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Abstract

Given a graph G, a proper k-coloring of G is a partition c = (Si)i∈[0,k−1] of V (G) into k stable
sets S0, . . . , Sk−1. Given a weight function w : V (G)→ R+, the weight of a color Si is de�ned
as w(i) = maxv∈Si w(v) and the weight of a coloring c as w(c) =

∑k−1
i=0 w(i). Guan and Zhu

[Inf. Process. Lett., 1997] de�ned the weighted chromatic number of a pair (G,w), denoted by
σ(G,w), as the minimum weight of a proper coloring of G. For a positive integer r, they also
de�ned σ(G,w; r) as the minimum of w(c) among all proper r-colorings c of G.

The complexity of determining σ(G,w) when G is a tree was open for almost 20 years, until
Araújo et al. [SIAM J. Discrete Math., 2014] recently proved that the problem cannot be solved
in time no(logn) on n-vertex trees unless the Exponential Time Hypothesis (ETH) fails.

The objective of this article is to provide hardness results for computing σ(G,w) and σ(G,w; r)
when G is a tree or a forest, relying on complexity assumptions weaker than the ETH. Namely,
we study the problem from the viewpoint of parameterized complexity, and we assume the
weaker hypothesis FPT 6= W[1]. Building on the techniques of Araújo et al., we prove that
when G is a forest, the decision problem of computing σ(G,w) is W[1]-hard parameterized by
the size of a largest connected component of G, and that computing σ(G,w; r) is W[2]-hard
parameterized by r. Our results rule out the existence of FPT algorithms for computing these
invariants on trees or forests for many natural choices of the parameter.
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1 An extended abstract of this article appeared in the Proc. of the IX Latin and American Algo-
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1 Introduction

A (vertex) k-coloring of a graph G = (V,E) is a function c : V (G) → {0, . . . , k − 1}.
Such coloring c is proper if c(u) 6= c(v) for every edge {u, v} ∈ E(G). All the colorings we
consider in this paper are proper, hence we may omit the word �proper�. The chromatic
number χ(G) of G is the minimum integer k such that G admits a k-coloring. Given a
graph G, determining χ(G) is the goal of the classical Vertex Coloring problem. If
c is a k-coloring of G, then Si = {u ∈ V (G) | c(u) = i} is a stable (a.k.a. independent)
set. Consequently, a k-coloring c can be seen as a partition of V (G) into stable sets
S0, . . . , Sk−1. We often see a coloring as a partition in the sequel.

We study a generalization of Vertex Coloring for vertex-weighted graphs that
has been de�ned by Guan and Zhu [11]. Given a graph G and a weight function w :
V (G) → R+, the weight of a color Si is de�ned as w(i) = maxv∈Si

w(v). Then, the
weight of a coloring c is w(c) =

∑k−1
i=0 w(i). In the Weighted Coloring problem,

the goal is to determine the weighted chromatic number of a pair (G,w), denoted by
σ(G,w), which is the minimum weight of a coloring of (G,w). A coloring c of G such
that w(c) = σ(G,w) is an optimal weighted coloring. Guan and Zhu [11] also de�ned,
for a positive integer r, σ(G,w; r) as the minimum of w(c) among all r-colorings c of
G, or as +∞ if no r-coloring exists. Note that σ(G,w) = minr≥1 σ(G,w; r). It is
worth mentioning that the Weighted Coloring problem is also sometimes called
Max-Coloring in the literature; see for instance [14,16].

Guan and Zhu de�ned this problem in order to study practical applications related
to resource allocation, which they describe in detail in [11]. One should observe that
if all the vertex weights are equal to one, then σ(G,w) = χ(G), for every graph G.
Consequently, determining σ(G,w) and σ(G,w; r) are NP-hard problems on general
graphs [13]. In fact, these problems have been shown to be NP-hard even on split
graphs, interval graphs, triangle-free planar graphs with bounded degree, and bipartite
graphs [5,6,10]. On the other hand, the weighted chromatic number of cographs and of
some subclasses of bipartite graphs can be found in polynomial time [5, 6].

In this work we focus on the case where G is a forest, which has attracted con-
siderable attention in the literature. Concerning graphs of bounded treewidth 2 , Guan
and Zhu [11] showed, by using standard dynamic programming techniques, that on an
n-vertex graph of treewidth t the parameter σ(G,w; r) can be computed in time

nO(r) · rO(t). (1)

Guan and Zhu [11] left as an open problem whether Weighted Coloring is poly-
nomial on trees and, more generally, on graphs of bounded treewidth. Esco�er et
al. [10] found a polynomial-time approximation scheme to solve Weighted Coloring

on bounded treewidth graphs, and Kavitha and Mestre [14] showed that the problem is
in P on the class of trees where vertices with degree at least three induce a stable set.

But the question of Guan and Zhu has been answered only recently, when Araújo et

2 We will not de�ne treewidth here, just recall that forests are the graphs with treewidth 1; see [4, 7].



al. [1] showed that, unless the Exponential Time Hypothesis (ETH) 3 fails, there is no
algorithm computing the weighted chromatic number of n-vertex trees in time no(logn).

As discussed in [1], it is worth mentioning that the above lower bound is tight.
Indeed, Guan and Zhu [11] showed that the maximum number of colors used by an
optimal weighted coloring of any weighted graph (G,w) is at most its so-called �rst-�t
chromatic number (see [11] for the de�nition), denoted by χFF(G). On the other hand,
Linhares and Reed [15] proved that for any n-vertex graph G of treewidth at most t, it
holds that χFF(G) = O(t log n). These observations together with Equation (1) imply
that the Weighted Coloring problem can be solved on forests in time nO(logn).

Therefore, Weighted Coloring on forests is unlikely to be in P, as this would
contradict the ETH, and also unlikely to be NP-hard, as in that case all problems in NP
could be solved in subexponential time, contradicting again the ETH.

Our results. The objective of this article is to provide hardness results for computing
σ(G,w) and σ(G,w; r) when G is a forest, relying on complexity assumptions weaker
than the ETH. Namely, we study the problem from the viewpoint of parameterized
complexity (the basic de�nitions can be found in Section 2), and we assume the weaker
hypothesis FPT 6= W[1]. Indeed, it is well-known [4] that the ETH implies that FPT 6=
W[1], which in turn implies that P 6= NP.

Our �rst result is that when (G,w) is a weighted forest, the decision problem of
computing σ(G,w) is W[1]-hard parameterized by the size of a largest connected com-
ponent of G. This is proved by a parameterized reduction from Independent Set that
builds on the techniques introduced by Araújo et al. [1]. This result essentially rules
out the existence of FPT algorithms for Weighted Coloring on forests for many
natural choices of the parameter: cliquewidth, maximum degree, maximum diameter of
a connected component, number of colors in an optimal weighted coloring, etc. Indeed,
all these parameters are bounded by the size of a largest connected component of G (for
the number of colors, this can be proved by using that they are bounded by χFF(G) [11],
which is easily seen to be bounded by the size of a largest connected component).

We then move our attention to the parameter σ(G,w; r) and we prove, by a pa-
rameterized reduction from Dominating Set similar to the �rst one, that computing
σ(G,w; r) on forests is W[2]-hard parameterized by r. Interestingly, if we assume the
ETH, our reduction together with the results of Chen et al. [3] stating that Dominating
Set parameterized by the size of the solution cannot be solved in time f(k) ·no(k) unless
the ETH fails, imply that, on graphs of bounded treewidth, the running time given
by Equation (1) is asymptotically optimal, that is, there is no algorithm computing
σ(G,w; r) on n-vertex graphs of bounded treewidth in time no(r).

We would like to mention that, although our reductions use several key ideas intro-
duced by Araújo et al. [1], our results are incomparable to those of [1].

As further research, it would be interesting to identify �reasonable� parameters yield-
ing FPT algorithms forWeighted Coloring on forests. Probably, it might make sense
to consider combined parameters that take into account, on top of the aforementioned

3 The ETH states that 3-SAT cannot be solved in subexponential time; see [12] for more details.



invariants, the number of distinct weights in the input weighted forest.

Organization of the article. In Section 2 we provide some basic preliminaries about
forests, weighted colorings, and parameterized complexity. In Section 3 we introduce
some common gadgets that will be used in both reductions. In Section 4 and Section 5
we present the W[1]-hardness and W[2]-hardness reductions, respectively.

2 Preliminaries

Forests and weighted colorings. We use standard graph-theoretic notation, and
we consider simple undirected graphs without loops or multiple edges; see [7] for any
unde�ned terminology. Given two integers i and j with i ≤ j, we denote by [i, j] the set
of all integers between i and j, including both i and j.

If T is a rooted tree, we denote by r(T ) the root of T . A weighted graph is a pair
(G,w) where G is a graph and w : V (G) → R+ is a weight function. We say that a
weighted graph (G,w) is a weighted forest if G is a forest and a weighted rooted tree
if G is a rooted tree. If (G,w) is a weighted rooted tree, we de�ne the root of (G,w),
denoted by r((G,w)), to be the root of G.

When considering a k-coloring c of a graph G, de�ned in Section 1, for convenience
we will usually index its associated stable sets as c = (Si)i∈[0,k−1]. We say that a vertex
v ∈ V (G) is colored Si, for some i ∈ [0, k − 1], if v ∈ Si.

Parameterized complexity. We refer the reader to [4, 9] for basic background on
parameterized complexity, and we recall here only some basic de�nitions. A parame-
terized problem is a language L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, k
is called the parameter. A parameterized problem is �xed-parameter tractable (FPT) if
there exists an algorithm A, a computable function f , and a constant c such that given
an instance I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in
time bounded by f(k) · |I|c.

Within parameterized problems, the class W[1] may be seen as the parameterized
equivalent to the class NP of classical optimization problems. Without entering into
details (see [4, 9] for the formal de�nitions), a parameterized problem being W[1]-hard
can be seen as a strong evidence that this problem is not FPT. The canonical example
of W[1]-hard problem is Independent Set parameterized by the size of the solution 4 .

The class W[2] of parameterized problems is a class that contains W[1], and such
that the problems that are W[2]-hard are even more unlikely to be FPT than those that
are W[1]-hard (again, see [4, 9] for the formal de�nitions). The canonical example of
W[2]-hard problem is Dominating Set parameterized by the size of the solution 5 .

For i ∈ [1, 2], to transfer W[i]-hardness from one problem to another, one uses a

4 Given a graph G and a parameter k, the problem is to decide whether there exists S ⊆ V (G) such
that |S| ≥ k and E(G[S]) = ∅.
5 Given a graph G and a parameter k, the problem is to decide whether there exists S ⊆ V (G) such
that |S| ≤ k and N [S] = V (G).



parameterized reduction, which given an input I = (x, k) of the source problem, computes
in time f(k)·|I|c, for some computable function f and a constant c, an equivalent instance
I ′ = (x′, k′) of the target problem, such that k′ is bounded by a function depending only
on k.

Hence, an equivalent de�nition of W[1]-hard (resp. W[2]-hard) problem is any prob-
lem that admits a parameterized reduction from Independent Set (resp. Dominat-
ing Set) parameterized by the size of the solution.

3 Some useful gadgets

In this section we introduce some gadgets that will be used in the reductions presented
in the following sections. As mentioned in the introduction, the �rst reduction is from
Independent Set, and the second one is from Dominating Set. Most of these
gadgets are inspired by [1].

Let us �rst �x (G, k), an instance of either Independent Set or Dominating
Set. We denote by (G′, w) the instance of Weighted Coloring we are going to
construct. We de�ne n = |V (G)| and we �x a bijection β : V (G) → [0, n− 1]. This
bijection will allow us to de�ne our gadgets depending on integers j ∈ [0, n− 1] that
correspond, via β, to the vertices of G. We de�ne M = k(n− 1)ε+

∑
i∈[0,4k+3]

1
2i
, where

ε is any �xed real number satisfying 0 < ε < 1
nk24k+3 , which implies that M < 2. We

de�ne, for each i ∈ [0, 4k + 3] and for each j ∈ [0, n], wji = 1
2i

+ jε. We also de�ne, for
each ` ∈ [0, 3], W` = w0

4k+` = 1
24k+` . Note that, in our construction, we will only use the

weights {wji | j ∈ [0, n] , i ∈ [0, 4k − 1]} ∪ {W` | ` ∈ [0, 3]}.
Following [1], we �rst de�ne in De�nition 3.1 a particular family of binomial trees

Bi, i ∈ [0, 4n+ 3], depicted in Figure 1. They will be crucially used in the construction
of (G′, w). Their role is to force the color of most of the nodes in any coloring c of G′

with w(c) ≤M . Note that the notion of binomial trees has also been used, for instance,
in [2, 5].

De�nition 3.1 For each i ∈ [0, 4k + 3], we de�ne recursively the weighted rooted tree
Bi, called binomial tree, as follows:

• if i = 0, then B0 has a unique node of weight w0
0,

• otherwise, Bi has a root r of weight w0
i and, for each p ∈ [0, i− 1], we introduce a

copy of Bp and we connect its root to r.

Lemma 3.2 (Araújo et al. [1]) Let i ∈ [0, 4k + 3] and let (T,w) be a weighted forest
having Bi as a subtree. If there exists a coloring c of (T,w) with w(c) ≤ M , then, for
any ` ∈ [0, i]:

• all vertices of Bi with weight in w0
` receive the same color S` of c and

• there exists a unique color class S` in c of weight in {wj` | j ∈ [0, n]}.

In our reductions, similarly to Araújo et al. [1], we will extensively use binomial trees
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· · ·
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Figure 1. The binomial trees B0 and Bi, i > 0. The vertices labeled Bj are the root of a copy
of Bj , for each j ∈ [0, i− 1]. The weights are also depicted on top of the vertices.

in order to forbid a subset of the colors at a particular vertex. Namely, assume that c
is a coloring of a weighted forest (T,w), with w(c) ≤M , such that Bi is a subtree of T
attached to a vertex v. Then, by Lemma 3.2, there exists a unique color class Si in c of
weight in {wji | j ∈ [0, n]} and, since the root of Bi and v are adjacent, it follows that
vertex v cannot be colored Si in c.

As we shall see later, the choice of the weight of a color class S` corresponds to
choosing (or not) a vertex to be part of the solution of the corresponding problem. Each
time that a vertex is chosen, we will have to �pay� an additional weight of (n − 1)ε in
the total weight of the coloring. The selected value of M forces that we will be able to
choose k vertices.

In every graph we are going to build in the following, we assume that B4k+3 is a
subtree of our graph. If this is not the case, we introduce a new connected component
that contains only B4k+3. This permits to identify a color by its weight. Indeed, in
any coloring c = (Si)i∈[0,`], where ` ≥ 4k + 3, of weight at most M , we have that

for each i ∈ [0, 4k + 3], Si is the only color such that w(Si) ∈ {wji | j ∈ [0, n]}. We
de�ne R` = S4k+`, for each ` ∈ [0, 3]. As, in our construction, we use only the weights
{wji | j ∈ [0, n] , i ∈ [0, 4k − 1]} ∪ {W` | ` ∈ [0, 3]}, we have that w(R`) = W`, for each
` ∈ [0, 3].

We also de�ne the auxiliary tree Aji for each i ∈ [0, 4k − 1] and each j ∈ [0, n], as
de�ned in [1]. This auxiliary tree is depicted in Figure 2.

De�nition 3.3 For each i ∈ [0, 4k − 1] and each j ∈ [0, n], we de�ne the weighted
rooted tree Aji , called auxiliary tree, as follows.

• We �rst introduce two vertices u and v such that u is the root of Aji , v is connected
to u, w(u) = W0, and w(v) = wji .

• for each ` ∈ [0, i− 2], we introduce a copy of B` and we connect the root of this copy
to v.

• for each ` ∈ [0, 4k − 1] \ {i − 1}, we introduce a copy of B` and we connect the root
of this copy to u.

The vertex v is called the subroot of Aji . Note that A
j
i consists of 24k nodes.



u{Si−1, R0} W0

v{Si−1, Si} wj
i

Figure 2. The auxiliary tree Aji , i ∈ [0, 4k − 1] and j ∈ [0, n]. The binomial trees are not
depicted. Next to each vertex, its weight and the set of colors this vertex can receive (see
Lemma 3.4) are depicted.

Lemma 3.4 (Araújo et al. [1]) Let i ∈ [0, 4k − 1], let j ∈ [0, n], and let (T,w) be
any weighted forest having B4k+3 and Aji as subtrees. Let u and v be the root and the
subroot of Aji , respectively. For any coloring c of (T,w) with weight w(c) ≤M , it holds
that:

• either v is colored Si−1 and u must be colored with the color R0,

• or v is colored Si (therefore, w(Si) ≥ wji ) and u is colored either with Si−1 or with
the color R0.

We also need the Ri-AND gadget, i ∈ [0, 1], depicted in Figure 3, and which is
strongly inspired by a similar gadget presented in [1] (called clause tree) corresponding
to the logical `OR'.

De�nition 3.5 Let i ∈ [0, 1]. Given two vertices I1, I2, we de�ne the Ri-AND gadget
between the input vertices I1 and I2 as follows:

• We add four new vertices v1, v2, v3, and O and the edges {v1, I1}, {v2, I2}, {v1, v2},
{v2, v3}, and {v3, O}.

• For each j ∈ [1, 3] and each ` ∈ [0, 4k − 1], we introduce a copy of B` and we connect
its root to vj.

• For each ` ∈ [0, 4k − 1], we introduce a copy of B` and we connect its root to O.

• For each j ∈ [1, 2] we introduce a copy of B4k+1−i and we connect its root to vj.

• We introduce a copy of B4k+i and a copy of B4k+2 and we connect their roots to v3.

• We set w(v1) = W2, w(v2) = W3, w(v3) = W3, and w(O) = W1.

The vertex O is called the output vertex of the Ri-AND gadget. Note that in this gadget,
the binomial trees and the weight assignments are used to forbid an appropriately chosen
set of colors at a particular vertex. This results in the set of allowed colors depicted in
Figure 3.

We naturally extend the de�nition of the Ri-AND gadget to ` input vertices with
` ≥ 2 by introducing `−1 Ri-AND gadgets in a sequential way as follows: given ` input
vertices I1, . . . , I`, let O1 = I1 and, for i ∈ [2, `], we let Oi be the output vertex of an
Ri-AND gadget having Oi−1 and Ii as input vertices. We de�ne the output vertex of
the whole gadget to be O`.



I1{Ri} ∪ S

I2{Ri} ∪ S′
{Ri, R2, R3}

v2

{Ri, R2}

v1

{R1−i, R3}

v3

O {R0, R1}

Figure 3. The Ri-AND gadget, for some i ∈ [0, 1], where I1 and I2 are the input vertices and
O is the output vertex, and where S and S ′ are subsets of {S` | ` ∈ [0, 4k − 1]} ∪ {R0, R1}.
For each vertex, the associated set is the set of colors that the vertex can receive. Again, the
binomial trees are not depicted.

Lemma 3.6 Let i ∈ [0, 1], let I1 and I2 be the two input vertices of an Ri-AND gadget,
and let O be its output vertex. If I1 and I2 are colored Ri, then O must be colored Ri.
Moreover, if either I1 or I2 is not colored Ri, then O can be colored either R0 or R1.

Proof: First, assume that I1 and I2 are colored Ri. This sequentially implies that v1
must be colored R2, v2 must be colored R3, v3 must be colored R1−i, and O must be
colored Ri. Secondly, assume that I1 is not colored Ri. This sequentially implies that
v1 can be colored Ri, v2 can be colored R2, v3 can be colored R3, and therefore O can
be colored either R0 or R1. Finally, assume that I2 is not colored Ri. This sequentially
implies that v2 can be colored Ri, v3 can be colored R3, and so O can be colored either
R0 or R1. �

Finally, we de�ne, for each i ∈ [0, k − 1] and j ∈ [0, n− 1], the vertex tree T ji ,
depicted in Figure 4, which is also inspired by a similar construction given in [1], called
variable tree. The main di�erence with respect to [1] is that, in our case, the color given
to the root of a vertex tree codi�es a binary value corresponding to picking or not a
vertex in the solution, whereas the gadget of [1] codi�es an integer corresponding to the
assignment of a group of variables in the integral version of 3-SAT that they consider.

De�nition 3.7 For each i ∈ [0, k − 1] and for each j ∈ [0, n− 1], we de�ne the vertex
tree T ji to be the weighted rooted tree, representing the vertex β−1(j), de�ned as follows.

• We introduce one copy of Aj+1
4i+1 and An−j4i+3 and an R0-AND gadget whose inputs are

the two roots of Aj+1
4i+1 and An−j4i+3. We call u the output of the R0-AND gadget and

we set u to be the root of T ji .

• We introduce one copy of Aj4i+1, A
j+1
4i+1, A

n−j
4i+3, and A

n−j−1
4i+3 ,

· we connect r(Aj4i+1) to r(A
n−j
4i+3) and r(A

j+1
4i+1) to r(A

n−j−1
4i+3 ), and

· we connect u to r(Aj4i+1) and to r(An−j−14i+3 ).

The usefulness of a vertex tree T ji associated with a vertex v of the instance of
Independent Set or Dominating Set corresponding to the integer j is the following.
The color of the root u codi�es whether vertex v has been chosen in the solution or not.



u

{R0, R1}

{S4i, R0}

Aj
4i+1

{S4i+2, R0}

An−j
4i+3

{S4i, R0}

Aj+1
4i+1

{S4i+2, R0}

An−1−j
4i+3

R0-AND {S4i, R0}

Aj+1
4i+1

{S4i+2, R0}

An−j
4i+3

Figure 4. The vertex tree T ji , i ∈ [0, k − 1] and j ∈ [0, n− 1]. The vertices labeled Aqp are the
roots of a copy of Aqp. For each vertex, the associated set is the set of colors that the vertex
can receive. The R0-AND circle corresponds to the vertices of the R0-AND gadget without
the inputs and the output. The two input vertices are connected to it with an arrow and the
output is u.

Namely, if u gets color R0 (resp. R1), this means that vertex v is (resp. is not) part of
the solution. The following lemma formalizes this idea and guarantees that the choices
are consistent, in the sense that the choices made in all vertex trees corresponding to
the same vertex are the same. It is also important to note that, as we will see in the
proof of Lemma 3.8, because of the de�nition of the weights wji , each time we choose
to color a root of a vertex tree with R0, we have to �pay� (n − 1)ε in the total weight.
Making k such choices is forced by the properties of the gadgets and the value of M .

Lemma 3.8 Let (T,w) be any weighted forest having B4k+3 as a subtree and containing,
for each (i, j) ∈ [0, k − 1]× [0, n− 1], T ji as a subtree. Let c be a coloring of (T,w) with
w(c) ≤ M . Then, there exist (ji)i∈[0,k−1] ∈ [0, n− 1]k such that each root u of each

subtree T ji , (i, j) ∈ [0, k − 1]× [0, n− 1], satis�es:

• if j = ji for some i ∈ [0, k − 1], then the color of u in c must be R0, and

• otherwise, the color of u in c must be R1.

Proof: By Lemma 3.2 and since we assume that w(c) ≤ M and that B4k+3 occurs in
(T,w) as a subtree, it follows that we can write c = (Si)i∈[0,`] with ` ≥ 4k + 3, so that

for each i ∈ [0, 4k + 3], w(Si) ∈ {wji | j ∈ [0, n]}.
Let i ∈ [0, k − 1]. Given j ∈ [0, n], as T ji or T j−1i is a subgraph of T (in fact, if

j /∈ {0, n}, both are), we know that there exist a copy of Aj4i+1 with root rj4i+1 and a

copy of An−j4i+3 with root rn−j4i+3 such that rj4i+1 and rn−j4i+3 are adjacent. This implies that,
for each j ∈ [0, n],

c(rj4i+1) 6= R0 or (1j)

c(rn−j4i+3) 6= R0. (2j)

Note that, by Lemma 3.4, for each j ∈ [0, n], (1j) implies that w(S4i+1) ≥ wj4i+1 and (2j)

implies that w(S4i+3) ≥ wn−j4i+3. Therefore, one of the following cases necessarily occurs:

• (1n) is satis�ed and so w(S4i+1) ≥ wn4i+1,

• (20) is satis�ed and so w(S4i+3) ≥ wn−04i+3, or



• (10) and (2n) are satis�ed and, since for each j ∈ [0, n] at least one of (1j) and (2j)
holds, the integer j∗ = min{j | 0 ≤ j ≤ n − 1 and property (2j+1) is satis�ed} is
well-de�ned. It follows that both (1j∗) and (2j∗+1) are satis�ed, which implies that

w(S4i+1) ≥ wj
∗

4i+1 and w(S4i+3) ≥ w
n−(j∗+1)
4i+3 .

In the �rst two cases, using that w(S4i+1) ≥ w0
4i+1 and w(S4i+3) ≥ w0

4i+3, we obtain
w(S4i+1) + w(S4i+3) ≥ w0

4i+1 + w0
4i+3 + nε. In the third case, we obtain w(S4i+1) +

w(S4i+3) ≥ (w0
4i+1 + j∗ε) + (w0

4i+3 + (n− (j∗ + 1))ε) = w0
4i+1 + w0

4i+3 + (n− 1)ε.

Thus, it always holds that w(S4i+1) + w(S4i+3) ≥ w0
4i+1 + w0

4i+3 + (n− 1)ε.

Therefore,

w(c) ≥
∑

i∈[0,k−1]

(w(S4i) + w(S4i+1) + w(S4i+2) + w(S4i+3)) +
∑
i∈[0,3]

w(Ri)

≥
∑

i∈[0,k−1]

(w0
4i + w0

4i+1 + w0
4i+2 + w0

4i+3 + (n− 1)ε) +
∑
i∈[0,3]

Wi

= M.

By de�nition of c, we have w(c) = M , for each i ∈ [0, 3], w(Ri) = Wi, and for each
i ∈ [0, k − 1], w(S4i) = w0

4i, w(S4i+2) = w0
4i+2, and w(S4i+1)+w(S4i+3) = w0

4i+1 +w0
4i+3 +

(n− 1)ε. Moreover, for each 4k + 3 < i ≤ `, w(Si) = 0.

Let us �x i∗ ∈ [0, k − 1]. The equation w(S4i∗+1)+w(S4i∗+3) = w0
4i∗+1+w0

4i∗+3+(n−
1)ε implies the existence of j∗ ∈ [0, n− 1] such that w(S4i∗+1) = wj∗4i∗+1 and w(S4i∗+3) =

wn−1−j∗4i∗+3 . Thus, for each j > j∗, the root of any copy of Aj4i∗+1 must be colored R0 and

for each j < j∗, the root of any copy of An−1−j4i∗+3 must be colored R0. This implies that

for each j ∈ [0, n− 1] \ {j∗}, the root of T ji∗ must be colored R1. Moreover, as in T j
∗

i∗

the roots of the copy of Aj
∗+1
4i∗+1 and the copy of An−j

∗

4i∗+3 must be colored R0 (otherwise,

w(S4i∗+1) ≥ wj∗+1
4i∗+1 > wj∗4i∗+1 or w(S4i∗+3) ≥ wn−j∗4i∗+3 > wn−1−j∗4i∗+3 ), the R0-AND gadget

ensures that the root of T j
∗

i∗ is colored R0. �

4 W[1]-hardness reduction

In this section we present a parameterized reduction from Independent Set toWeighted

Coloring on forests.

Theorem 4.1 Given a weighted forest (G,w), the decision problem of computing σ(G,w)
is W[1]-hard when parameterized by the size of a largest connected component of G.

Proof: We reduce from Independent Set parameterized by the size of the solution,
which is well-known to be W[1]-hard [8]. Let (G, k) be an instance of Independent
Set, and let n = |V (G)|. Recall that M = k(n− 1)ε+

∑
i∈[0,4k+3]

1
2i
where ε is any real

number satisfying 0 < ε < 1
nk24k+3 , which implies thatM < 2. Let β : V (G)→ [0, n− 1]

be a bijection. For each edge {v1, v2} ∈ E(G) and each i1, i2 ∈ [0, k − 1], we de�ne the
weighted rooted tree H{v1,v2},i1,i2 as follows.



• We introduce a copy of T
β(v1)
i1

and a copy of T
β(v2)
i2

, and call the roots r1 and r2,
respectively.

• We introduce an R0-AND gadget where the input vertices are r1 and r2 and the
output is a new vertex r.

• We introduce a copy of B4k and we connect its root to r.

• We set r to be the root of H{v1,v2},i1,i2 .

An illustration of H{v1,v2},i1,i2 is shown in Figure 5.

{R0, R1}

{R0, R1}

{R1}

{R0}

r1

r2

T
β(v1)
i1

T
β(v2)
i2

R0-AND

r

B4k

Figure 5. The weighted rooted tree H{v1,v2},i1,i2 de�ned in the proof of Theorem 4.1. For each
vertex, the associated set is the set of colors that the vertex can receive. The R0-AND circle
corresponds to the vertices of the R0-AND gadget without the inputs and the output. The
two input vertices are r1 and r2 and the output is r.

Note that, since a copy of B4k is attached to the root r and the output vertex of an
R0-AND gadget can only be colored R0 or R1, it follows that r has to be colored R1.
We also de�ne, for each vertex v in V (G) and each i1, i2 in [0, k − 1] with i1 6= i2, the
weighted rooted tree Hv,i1,i2 to be the tree H{v1,v2},i1,i2 de�ned above with v1 = v2 = v.

We de�ne (G′, w) as the disjoint union of the weighted tree B4k+3, of each weighted
tree of {He,i1,i2 | e ∈ E(G), i1, i2 ∈ [0, k − 1]}, of each weighted tree of {Hv,i1,i2 | v ∈
V (G), i1, i2 ∈ [0, k − 1] , i1 6= i2}, and of each weighted tree of {T ji | i ∈ [0, k − 1] , j ∈
[0, n− 1]}. Note that the size of each connected component of G′ is bounded by a
function depending only on k. Indeed, the size of any connected component is bounded
by the size of those of type He,i1,i2 , which can be easily checked to be at most 2 · (6 ·
24k + 4) + 4 + 24k = 13 ·24k + 12. Note that the construction of (G′, w) can be performed
in time f(k) · nO(1), as required.

The idea of the construction is that the trees H{v1,v2},i1,i2 de�ned above guarantee
that, for each edge {v1, v2} of G, at most one of v1 and v2 belongs to the independent
set. More formally, as the root r of such tree has to be colored R1, by the R0-AND
gadget at least one of r1 and r2 has to be colored R1, which translates to the fact that
at least one of v1 and v2 does not belong to the independent set (recall the paragraph
after De�nition 3.7). Similarly, by construction, the trees Hv,i1,i2 guarantee that the
same vertex is not picked more than once in the solution.

More formally, we now prove that there exists a solution of Independent Set on
(G, k) if and only if σ(G′, w) ≤M .



Assume �rst that Z is a solution of Independent Set on (G, k). We may assume
that Z is of size exactly k. Let δ : Z → [0, k − 1] be a bijection. For each i ∈ [0, k − 1],
we de�ne vi = δ−1(i). We are going to de�ne a coloring c = (Si)i∈[0,4k+3] of weight at

most M such that for each i ∈ [0, 4k + 3], w(Si) ∈ {wji | j ∈ [0, n]}. By Lemma 3.2, we
can (and we must) color every tree Bi in that way, for each i ∈ [0, 4k + 3]. Then for each
j ≤ β(vi) and each j′ ≥ β(vi), we set the color of the subroot of each Aj4i+1 and each

Am−j
′−1

4i+3 to be to be color S4i+1 and S4i+3, respectively, and their root to be colored S4i

and S4i+2, respectively. For each j > β(vi) and each j′ < β(vi), we set the color of the

roots of each Aj4i+1 and each Am−j
′−1

4i+3 to be R0 and the color of their subroots to be S4i+1

and S4i+3, respectively. This coloring is possible by Lemma 3.4. Note also that for each
i ∈ [0, k − 1], if ji = β(vi), then we have w(S4i) = w0

i , w(S4i+1) = wjii , w(S4i+2) = w0
i ,

and w(S4i+3) = wm−ji−1i . We set the color of the root of each T ji such that j = β(δ−1(i))
to R0, and we set the color of the root of each T ji such that j 6= β(δ−1(i)) to R1. The
colors of the other vertices are forced by the R0-AND gadgets.

As Z is an independent set, for each edge {v1, v2} of G, at least one of the extremities,

say v1, is not in Z. Thus, for each i1, i2 in [0, k − 1], the root of T
β(vi)
i1

is colored R1

and therefore the root of H{v1,v2},i1,i2 can be colored R1, which is the only color available
for this vertex. As in this coloring, for each ` ∈ [0, 3], w(R`) = W`, we obtain that
σ(G′, w) ≤M .

Conversely, assume that there is an integer ` and a coloring c = (Si)i∈[0,`] of G
′

such that w(c) ≤ M . As there is no weight below W3, from Lemma 3.2 it follows that
` = 4k + 3 and for each i ∈ [0, 4k + 3], w(Si) ∈ {wji | j ∈ [0, n]}. By Lemma 3.8, for
each i ∈ [0, k − 1], there exists an index ji such that the root of each T jii is colored R0.
Let us de�ne Z = {β−1(ji) | i ∈ [0, k − 1]}. Given i1 and i2 in [0, k − 1], we claim that

there is no edge in G between β−1(ji1) and β
−1(ji2). Indeed, if the root of T

ji1
i1

and the

root of T
ji2
i2

are colored R0, then the root of H{β−1(ji1 ),β
−1(ji2 )},i1,i2 should also be colored

R0 because of the R0-AND gadget, but this is not possible because of the tree B4k that
is connected to it. A similar argument shows that, because of the trees Hv,i1,i2 , for any
i1, i2 in [0, k − 1] with i1 6= i2, it holds that β

−1(ji1) 6= β−1(ji2), that is, the same vertex
does not occur more than once in Z. This implies that Z is an independent set in G of
size exactly k, concluding the proof. �

5 W[2]-hardness reduction

In this section we present a reduction fromDominating Set toWeighted Coloring

on forests when the number of colors is prescribed. The reduction is similar to the one
presented in Theorem 4.1, but it is somehow simpler and uses the R1-AND gadget
instead of the R0-AND gadget.

Theorem 5.1 Given a weighted forest (G,w) and a positive integer r, the problem of
computing σ(G,w; r) is W[2]-hard when parameterized by r.

Proof: We reduce from Dominating Set parameterized by the size of the solution,



which is well-known to be W[2]-hard (see [4, 9]). Let (G, k) be an instance of Domi-
nating Set, and let n = |V (G)|. Recall again that M = k(n − 1)ε +

∑
i∈[0,4k+3]

1
2i

where ε is any real number satisfying 0 < ε < 1
nk24k+3 , which implies that M < 2. Let

β : V (G)→ [0, n− 1] be a bijection. For each vertex v ∈ V (G), we de�ne the weighted
rooted tree Hv as follows.

• For each i ∈ [0, k − 1] and each j ∈ β(N [v]), we introduce a copy of T ji and call its
root rji .

• We introduce an R1-AND gadget where the input vertices are the vertices of {rji | i ∈
[0, k − 1] , j ∈ β(N [v])}, and let r be the output.

• We introduce a copy of B4k+1 and we connect its root to r.

• We set r to be the root of Hv.

We then de�ne (G′, w) as the disjoint union of the weighted tree B4k+3, of each
weighted tree of {Hv | v ∈ V (G)}, and of each weighted tree of {T ji | i ∈ [0, k − 1] , j ∈
[0, n− 1]}. Finally, we set r = 4k + 4. Note that r depends only on k and that the
construction of (G′, w) can be performed in time f(k) · nO(1), as required.

The idea of this construction is to guarantee that a dominating set in Gmust contain,
for each v ∈ V (G), at least one vertex in N [v]. In the tree Hv, this is captured by
forbidding its root r to be colored R1, which by the R1-AND gadget implies that at
least one of the roots of the trees T ji must be colored R0, meaning that at least one
vertex in N [v] belongs to the solution.

Formally, we now prove that there exists a solution of Dominating Set on (G, k)
if and only if σ(G′, w; r) ≤M .

First assume that Z is a solution of Dominating Set on (G, k). We may assume
that Z is of size exactly k. Let δ : Z → [0, k − 1] be a bijection. For each i ∈ [0, k − 1],
we de�ne vi = δ−1(i). We are going to de�ne a coloring c = (Si)i∈[0,4k+3] of weight at

most M such that for each i ∈ [0, 4k + 3], w(Si) ∈ {wji | j ∈ [0, n]}, in the same way
we did for Theorem 4.1. By Lemma 3.2, we can (and we must) color every tree Bi in
that way, for i ∈ [0, 4k + 3]. Then for each j ≤ β(vi) and each j′ ≥ β(vi), we set the

color of the subroot of each Aj4i+1 and each Am−j
′−1

4i+3 to be to be color S4i+1 and S4i+3,
respectively, and their root to be colored S4i and S4i+2, respectively. For each j > β(vi)

and each j′ < β(vi), we set the color of the roots of each Aj4i+1 and each Am−j
′−1

4i+3 to
be R0 and the color of their subroot to be S4i+1 and S4i+3, respectively. Again, this
coloring is possible by Lemma 3.4. Note also that for each i ∈ [0, k − 1], if ji = β(vi),
then we have w(S4i) = w0

i , w(S4i+1) = wjii , w(S4i+2) = w0
i , and w(S4i+3) = wm−ji−1i . We

set the color of the root of each T ji such that j = β(δ−1(i)) to R0, and we set the color
of the root of each T ji such that j 6= β(δ−1(i)) to R1. The colors of the other vertices
are forced by the R1-AND gadgets.

As Z is a dominating set of G, for each v ∈ V (G), at least one of the vertices rji ,
i ∈ [0, k − 1], j ∈ β(N [v]), of Hv is colored R0. So we can a�ect the color R0 to the
root of Hv, which is, by construction, the only available color for this vertex. As in this
coloring, for each ` ∈ [0, 3], w(R`) = W`, we obtain that σ(G′, w; r) ≤M .



Conversely, assume that there is an integer ` and a coloring c = (Si)i∈[0,`−1] of G
′

certifying that σ(G′, w; `) ≤ M . As there is no weight below W3, from Lemma 3.2 it
follows that ` = 4k + 4 and for each i ∈ [0, 4k + 3], w(Si) ∈ {wji | j ∈ [0, n]}. By
Lemma 3.8, for each i ∈ [0, k − 1], there exists an index ji such that the root of each
T jii is colored R0. Let us de�ne Z = {β−1(ji) | i ∈ [0, k − 1]}, where the same vertex
may have been chosen for di�erent indices in [0, k − 1]. Let v be a vertex of G. As, by
construction, the root of Hv can only receive the color R0 in any coloring of weight at
most M , this implies that at least one vertex rj

∗

i∗ , i
∗ ∈ [0, k − 1], j∗ ∈ β(N [v]), of Hv is

colored R0. This implies, by Lemma 3.8, that β−1(j∗) ∈ Z. Moreover, β−1(j∗) ∈ N [v].
It follows that Z is a dominating set in G of size at most k. �

Note that the proof of Theorem 5.1 shows that, if (G, k) in an instance of Dominat-
ing Set, then the number of colors of the constructed instance satis�es r = 4k + 4 =
O(k). Note also that it is easy to strengthen the lower bound given by Theorem 5.1
to apply to trees instead of forests. Indeed, we can just add a new vertex v, attach it
to every connected component of the forest G′ built in the reduction, and give to v a
weight that does not con�ict with any of the weights of its neighbors. By possibly using
a new color containing only v, it still holds that r = O(k).

The above paragraph together with the fact that, assuming the ETH, Dominating
Set parameterized by the size of the solution cannot be solved in time f(k) · no(k) for
any computable function f [3] imply the following corollary.

Corollary 5.2 Assuming the ETH, there is no algorithm that, given a weighted tree
(G,w) and a positive integer r, computes σ(G,w; r) in time f(r)·no(r) for any computable
function f .

In particular, Corollary 5.2 implies that on forests, and more generally on graphs of
bounded treewidth, the running time stated in Equation (1), which in this case is equal
to nO(r), is asymptotically optimal under the ETH.
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