèle conceptuel

- Gradient de T imposé successivement selon les directions x, y, z pour déduire le <u>tenseur</u> de conductivité complet.
- > Ampleur des calculs:
 - 2 sous-domaines parallélépipédique fournie par la tomographie
 - 6*2 domaines de la combinaison de morphologie réelle et conceptuelle
 - Différentes conditions aux limites imposées et testées
 - conditions périodique, conditions de Dirichlet, condition au milieu effectif
 - Différents ratios Λ_{SA} / λ_g pour pouvoir faire face à toutes les situations
 - ratio $\frac{\Lambda_{SA}}{\lambda_g}$ inferieur à 20 pour le mélange EVA-ATH, élargi jusqu'à 1000 pour quantifier la réponse du modèle

Direction du gradient

3*2*12*8*3=1728 calculs par DNS