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Extremiles: A new perspective on asymmetric least squares

Quantiles and expectiles of a distribution are found to be useful descriptors of its tail in the same way as the median and mean are related to its central behavior.

This paper considers a valuable alternative class to expectiles, called extremiles, which parallels the class of quantiles and includes the family of expected minima and expected maxima. The new class is motivated via several angles, which reveals its specific merits and strengths. Extremiles suggest better capability of fitting both location and spread in data points and provide an appropriate theory that better displays the interesting features of long-tailed distributions. We discuss their estimation in the range of the data and beyond the sample maximum. A number of motivating examples are given to illustrate the utility of estimated extremiles in modeling noncentral behavior. There is in particular an interesting connection with coherent measures of risk protection.

Introduction

Given a data set from a random variable Y , quantiles and expectiles are found to be useful descriptors of its extreme tails in the same way as the median and mean are related to its central behavior. Both can be defined with the help of appropriate loss functions. For a fixed τ in p0, 1q, the τ th quantile of Y can be obtained by minimizing asymmetrically weighted mean absolute deviations [START_REF] Koenker | Regression Quantiles[END_REF]:

q τ P argmin θ E t|τ ´1IpY ď θq| ¨|Y ´θ| ´|τ ´1IpY ď 0q| ¨|Y |u , (1) 
with 1Ip¨q being the indicator function. The τ th expectile is obtained in a similar way with absolute deviations replaced by squared deviations [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF]):

e τ " argmin θ E |τ ´1IpY ď θq| ¨|Y ´θ| 2 ´|τ ´1IpY ď 0q| ¨|Y | 2 ( . (2) 
The special case τ " 1 2 leads to the median and the mean of Y in (1) and ( 2), respectively. Although different in their construction, both quantiles and expectiles have similar properties. The reason for this, as proved by [START_REF] Jones | Expectiles and M-quantiles are quantiles[END_REF], is that expectiles are precisely quantiles but for a transformation of the original distribution. [START_REF] Abdous | Relating quantiles and expectiles under weightedsymmetry[END_REF] showed that quantiles and expectiles of the same distribution coincide under the hypothesis of weighted-symmetry.

Despite their strong intuitive appeal, quantiles are not always satisfactory. They can be criticized for being somewhat difficult to compute as the corresponding loss function is not continuously differentiable (though modern efficient linear programming algorithms are available). Most importantly, they are relatively inefficient against long-tailed distributions as they are based on absolute rather than squared loss minimization. Finally, the asymptotic variance of the diverse known quantile estimators involves the so-called sparsity function (value of the density function at those quantiles) whose estimators converge very slowly and depend heavily on the choice of the smoothing parameter (see, e.g., [START_REF] Cheng | Unified estimators of smooth quantile and quantile density functions[END_REF]. The use of expectiles reduces some of these vexing inconveniences.

The key advantage of the expectile e τ over the quantile q τ is its efficiency and computing expedience (using iteratively-reweighted least squares), although it does not have an interpretation as direct as q τ in terms of relative frequency. Its unique interpretation is given by the equation E t|Y ´eτ |1IpY ď e τ qu {E|Y ´eτ | " τ. Also, inference on e τ is not governed by the estimation of the density function and it only requires that the second moment of Y be bounded (see Corollary 4 in [START_REF] Holzmann | Expectile asymptotics[END_REF]. However, the complicated cost function defining expectiles makes their use in statistics of extremes and tail analysis a hard mathematical problem (see [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF]. Perhaps most importantly, the expectile terminology coined for e τ is frustrated by the absence of any closed form expression in terms of tail expectations in the same way that the quantile q τ is explicitly determined by the generalized inverse of the distribution function.

The present paper proposes a new least squares analogue of quantiles, called extremiles, which defines a valuable alternative option to both quantiles and expectiles for general statistical diagnoses. As shown in the following section, the new class is a generalization of the usual central moment EpY q, which summarizes the distribution of Y in the same way as the expected values of extreme order statistics do. Extremiles are by construction more alert/sensitive to the magnitude of extreme values than quantiles and make more efficient use of the available data since they rely on both the distance to observations and their probability, while quantiles only depend on the frequency of observations below or above the predictor and not on their values. Unlike expectiles, extremiles benefit from various equivalent explicit formulations and more intuitive interpretations. They are proportional to specific probability-weighted moments (PWMs) and can be estimated by L-statistics, M-statistics, linearized M-statistics and PWM-estimators. In addition, inference on extremiles is much easier than inference on both expectiles and quantiles, since their various estimators have closed form expressions and are computationally efficient. Also, these estimators steer an advantageous middle course between the excessive robustness of ordinary quantile estimators and severe sensitivity of extreme quantile estimators in the sense that the extremile estimators of order τ tend to be more tail sensitive than the τ th quantile estimators for ordinary levels τ , but become more resistant for extremely high/low levels τ . Finally, extremiles are very closely connected to quantiles from an extreme-value perspective, and provide an appropriate theory that better dis-plays the interesting features of long-tailed population distributions. Although extremiles have been used in [START_REF] Daouia | Estimating frontier cost models using extremiles[END_REF] in the context of estimating a frontier cost function (involving a conditional expectation), the current paper is the first to introduce the notion of extremiles as a new class of least squares analogues of quantiles, and to give a full study of this class, including relationships with expectiles and quantiles, as well as extensive statistical inference within this class.

The presented M-and L-estimates of extremiles, as well as their linearized M-and PWM-estimates, may suffer from instability at very far tails due to data sparseness, especially for heavy-tailed distributions. This motivated us to extend their estimation and the underlying asymptotic theory far enough into the tails, which translates into considering the level τ " τ n Ñ 1 as the sample size n goes to infinity. We show that these high τ n th extremiles enjoy a very interesting connection with the extreme τ n th quantiles and the tail index of the underlying distribution. Our first estimation method is based on this asymptotic connection, so that modern extreme-value estimates of large quantiles and of the tail index can be used for extrapolation beyond the range of the data. Our second method relies directly on asymmetric least squares estimation. Although both approaches work quite well and either might be used in practice, we have a particular preference for the second due to some theoretical findings and simulation evidence.

The extremile and the quantile of Y with the same level τ are actually identical to the mean and the median, respectively, of a common asymmetric distribution K τ pF q, where F stands for the distribution function of Y and K τ is a well-specified power transformation. The use of extremiles appears then naturally in the context of any decision theory where 'optimistic' and 'pessimistic' judgements are contrasted such as, for instance, extreme risk analysis, survival analysis and medical decision making. In this paper, we focus on risk management, where heavy-tailed distributions describe quite well the tail structure of actuarial and financial data [see, e.g., [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF][START_REF] Resnick | Heavy-Tail Phenomena: Probabilistic and Statistical Modeling[END_REF]]. Extremiles bear much better than quantiles the burden of representing an alert risk measure to the magnitude of infrequent catastrophic losses. Although expectiles have recently attracted a lot of interest as measures of risk [see [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF] and the references therein], their absence of comonotonic additivity is a serious problem for a regulatory risk standard [START_REF] Acerbi | Backtesting Expected Shortfall[END_REF]]. Theoretical and numerical results indicate that extremiles are perfectly reasonable alternatives to both quantiles and expectiles. In particular, they are comonotonically additive, coherent spectral risk measures of law-invariant type. Also, they belong to the class of [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF]'s distortion risk measures with concave distortion function that acts to depress the likelihood of the most favorable outcomes and to accentuate the likelihood of the least favorable ones, yielding thus the desired form of pessimistic decision theory [START_REF] Bassett | Pessimistic Portfolio Allocation and Choquet Expected Utility[END_REF]]. To illustrate the discussed ideas, we consider data examples on Trended Hurricane Losses and Medical Insurance Large Claims.

The paper is further organized as follows. Section 2 presents a detailed description of the proposed new class, including its motivation, interpretation and basic properties.

Section 3 deals with estimation of extremiles in the range of the data and beyond the sample maximum. Section 4 provides an interesting connection between extremiles and coherent law-invariant measures of risk in actuarial and financial management. Section 5 concludes. All the necessary mathematical proofs are given in the supplementary file.

The class of extremiles

Definition and motivation

Given τ P p0, 1q, the quantile q τ can uniquely be defined as the generalized inverse q τ " F ´1pτ q :" infty : F pyq ě τ u of the underlying cumulative distribution function F . For ease of presentation, we assume throughout the paper that F is continuous. It is not hard to verify that q τ is identical to the median of a random variable Z τ having cumulative distribution function F Zτ " K τ pF q, where

K τ ptq " $ & % 1 ´p1 ´tq spτ q if 0 ă τ ď 1{2 t rpτ q if 1{2 ď τ ă 1
is a distribution function with support r0, 1s, and rpτ q " sp1 ´τ q " logp1{2q{ logpτ q.

Hence, the τ th quantile can be derived from the alternative minimization problem q τ P argmin θ E tJ τ pF pY qq ¨r|Y ´θ| ´|Y |su , with the special weight-generating function J τ p¨q " K 1 τ p¨q on p0, 1q. This does not seem to have been appreciated in the literature before. The parallel concept to the quantile q τ which we call extremile of order τ of Y is then defined in a similar way by substituting the squared deviations in place of the absolute deviations:

ξ τ " argmin θ E J τ pF pY qq ¨r|Y ´θ| 2 ´|Y | 2 s ( . (3) 
As a matter of fact, while q τ coincides with the median of the transformation Z τ , it is easily seen that, whenever E|Z τ | ă 8,

ξ τ " EpZ τ q. (4) 
We shall see in Proposition 2 that the condition E|Z τ | ă 8 is implied by E|Y | ă 8, and therefore extremiles of any order exist as soon as Y has a finite first moment. Denote by y " infty : F pyq ą 0u and y u " supty : F pyq ă 1u the lower and, respectively, upper endpoint of the support of F . One way of defining the extremile ξ τ , for 0 ď τ ď 1, is as the explicit quantity

ξ τ " $ ' ' ' ' ' ' & ' ' ' ' ' ' % ´ż 0 y ! 1 ´r1 ´F pyqs spτ q
) dy `ż yu 0 r1 ´F pyqs spτ q dy for 0 ď τ ď 1{2 ´ż 0 y rF pyqs rpτ q dy `ż yu 0 ´1 ´rF pyqs rpτ q ¯dy for 1{2 ď τ ď 1.

(5)

This follows from a general property of expectations (see Shorack, 2000, p.117). Clearly, F Zτ reduces to F when τ " 1{2, and ξ 1{2 is just the expectation of Y , while the endpoints y and y u of the support of F coincide respectively with the lower and upper extremiles ξ 0 and ξ 1 , since sp0q " rp1q " 8 in (5). A thorough description of basic properties of ξ τ is given in Section 2.3.

Extremiles can be of considerable importance for modeling extremes of natural phenomena. When τ ě 1{2 with rpτ q " 1, 2, . . . the τ th extremile has a nice interpretation:

it equals the expectation of the maximum of rpτ q independent copies Y 1 , . . . , Y rpτ q of Y , i.e. ξ τ " ErmaxpY 1 , . . . , Y rpτ q qs. Of interest is the case τ Ò 1, or equivalently rpτ q Ñ 8, which leads to access the upper endpoint y u of the support of F . Likewise, if τ ď 1{2 with spτ q " 1, 2, . . . we have ξ τ " ErminpY 1 , . . . , Y spτ q qs, the expectation of the minimum of spτ q i.i.d. observations from Y . Of interest is also the case τ Ó 0, or equivalently spτ q Ñ 8, which leads to access the lower bound y of the support of Y . For a general order τ , we have

E " max `Y 1 , . . . , Y trpτ qu ˘‰ ď ξ τ ď E " max `Y 1 , . . . , Y trpτ qu`1 ˘‰ if 1 2 ď τ ă 1, E " min `Y 1 , . . . , Y tspτ qu`1 ˘‰ ď ξ τ ď E " min `Y 1 , . . . , Y tspτ qu ˘‰ if 0 ă τ ď 1 2 ,
where t¨u denotes the integer part (or floor function) and Y 1 , Y 2 , . . . are i.i.d. observations from Y . The bracketing of ξ τ becomes narrower when τ Ò 1 or τ Ó 0.

Yet, there is still another way of looking at ξ τ for orders τ in p0, 1q. These extremiles are likely to be most useful when the quantile function q can be written in closed form, for then we have

ξ τ " ż 1 0 F ´1 Zτ puqdu " ż 1 0 q t dK τ ptq " ż 1 0 J τ ptqq t dt. (6) 
These expressions are key when it comes to proposing an estimator for an extremile.

They clearly link the τ th extremile of the random variable Y to its quantile function as a weighted average of q, which is the most convenient way of evaluating ξ τ .

Relating extremiles and PWMs

Extremiles are closely related to the concept of probability-weighted moments (PWMs) introduced by [START_REF] Greenwood | Probabilityweighted moments: definition and relation to parameters of several distributions expressable in inverse form[END_REF] and defined by the quantities M p,r,s " E rY p tF pY qu r t1 ´F pY qu s s , where p, r, s are nonnegative real numbers. These moments have been extensively utilized in extreme-value procedures (see, e.g., [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF]de Haan and[START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF]. Generally, a distribution is characterized either by the moments M 1,0,s (s " 0, 1, 2, . . .) or by the moments M 1,r,0 (r " 0, 1, 2, . . .). In our approach, the moments M 1,0,s (with s P R `) are favored for describing the distribution of the population in the left tail (i.e. for τ ď 1{2), but a more convenient definition for ξ τ in the right tail (τ ě 1{2) is formulated by considering the moments M 1,r,0 (with r P R `). Indeed, for 0 ă τ ă 1, we can rewrite (6) as

ξ τ " ż 1 0 J τ ptqq t dt " E rY J τ pF pY qqs , (7) 
or equivalently

ξ τ " $ & % spτ qM 1,0,spτ q´1 for 0 ă τ ď 1{2
rpτ qM 1,rpτ q´1,0 for 1{2 ď τ ă 1.

(8)

Thus, extremiles are proportional to specific PWMs. The weight-generating function J τ p¨q being monotonically increasing for τ ě 1{2 and decreasing for τ ď 1{2, the extremile ξ τ (see equation ( 7)) depends by construction on all feasible values of Y , putting more weight to the high values for τ ě 1{2 and more weight to the low values for τ ď 1{2. Therefore ξ τ is sensible to the magnitude of extreme values for any order τ P p0, 1q. In contrast, the τ th quantile q τ is determined solely by the probability level (relative frequency) τ , and so it may be unaffected by extreme values whatever the shape of the tail distribution, unless τ is very extreme. In addition, when sample quantiles break down at τ Ó 0 or τ Ò 1, the various extremile estimators discussed below in Section 3 remain more resistant to extreme values thanks to their formulation as L-functionals whose weighting function J τ converges to 0 pointwise on p1{2, 1q at a geometrically fast rate as τ Ò 1. Hence, the new class steers an advantageous middle course between the robustness of ordinary quantiles and the sensitivity of the extreme ones.

The interpretation in terms of expected minimum and expected maximum of a sample from Y , the impact on the lower and upper tails of the underlying distribution, the sensitivity and resistance properties to extremes and the proportionality to PWMs are of particular interest in extreme-value theory. This inspired the name extremiles for this class. As a matter of taste, we prefer to regard equation ( 7), or equivalently (6), as the most convenient definition of extremiles from a mathematical perspective. It should be clear that the first-order necessary condition for optimality related to the initial definition

(3) leads to ξ τ " E rY J τ pF pY qqs E rJ τ pF pY qqs , which in turn gives the identity (7), since E rJ τ pF pY qqs " 1 for all τ P p0, 1q by continuity of F . Note also that the transformed random variable Z τ in (4) has the same expectation ξ τ as the random variable Y J τ pF pY qq, but not necessarily the same continuous distribution. In the particular case where τ ě 1{2 and rpτ q is an integer, it is easily seen that Z τ is the maximum of rpτ q independent copies of Y ; similarly, when τ ď 1{2 and spτ q is an integer, Z τ is the minimum of spτ q independent copies of Y . In the general setting, we have the following characterization of Z τ .

Proposition 1 For a random variable Y with continuous distribution function F and quantile function q, and for τ P p0, 1q, define φ τ " q ˝K´1 τ ˝F i.e. φ τ pyq " q K ´1 τ pF pyqq .

Then Z τ d " φ τ pY q.

Basic properties

An alternative justification for the use of extremiles to describe probability distributions may be based on the following propositions. (iii) The τ th extremile of the linear transformation r Y " a `bY , a, b P R, is given by

ξ r Y ,τ " $ & % a `b ξ Y,τ if b ą 0, a `b ξ Y,1´τ if b ď 0.
(iv) If Y has a symmetric distribution with mean µ, then ξ 1´τ " 2µ´ξ τ for any τ P p0, 1q.

(v) If Y and r Y are comonotone ri.e. there exists a third random variable Ȳ and increasing functions u and v such that Y " up Ȳ q and r Y " vp Ȳ qs, then ξ Y `r Y ,τ " ξ Y,τ `ξr Y ,τ .

The wide range of distributions covered by property (i) can be extended further by relaxing the condition of finite "absolute" first moments. By (ii), a distribution with finite absolute first moment is uniquely defined by its class of extremiles. Expectiles satisfy this law invariance property as well, but only for distributions with continuous densities [see Theorem 1 in [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF]]. Extremiles are also location and scale equivariant by property (iii) in the same way as quantiles and expectiles are [see equation (A.1) in the Supplementary Material document for quantiles and Theorem 1 in [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF] for expectiles]. The desirable properties (iv) for symmetric distributions and (v) on comonotonic additivity are also shared by quantiles. The implications of these properties in regression analysis are clear. For example, the conditional extremile curves will be parallel to each other if the conditional distributions of the response are homogeneous.

Also, for any τ , the lower τ th conditional extremile curve and the upper τ th conditional extremile curve will be symmetric about the mean curve if the conditional distributions of the response are symmetric. Expectiles also satisfy property (iv) [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF]], but they are not comonotonically additive [START_REF] Acerbi | Backtesting Expected Shortfall[END_REF]]. They have recently attracted a lot of interest as risk measures, but absence of comonotonic additivity is a serious problem for a regulatory risk standard, as justified by [START_REF] Acerbi | Backtesting Expected Shortfall[END_REF]. We shall discuss further properties of extremiles as risk measures as well as their relation to expectiles in Sections 4.1 and 4.2.

We now describe what happens for large extremiles ξ τ and how they are linked to extreme quantiles q τ when F is attracted to the Fisher-Tippett distributions of extremevalue types:

(Fréchet) Φ γ pyq " expt´y ´1{γ u with support r0, 8q and γ ą 0;

(Weibull) Ψ γ pyq " expt´p´yq ´1{γ u with support p´8, 0s and γ ă 0;

(Gumbel) Λpyq " expt´e ´yu with support R.

Let DAp¨q denote the maximum domain of attraction of an extreme-value distribution,

i.e., the set of distribution functions whose asymptotic distributions of suitably normalized maxima are of an extreme-value type. Let Γp¨q be the Gamma function.

Proposition 3 Suppose that E|Y | ă 8.

(i) If F P DApΦ γ q with γ ă 1, then

ξ τ q τ " Γp1 ´γqtlog 2u γ as τ Ò 1.
(ii) If F P DApΨ γ q, then y u ă 8 and

y u ´ξτ y u ´qτ " Γp1 ´γqtlog 2u γ as τ Ò 1.
(iii) If F P DApΛq and y u " 8, then ξ τ " q τ as τ Ò 1. If on the contrary y u ă 8, then

y u ´ξτ " y u ´qτ as τ Ò 1.
Note that the moments of F P DApΦ γ q do not exist when γ ą 1. The index γ tunes the tail heaviness of the distribution function F , with higher positive values indicating heavier tails. A consequence of Proposition 3 is that the extremiles of distributions with heavy tails of index γ ă 1 are asymptotically more spread than the quantiles since Γp1 γqtlog 2u γ ą 1. Indeed, the function ϕ : y Þ Ñ log pΓp1 ´yqtlog 2u y q has derivative ϕ 1 pyq " ´ p1 ´yq `logplog 2q, for all y P p0, 1q, where pxq " Γ 1 pxq{Γpxq denotes the digamma function. Because is increasing and p1q « ´0.577 (see Formulae 6.3.2 and 6.3.21 in [START_REF] Abramovitz | Handbook of Mathematical Functions[END_REF], the function ϕ is increasing. Hence, for any γ P p0, 1q, Γp1 ´γqtlog 2u γ ą exppϕp0qq " 1 as announced. A similar property holds for short-tailed distributions F P DApΨ γ q depending on the value of the extreme-value index: numerically, when ´0.2907 ă γ ă 0, extremiles are asymptotically closer to the right endpoint than quantiles are. By contrast, when γ ă ´0.2907, we rather have that quantiles are asymptotically closer to the right endpoint than extremiles are. Finally, ξ τ and q τ are asymptotically equivalent for light-tailed distributions F P DApΛq. A similar proposition can of course be given when F is rather in the minimum domain of attraction of a Fisher-Tippett extreme-value distribution.

Estimation of extremiles

This section shows that results for ordinary and trimmed extremiles are easily obtained by means of L-statistics theory. By contrast, asymmetric least squares estimation of high extremiles leads to non-trivial developments from the perspective of extreme-value theory.

Our theorems are derived for independent and identically distributed random variables.

Although the time series case goes beyond the scope of the present paper, the recent analysis of [START_REF] Daouia | Extreme M-quantiles as risk measures: From L 1 to L p optimization, Bernoulli[END_REF] suggests that it may be possible to extend the results obtained here under appropriate mixing conditions on the underlying series.

Ordinary extremiles

Given a random sample Y 1 , Y 2 , . . . , Y n from Y, a natural estimator for the extremile of fixed order τ P p0, 1q is easily obtained by replacing F with its empirical version p F n in (5), or equivalently, by replacing q t with its empirical analogue p q t in ( 6), leading to an L-statistic generated by the measure dK τ :

p ξ L τ " ż 1 0 p q t dK τ ptq " n ÿ i"1 " K τ ˆi n ˙´K τ ˆi ´1 n ˙* Y i,n ,
where Y 1,n ď Y 2,n ď ¨¨¨ď Y n,n denotes the ordered sample. Thanks to this special closedform expression for p ξ L τ , we can rely for example on [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF] or [START_REF] Shorack | Probability for Statisticians[END_REF] for proving its consistency, asymptotic normality, and deriving the Berry-Esséen rate of uniform convergence O `n´1{2 ˘.

Theorem 1 For any index τ P p0, 1q,

(i) if E|Y | κ ă 8 for some κ ą 1, then p ξ L τ a.s.
ÝÑ ξ τ as n Ñ 8.

(ii) if E|Y | κ ă 8 for some κ ą 2, then ? n ´p ξ L τ ´ξτ ¯has an asymptotic normal distribution with mean zero and variance σ 2 τ " ş 1 0 ş 1 0 ps ^t ´s tq J τ psq J τ ptq dF ´1psq dF ´1ptq.

(iii) If E|Y | 3 ă 8, then sup tPR ˇˇP

´?n στ ´p ξ L τ ´ξτ ¯ď t ¯´Φptq ˇˇ" O `n´1{2 ˘, for any τ P r1´p1{2q 1{3 , p1{2q 1{3 s, where Φ stands for the standard normal distribution function.

We note that, although mild moment assumptions suffice to ensure the validity of our results, the central case τ " 1{2 shows that the ordinary central limit theorem fails to be a corollary to Theorem 1 piiq.

Alternatively, one may estimate ξ τ from its formulation (7) as a probability-weighted moment. Estimating the expectation by the empirical moment and replacing F by its empirical version p F n leads to the τ th sample extremile

p ξ LM τ " ξ τ p p F n q " 1 n n ÿ i"1 J τ ˆi n ˙Yi,n .
This estimator is another L-statistic, whose asymptotic properties are closely linked to those of p ξ L τ since the finite differences built on the function K τ in the estimator p ξ L τ can be approximated by the derivative J τ when n is large. Note further that an M-estimator p ξ M τ of ξ τ is provided by solving the empirical least squares problem min θ ř n i"1 J τ `i n ˘|Y i,n ´θ| 2 , which yields the closed form expression

p ξ M τ " ř n i"1 J τ `i n ˘Yi,n ř n i"1 J τ `i n ˘" p ξ LM τ 1 n ř n i"1 J τ `i n ˘.
Since the denominator [START_REF] Shorack | Functions of order statistics[END_REF]).

Of particular interest are the expected minimum ξ τ " ErminpY 1 , . . . , Y spτ q qs and expected maximum ξ τ " ErmaxpY 1 , . . . , Y rpτ q qs which correspond respectively to the cases where spτ q and rpτ q in (8) are positive integers. In these special cases, estimation of ξ τ might be most conveniently based on unbiased estimates of the probability-weighted moments M 1,0,s (s " 0, 1, 2, . . .) and M 1,r,0 (r " 0, 1, 2, . . .) given respectively by (see [START_REF] Landwehr | Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles[END_REF] x M 1,0,s " 1 n

n´s ÿ i"1 ˜s ź j"1 n ´i `1 ´j n ´j ¸Yi,n and x M 1,r,0 " 1 n n ÿ i"r`1 ˜r ź j"1 i ´j n ´j ¸Yi,n .
Then, when spτ q and rpτ q in (8) are positive integers, the statistic

p ξ PWM τ " $ & % spτ q x M 1,0,spτ q´1 for 0 ă τ ď 1 2 rpτ q x
M 1,rpτ q´1,0 for 1 2 ď τ ă 1 is an unbiased estimate of the extremile ξ τ . It is straightforward to see from the asymptotic normality of x M 1,0,spτ q´1 and x M 1,rpτ q´1,0 (see [START_REF] Hosking | Estimation of the generalized extreme-value distribution by the method of probability weighted moments[END_REF] that p ξ PWM τ converges to the same normal distribution as the estimators p ξ L τ , p ξ LM τ and p ξ M τ do. Note also that when these empirical extremiles are used to estimate the same quantity as empirical quantiles, our simulation experiments in Supplement B.1 provide Monte-Carlo evidence that the extremile estimators are the most efficient in the case of usual short and light-tailed distributions. However, unlike sample quantiles (single order statistics), ordinary extremile estimators are not robust against heavy-tailed distributions. Yet, they can be 'robustified' by considering trimmed extremiles as discussed below.

Trimmed extremiles

From a theoretical robustness point of view, extremiles have a similar behavior to expectiles. Indeed, the influence function of the L-functional ξ τ given by x Þ Ñ IFpx; ξ τ , F q " ż 8 ´8 rF pyq ´1Ipx ď yqs J τ pF pyqq dy (see e.g. Serfling, 1980, p.265) is not bounded, indicating the non-robustness of extremiles and their extreme sensitivity to the influence of isolated observations as is the case for expectiles, whilst quantiles have a finite gross-error sensitivity (see e.g. Abdous and Remillard, 1995, p.382). A robust alternative would be to use a trimmed L-functional in the sense of Shorack (2000, p.442). Namely, suppose the statistician wants to robustify the estimation procedure by specifying integer trimming numbers k n and k 1 n for which

k n ^k1 n Ñ 8, while kn n _ k 1 n n Ñ 0 with k n {k 1 n Ñ 1.
The pk n , k 1 n q-trimmed population and empirical τ th extremiles can then be defined from (6) as, respectively:

ξ τ pk n , k 1 n q " ż 1´k 1 n n kn n
q t dK τ ptq,

and p ξ τ pk n , k 1 n q " ż 1´k 1 n n kn n p q t dK τ ptq " n´k 1 n ÿ i"kn`1 " K τ ˆi n ˙´K τ ˆi ´1 n ˙* Y i,n .
The asymptotic normality of p ξ τ pk n , k 1 n q, stated in Theorem 2, requires the regular variation of the function r V τ : t Þ Ñ r V τ ptq :" V τ pt, tq at 0 with a non-positive exponent, where

V τ pt, t 1 q " ż 1´t 1 t ż 1´t 1 t
pu ^v ´u vq J τ puq J τ pvq dF ´1puq dF ´1pvq, t, t 1 P r0, 1s.

Theorem 2 Let k n and k 1 n such that k n ^k1 n Ñ 8, kn n _ k 1 n n Ñ 0 and k n {k 1 n Ñ 1 as n Ñ 8. If, for some β ě 0, lim tÓ0 r V τ pctq{ r V τ ptq " c ´β for each c ą 0, then ? n ´p ξ τ pk n , k 1 n q ´ξτ pk n , k 1 n q ¯{σ τ pk n , k 1 n q has an asymptotic standard normal distribu- tion, with σ 2 τ pk n , k 1 n q " V τ pk n {n, k 1 n {nq.
We have undertaken some simulation experiments in Supplement B.2 to evaluate the performance of the empirical trimmed extremile p ξ τ pk n , k 1 n q in comparison with the sample quantile p q α when they estimate the same quantity ξ τ pk n , k 1 n q " q α . The accuracy of p ξ τ pk n , k 1 n q appeared to be quite respectable with respect to the robust sample quantile.

Large extremiles

In the important maximum domain of attraction DApΦ γ q of Pareto-type distributions with tail index γ ă 1, which plays in particular a crucial role in financial and actuarial considerations (see e.g. [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF][START_REF] Resnick | Heavy-Tail Phenomena: Probabilistic and Statistical Modeling[END_REF], extremiles ξ τ are more sensitive to the magnitude of heavy right tails than quantiles q τ are, as τ Ò 1. However, the use of sample counterparts such as, for instance, p ξ L τ to estimate such large population extremiles may not be appropriate in the extreme region τ " τ 1 n P r1 ´1{n, 1q for two reasons. First, in contrast to their population counterparts ξ τ 1 n and

q τ 1 n , p ξ L τ 1 n is not more spread than p q τ 1 n since p ξ L τ 1 n ă Y n,n " p q τ 1 n . Second, p ξ L τ 1
n is not consistent when estimating an extremile ξ τ 1 n that is to the right of all observations, for a τ 1 n larger than 1 ´1{n, which is typically the setting of extreme-value theory and related fields of application: examples include flood risk in [START_REF] Steenbergen | Reliability analysis of flood defence systems[END_REF], medical insurance large claims in [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF], operational bank losses in [START_REF] Embrechts | Aggregating risk across matrix structured loss data: the case of operational risk[END_REF], loss returns of banks in the US market in [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], the run-up height of ocean waves in de Valk ( 2016), excess-of-loss risk measures on automobile insurance data in El Methni and Stupfler (2017), and fire risk for commercial firms in El [START_REF] El Methni | Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions[END_REF], to name just a few. To remedy these problems, we construct below two extreme-value type estimators for ξ τ 1 n when τ 1 n Ò 1 at an arbitrary rate as n Ñ 8. The first one is based on the use of the asymptotic connection between extremiles and quantiles, while the second one relies directly on asymmetric least squares estimation.

Estimation based on extreme quantiles

A first option to estimate the extremile ξ τ 1 n is by using its asymptotic equivalence ξ τ 1 n " q τ 1 n G pγq obtained in Proposition 3 (i), where Gpsq :" Γp1 ´sqtlog 2u s , s ă 1, and γ is the tail index of Y . This suggests to define the quantile-based estimator

p ξ Q,‹ τ 1 n :" p q ‹ τ 1 n G pp γq (9)
by substituting in suitable estimators p q ‹ τ 1

n of q τ 1 n and p γ of γ. Thenceforth, p ξ Q,‹ τ 1 n and p q ‹ τ 1 n
inherit the same property about the spread of their population counterparts. On the other hand, the naive sample maximum Y n,n will not be a consistent estimator of the extreme quantile q τ 1 n . In order to extrapolate outside the range of the available observations, it is most efficient to use the traditional Weissman estimator [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF]:

p q ‹ τ 1 n " p q ‹ τ 1 n pτ n q :" ˆ1 ´τ 1 n 1 ´τn ˙´p γ p q τn , where p q τn :" Y n´tnp1´τnqu,n (10) 
with τ n being an intermediate sequence, i.e., τ n Ñ 1 such that np1 ´τn q Ñ 8 as n Ñ 8.

In practice, the intermediate quantile level τ n is typically set to be τ n " 1 ´k{n, where k " kpnq Ñ 8 is a sequence of integers with kpnq{n Ñ 0 as n Ñ 8. According to de Haan and Ferreira (2006, Corollary 1.2.10), the model assumption F P DApΦ γ q is equivalent to the first-order regular variation condition:

lim tÑ8 q 1´ptxq ´1 q 1´t ´1 " x γ for all x ą 0. ( 11 
)
Also, following de Haan and Ferreira (2006, Theorem 4.3.8), the asymptotic normality of the normalized Weissman quantile estimator p q ‹ τ 1 n {q τ 1 n requires the extended regular variation assumption that for some second-order parameter ρ ď 0 and an auxiliary function

A, with Aptq Ñ 0 as t Ñ 8, lim tÑ8 1 Aptq " q 1´ptxq ´1 q 1´t ´1 ´xγ * " x γ x ρ ´1 ρ for all x ą 0. ( 12 
)
Here and in what follows, px ρ ´1q{ρ is to be understood as log x when ρ " 0. This classical second-order condition controls the rate of convergence in (11). Thorough discussions on the interpretation and the rationale behind this condition can be found in the monographs of [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF] and de [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF], along with abundant examples of commonly used continuous distributions satisfying (12). Under this same extremal value condition, we show that p ξ Q,‹ τ 1 n {ξ τ 1 n converges in distribution as well, with the same scaling and limit distribution as p q ‹ τ 1 n {q τ 1 n . Our first step to this aim is to analyse the bias incurred by using the estimator p ξ Q,‹ τ 1 n , i.e. the approximation error in Proposition 3 (i).

Proposition 4 Suppose that E|Y | ă 8, and that condition (12) holds with γ ă 1. Recall the notation Gpsq " Γp1 ´sqtlog 2u s , for s ă 1. Then, as τ Ò 1:

ξ τ q τ
´Gpγq " C 1 pγ, ρqApp1 ´τ q ´1q `C2 pγqp1 ´τ q `opApp1 ´τ q ´1qq `op1 ´τ q.

Here

C 1 pγ, ρq " $ ' ' & ' ' %
Gpγ `ρq ´Gpγq ρ if ρ ă 0 plog 2q γ ş 8 0 e ´tt ´γ plogplog 2q ´logptqq dt otherwise, and

C 2 pγq " ´1 2 Gpγq `"1 `log 2 2  Gpγ ´1q ´log 2 2 Gpγ ´2q.
This result makes it possible to obtain the rate of convergence of the estimator p ξ Q,‹ τ 1 n via standard extrapolation arguments in the spirit of Theorem 4.3.8 in de Haan and Ferreira (2006, p.138). The next result goes in this sense.

Theorem 3 Suppose that E|Y | ă 8 and:

(i) condition (12) holds with γ ă 1 and ρ ă 0;

(ii) τ n Ñ 1, np1 ´τn q Ñ 8 and a np1 ´τn qApp1 ´τn q ´1q Ñ λ P R as n Ñ 8;

(iii) a np1 ´τn q pp γ ´γq d ÝÑ Z, for a suitable estimator p γ of γ, where Z is a nondegenerate limiting random variable;

(iv) np1 ´τ 1 n q Ñ c ă 8 and a np1 ´τn q{ logrp1 ´τn q{p1 ´τ 1 n qs Ñ 8.

Then a np1 ´τn q logrp1 ´τn q{p1 ´τ 1 n qs

˜p ξ Q,‹ τ 1 n ξ τ 1 n ´1¸d ÝÑ Z as n Ñ 8.
A simple and popular estimator of the tail index γ is the [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] estimator

p γ H " 1 k k´1 ÿ i"0 plog Y n´i,n ´log Y n´k,n q ,
where k " rnp1 ´τn qs.

Here, r¨s denotes the ceiling function. This is a natural estimator in the sense that it is the maximum likelihood estimator for Pareto models above a high threshold; other interpretations such as, for instance, p γ H being the sample counterpart of the average logexcess can be found in [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF]. Under conditions (i) and (ii) of Theorem 3, condition (iii) holds for p γ H with Z having a normal distribution with mean λ{p1 ´ρq and variance γ 2 , in view of Theorem 3.2.5 in de [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF].

We shall discuss in Section 4.4.2 below a concrete application to medical insurance data using p ξ Q,‹ τ 1 n in conjunction with the Hill estimator p γ H of γ and the Weissman estimator p q ‹ τ 1 n of q τ 1 n . Other efficient estimation methods of q τ 1 n and γ, such as the Peaks-Over-Threshold approach and maximum likelihood techniques, can be used as well in (9) to define p ξ Q,‹ τ 1 n . [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF] and de [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF] give a nice review of these methods and an extensive bibliography.

Estimation based on intermediate extremiles

Here, we first consider estimating a high extremile ξ τn of intermediate level τ n satisfying τ n Ñ 1 and np1 ´τn q Ñ 8 as n Ñ 8. Then, we extrapolate the resulting estimate to the very extreme level τ 1 n which approaches 1 at an arbitrarily fast rate in the sense that np1 ´τ 1 n q Ñ c, for some nonnegative constant c.

A natural estimator of the intermediate extremile ξ τn follows from the solution of the asymmetric least squares problem as

p ξ M τn " ř n i"1 J τn `i n ˘Yi,n ř n i"1 J τn `i n ˘" ş 1 0 J τn ´rnts n ¯Yrnts,n dt 1 n ř n i"1 J τn `i n ˘.
This is the M-estimator p ξ M τ presented in Section 3.1 when τ " τ n . Alternative estimators can be defined by plugging τ " τ n in our L-estimator and LM-estimator, resulting in the following estimators:

p ξ L τn " n ÿ i"1 " K τn ˆi n ˙´K τn ˆi ´1 n ˙* Y i,n " ż 1 0 J τn ptqY rnts,n dt and p ξ LM τn " 1 n n ÿ i"1 J τn ˆi n ˙Yi,n " ż 1 0 J τn ˆrnts n ˙Yrnts,n dt.
The asymptotic normality of these estimators requires, in addition to (12), to control the empirical quantile function t Þ Ñ Y rnts,n in the central part of the distribution of Y . This is why we introduce the following extra condition:

(H) The support of Y is an interval, and on its interior F is twice differentiable with positive probability density function f and sup 0ătă1 tp1 ´tq f 1 pq t q rf pq t qs 2 ă 8.

Condition (H) makes it possible to approximate efficiently the empirical quantile process t Þ Ñ Y rnts,n by a sequence of standard Brownian bridges in the central part of the interval p0, 1q, as well as in the far left tail due to the geometrically strong penalization of left tail quantiles by the weighting function J τn . It can be found in Theorem 6.2.1 of [START_REF] Csörgő | Weighted Approximations in Probability and Statistics[END_REF] and Proposition 2.4.9 in de [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF], among others.

Finally, to elaborate our asymmetric least squares estimation based on the highest values in the sample, we shall slightly strengthen the condition that F P DApΦ γ q by assuming:

lim tÑ`8 t f ptq 1 ´F ptq " γ. ( 14 
)
This von Mises condition indeed implies the model assumption F P DApΦ γ q as shown in Theorem 1.11 of de Haan and Ferreira (2006, p.17) and Proposition 2.1 of Beirlant et al. (2004, p.60). While the necessary and sufficient condition F P DApΦ γ q for F to be a Pareto-type distribution is sometimes difficult to verify, the sufficient von Mises condition ( 14) may be more helpful for absolutely continuous distributions. All commonly used Pareto-type distributions satisfy ( 14), see Beirlant et al. (2004, p.60). Next, under these assumptions, we unravel the common limit distribution of the normalized estimators p ξ L τn {ξ τn , p ξ LM τn {ξ τn and p ξ M τn {ξ τn .

Theorem 4 Suppose that E|Y | ă 8 and:

• conditions (12), (H) and ( 14) hold with γ ă 1{2;

• the sequence τ n Ò 1 is such that np1´τ n q Ñ 8 and a np1 ´τn q App1´τ n q ´1q " Op1q. Turning now to the extreme level τ 1 n , we have under the model assumption of heavytailed distributions F P DApΦ γ q that

ξ τ 1 n q τ 1 n " G pγq "
ξ τn q τn and hence

ξ τ 1 n ξ τn " q τ 1 n q τn as n Ñ 8,
in view of Proposition 3 (i). On the other hand, the assumption F P DApΦ γ q or equivalently the first-order regular variation condition (11) leads to the quantile approximation

q τ 1 n q τn « ˆ1 ´τ 1 n 1 ´τn ˙´γ and thus ξ τ 1 n ξ τn « ˆ1 ´τ 1 n 1 ´τn ˙´γ .
This final extrapolation motivates the alternative purely extremile-based estimator n . We therefore restrict our attention to the latter estimator.

p ξ M,‹ τ 1 n :" ˆ1 ´τ 1 n 1 ´τn ˙´p γ p ξ M τn . (15 
Theorem 5 Suppose that E|Y | ă 8 and:

• conditions (12), (H) and ( 14) hold with γ ă 1{2 and ρ ă 0;

• the sequence τ n Ò 1 is such that np1 ´τn q Ñ 8 and a np1 ´τn q maxpApp1 ´τn q ´1q, 1 ´τn q " Op1q;

• a np1 ´τn q pp γ ´γq d ÝÑ Z, for a suitable estimator p γ of γ, where Z is a nondegenerate limiting random variable;

• np1 ´τ 1 n q Ñ c ă 8 and a np1 ´τn q{ logrp1 ´τn q{p1 ´τ 1 n qs Ñ 8.

Then a np1 ´τn q logrp1 ´τn q{p1 ´τ 1 n qs

˜p ξ M,‹ τ 1 n ξ τ 1 n ´1¸d ÝÑ Z as n Ñ 8.
Like the quantile-based estimator p ξ Q,‹ τ 1 n , the extrapolated M-estimator p ξ M,‹ τ 1 n inherits the limit distribution of p γ with a slightly slower rate of convergence.

Some simulation evidence

To investigate the finite sample performance of the two rival estimators p ξ Q,‹ 

Coherency, regularity and pessimism

Given that extremiles depend on both the tail losses and their probability, they steer an advantageous middle course between the potential excessive optimism or pessimism of the VaR and ES. Taking ξ τ as a margin (amount of capital as a hedge against extreme risks), a larger ξ τ is then a more prudential margin requirement and results in larger τ . As such, the index τ reflects the level of prudentiality to be typically set by regulators and/or the management level. When τ " 1{2, ξ τ is the net expected loss. When τ ă 1{2, the values of the risk measure ξ τ are less than EpY q, which is not appropriate when Y ě 0 is a loss random variable. Hence, a natural range for the security level τ is given by r1{2, 1s.

The use of ξ τ as a proper risk measure can be justified further as follows. In actuarial terms, a risk measure Πr¨s is defined as a mapping from the set of all bounded loss random variables to the set of all non-negative real numbers, with ΠrY s being the price associated with a loss variable Y ě 0. A variety of coherent risk measures have been specified in the literature as the expected value of Y with respect to a distortion function gp¨q, that is, ΠrY s "

ż 8 0 g p1 ´F pyqq dy, ( 16 
)
where g is a nondecreasing and concave function with gp0q " 0 and gp1q " 1. The class of such measures is referred to as [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF] class of distortion risk measures. The review article by [START_REF] Wirch | A synthesis of risk measures for capital adequacy[END_REF] discusses a number of important distortion functions including the Proportional Hazard transform gptq " PH λ ptq :" t λ , for the socalled risk-aversion index λ P p0, 1s, and the Dual Power transform gptq " DP r ptq :" 1 ´p1 ´tq r for r ě 1. The ES can be expressed in terms of the distortion function ES τ ptq :" pt{p1 ´τ qq1Ip0 ď t ă 1 ´τ q `1Ip1 ´τ ď t ď 1q. While the quantile-VaR and ES use only a small part of the loss distribution, both PH and DP distortion functions utilize the whole loss distribution and are more reliable for the purpose of differentiating between more and less risky distributions.

Extremiles clearly belong to the class of risk measures of the form ( 16), with the alternative concave distortion function g τ ptq :" 1 ´Kτ p1 ´tq " 1 ´p1 ´tq rpτ q , 1 2 ď τ ď 1.

It turns out that this function is very closely related to the DP transform in the sense that g τ " DP rpτ q . Its formulation in terms of the asymmetry parameter τ P r1{2, 1s allows, like the tail probability τ in the VaR q τ and ES ν τ " ErY |Y ą q τ s, for better interpretability compared to the distortion parameter r P r1, 8q in the DP transform.

Let us highlight in particular that the asymmetric least squares formulation makes the comparison of extremiles (and, incidentally, of DP transforms) with both VaR and ES easier and more insightful than the purely distortion-based interpretation: being least squares analogues of quantiles, extremiles rely on the distance to observations, making thus more efficient use of the available data, whereas quantiles only use the information on whether an observation is below or above the predictor. Also, extremiles depend by construction on both the tail losses and their probability, while VaR only depends on the frequency of tail losses and ES only depends on the tail event.

On the other hand, the extremile distortion function g τ results in a more widely applicable risk measure than the popular PH-measure, at least in the following respect: the empirical estimators of both measures allow one to determine the price of an insurance risk without recourse to any fitting of a parametric model. However, as shown by [START_REF] Jones | Empirical estimation of risk measures and related quantities[END_REF], the asymptotic normality of the empirical PH-measure, ş 8 0 p1 ´p F Y pyqq λ dy, does not cover the range 0 ă λ ď 1{2, and necessitates the assumption that E|Y | κ ă 8, for some κ ą 1{pλ ´1{2q, when 1{2 ă λ ď 1. Hence, the number κ of required finite moments tends to `8 as λ Ó 1{2. By contrast, as shown in Theorem 1, inference on ξ τ is applicable for any index τ , under the weaker assumption that E|Y | κ ă 8 for some κ ą 2.

It is straightforward to see that the extremile-based risk measure Π τ rY s :" ξ Y,τ , for τ P p1{2, 1q, satisfies the following two natural properties related to risk loading: (A1) Positive loading and no ripoff: EpY q ă Π τ rY s ă y u , lim τ Ñ1{2 Π τ rY s " EpY q, and lim τ Ñ1 Π τ rY s " y u .

(A2) No unjustified risk-loading: if P pY " bq " 1 for some constant b then Π τ rY s " b.

More importantly, the extremile risk measure also satisfies the requirements for being a coherent risk measure, in the sense of the influential paper by [START_REF] Artzner | Coherent Measures of Risk[END_REF]:

(A3) Translation and scale invariance: Π τ ra `bY s " a `bΠ τ rY s, for any a P R and b ą 0. According to Bassett et al. (2004, Theorem 1), being coherent and regular, Π τ r¨s is then a pessimistic risk measure in the sense that the corresponding distortion function g τ acts to depress the implicit likelihood of the most favorable outcomes, and to accentuate the likelihood of the least favorable ones (see Definition 4 in [START_REF] Bassett | Pessimistic Portfolio Allocation and Choquet Expected Utility[END_REF] for a formal characterization of pessimistic risk measures). As such, the index τ becomes a natural measure of the degree of pessimism. Note also that equation ( 6) makes Π τ r¨s a spectral risk measure [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF]].

Real-valued profit-loss random variables

The extremile-based risk measure Π τ rY s can still be defined when Y is an asset return, which can take any real value, by using the more general expression (5), that is,

ξ τ " ż 0
´8 rg τ p1 ´F pyqq ´1s dy `ż 8 0 g τ p1 ´F pyqq dy, or its various equivalent formulations described in Sections 2.1-2.2, where g τ ptq :" t spτ q 1Ip0 ď τ ă 1{2q `r1 ´p1 ´tq rpτ q s1Ip1{2 ď τ ď 1q.

A number of studies, including [START_REF] Jones | Empirical estimation of risk measures and related quantities[END_REF], [START_REF] Bassett | Pessimistic Portfolio Allocation and Choquet Expected Utility[END_REF] and the references therein, have recognized the usefulness of such Choquet integrals in actuarial and financial applications as well as in the area of measuring economic inequality. The coherency axioms [Translation invariance, Monotonicity, Subadditivity, and Positive homogeneity] of the risk measure Π τ rY s :" ´ξY,τ for asset returns can easily be checked by making use of the alternative formulation (7) of ξ τ as a probability-weighted moment.

The key argument is that the special weight-generating function J τ p¨q is an admissible risk spectrum [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF]].

Proposition 5 For the profit-loss Y of a given portfolio and for any 0 ă τ ă 1{2, Π τ rY s " ´ξY,τ " ´E rY J τ pF pY qqs is a coherent spectral risk measure.

In the special case where the power spτ q in the distortion function g τ is an integer, we recover the particularly attractive and very intuitive interpretation of the so-called MINVAR risk measure introduced in Cherny and Madan ( 2009), namely the negative of the expected minimum Π τ rY s " ´ErminpY 1 , . . . , Y spτ q qs of spτ q independent observations from Y (see also [START_REF] Föllmer | Convex risk measures: Basic facts, law-invariance and beyond, asymptotics for large portfolios[END_REF].

Despite their statistical virtues and all their nice axiomatic properties as spectral risk measures and concave distortion risk measures, extremiles have an apparent limitation when applied to distributions with infinite mean. This should not be considered to be a serious disadvantage however, at least in financial and actuarial applications, since the definition of a coherent risk measure for distributions with an infinite first moment is not clear, see the discussion in Section 3 of [START_REF] Nešlehová | Infinite mean models and the LDA for operational risk[END_REF]. Whether operational risk models in which losses have an infinite mean make sense in the first place has also recently been questioned by [START_REF] Cirillo | Expected shortfall estimation for apparently infinitemean models of operational risk[END_REF].

Connection between extremiles, expectiles and ES

We consider both cases of non-negative loss distributions and real-valued profit-loss distributions with heavy right tails. In the case of a profit-loss distribution, the financial position Y stands for the negative of the asset return so that the right-tail of F corresponds to the negative of extreme losses. For most studies in risk management, it has been found that Pareto-type distributions F P DApΦ γ q, with γ ă 1{2, describe quite well the tail structure of actuarial and financial data. We refer for instance to the R package 'CASdatasets' which contains a large variety of data examples where realized values of γ often vary between 1{4 and 1{2. Accordingly, as established in Proposition 3, the corresponding extremile-based risk measure ξ τ is more pessimistic, from the risk management viewpoint, than the traditional quantile-VaR q τ for large values of τ . Next, we show that ξ τ is more pessimistic than the expectile-based VaR e τ as well, in the standard case of finite-variance distributions, but it is always less pessimistic than the ES ν τ , for large τ .

The key ingredients to show this are the following asymptotic connections.

Proposition 6 Suppose that E|Y | ă 8 and F P DApΦ γ q with 0 ă γ ă 1. Then, as

τ Ñ 1,
ξ τ e τ " Γp1 ´γqtpγ ´1 ´1q log 2u γ and ξ τ ν τ " Γp2 ´γqtlog 2u γ .

We now show how Proposition 6 entails that high extremiles are more conservative than high expectiles at the same level, when γ P p0, 1{2q. The idea is simply to note that for γ P p0, 1{2q, we have γ ´1 ´1 ą 1, and therefore Γp1 ´γqtpγ ´1 ´1q log 2u γ ą Γp1 ´γqtlog 2u γ ą 1, establishing thus that ξ τ ą e τ for τ large enough provided the underlying distribution has a finite variance. This is, however, no longer valid for the heaviest tails since the proportionality constant Γp1´γqtpγ ´1 ´1q log 2u γ tends to log 2 ă 1 as γ Ñ 1. More precisely, a numerical study shows that high extremiles shall be more conservative than high expectiles if and only if 0 ă γ ă γ 0 , with γ 0 « 0.8729. By contrast, that high extremiles are always less conservative than their ES analogues is a consequence of the inequality Γp2 ´γqtlog 2u γ ă tlog 2u γ ă 1, for all γ P p0, 1q.

Finally, we would like to stress why our finding in Proposition 6 that q τ ă ξ τ ă ν τ , as τ Ñ 1, is not a contradiction to Theorem 13 in [START_REF] Delbaen | Coherent risk measures -Lectures given at the Cattedra Galileiana at the Scuola Normale Superiore di Pisa[END_REF]. This theorem states that any coherent, law-invariant risk measure satisfying the Fatou property and greater than or equal to q τ (for every Y P L 8 ) must also be greater than or equal to ν τ . The extremile ξ τ defines a law-invariant coherent, and hence convex risk measure, satisfying thus the Fatou property [see Theorem 2.1 in [START_REF] Jouini | Law invariant risk measures have the Fatou property[END_REF] and Theorem 2.2 in [START_REF] Tsukahara | Some properties of distortion risk measures[END_REF]]. However, the key condition of Delbaen's theorem that q τ ď ξ τ is not fulfilled for short-tailed distributions with a large |γ|, as discussed below our Proposition 3.

Data examples

To illustrate the ideas discussed above, we explore in this section two real data examples.

Trended hurricane losses

We first consider a dataset on trended or, equivalently, inflation-adjusted (to 1981 using the U.S. Residential Construction Index) hurricane losses that occurred between 1949 and 1980. Figure 4 (left panel) displays the histogram and scatterplot of the recorded n " 35 trended hurricane losses in excess of $5 Million (in units of $1, 000). An analysis of this data set conducted from a central point of view is presented in [START_REF] Jones | Empirical estimation of risk measures and related quantities[END_REF];

our focus here is rather on the right tail of the observations. We treat the 35 amounts as the outcomes of i. Moreover, the fact that the "steps" result in the same or similar measures for significantly different risk levels is itself risky. By contrast, the sample extremile p ξ τ " p ξ L τ (red) and expectile p e τ (green) have the benefit to be very stable and to change continuously and increasingly without recourse to any smoothness procedure.

When comparing the four estimated risk measures at the same level τ , it can be seen that the ES p ν τ , in orange, is much larger and hence is more conservative than the extremile p ξ τ in red. In contrast, the quantile p q τ , in blue, remains less alert to extreme risks than p ξ τ until it breaks down at τ " pn ´1q{n " 0.9714. Thenceforth, for all τ ą 0.9714, p q τ becomes identical to p ν τ which in turn coincides with the maximum catastrophic loss Y n,n " 1,633,000, whereas p ξ τ provides less pessimistic risk measure values. Finally, although the expectile p e τ , in green, exhibits a smooth evolution, it diverges from p ξ τ in the region τ P r0.8, 0.975s and becomes less alert to infrequent disasters. The extremile in red seems to afford a middle course between the pessimistic ES in orange and the optimistic expectile in green. Of particular interest is the deviation between the estimated extremile p ξ τ and quantile p q τ . Being the estimates, respectively, of the mean and the median of the same asymmetric distribution K τ pF q of the transformation φ τ pY q, a significant deviation between their values diagnoses a heavier right tail of Y . Thereby the comparison above with the same level τ may be viewed as an explanatory tool for quantifying the "riskiness" implied by the distribution of Y , rather than as a method for final analysis, especially since we know that non-extrapolated sample extremiles and quantiles will be inconsistent in the typical extreme range τ ě 1 ´1{n. Moreover, moving from the standard quantile-based VaR to the extremile-based risk measure requires in practice the use of different asymmetry levels τ , say, τ q and τ ξ . For example, if we consider a pre-specified extremile level τ ξ , then for the comparison between the two estimators p ξ τ ξ and p q τq to be insightful, they must estimate the same theoretical risk measure ξ τ ξ " q τq . This latter equality implies that τ q " F pξ τ ξ q, whose empirical counterpart is p τ q " p F n p p ξ τ ξ q. This leads to a rival composite quantile estimator p q p τq of the direct extremile estimator p ξ τ ξ . As is to be expected, the latter estimator of an L 2 -nature appears to be more alert to big losses than its L 1 antecedent p q p τq , for any pre-specified level τ ξ .

Medical insurance data

The Society of Actuaries Group Medical Insurance Large Claims Database records all the claim amounts exceeding 25,000 USD over the period 1991-92. As in Beirlant et al. (2018) that the loss severity distribution is heavy-tailed with Hill's estimates p γ H around 0.359, where p γ H " 1 k ř k´1 i"0 plog Y n´i,n ´log Y n´k,n q as described in (13) with k " rnp1´τ n qs being an intermediate sequence of integers. Then nothing guarantees that the future does not hold some unexpected higher claim amounts. A usual way to assess the magnitude of such infrequent claim amounts from the extreme-value perspective is by using the Weissman quantile estimate p q ‹ τ 1

n " Y n´k,n pk{np n q p γ H , as described in (10) with τ 1 n " 1 ´pn . By construction, this tail estimate is expected to be capable of extrapolating outside the range of the available observations when p n ă 1{n. Following Beirlant et al. (2004, p.123), insurance companies typically are interested in p n " 1{100,000 ă 1{n, that is, in an estimate of the claim amount that will be exceeded (on average) only once in 100,000 cases. Figure 5 (b) shows the estimate p q ‹ τ 1 n against the sample fraction k (solid black curve). In practice, a commonly used heuristic approach for choosing an appropriate estimate is to pick out a suitable k corresponding to the first stable part of the plot [see, e.g., Section 3 in de [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF]]. A stable region appears for k from 150 up to 500, leading to estimates between 3.73 and 4.12 million, with an averaged estimate around 3.90 million. This tail risk estimate does not exceed the sample maximum Y n,n " 4.51 million (indicated by the horizontal pink line).

A more conservative estimator of the same extreme quantile-VaR q τ 1 n has been recently derived by [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF] as

p e ‹ p τ 1 n " ˆ1 ´p τ 1 n 1 ´τn ˙´p γ H p e τn where p τ 1 n " 1 ´1 ´τ 1 n p γ ´1 H ´1 " 1 ´pn p γ ´1 H ´1
and p e τn stands for the empirical counterpart of the expectile e τn , with τ n " 1 ´k{n.

The plot of the composite expectile estimator p e ‹ p τ 1 n against k (dashed gray curve) indicates 

k Þ Ñ p ξ Q,‹ τ 1 n (rainbow) and k Þ Ñ p ξ M,‹ τ 1 n (dotted black), along with the quantile plot k Þ Ñ p q ‹ τ 1 n (solid black), the expectile plot k Þ Ñ p e ‹ p τ 1 
n (dashed gray) and the sample maximum Y n,n (pink line); (c) Using the POT approach and the maximum likelihood

estimator of γ: The extremile plots k Þ Ñ r ξ Q,‹ τ 1 n (rainbow) and k Þ Ñ r ξ M,‹ τ 1 n (dotted black), along with the quantile plot k Þ Ñ r q ‹ τ 1 n (solid black), the expectile plot k Þ Ñ r e ‹ r τ 1 
n (dashed gray) and the maximum Y n,n (pink line).

an averaged estimate of around 4.13 million for k P r150, 500s. In contrast to p q ‹ τ 1 n which relies on a single order statistic Y n´k,n , the extrapolated expectile estimator p e ‹ p τ 1 n is based on the least asymmetrically weighted squares estimator p e τn , and hence is more sensitive to the magnitude of infrequent large claims. Yet, both p e ‹ p τ 1 n and p q ‹ τ 1 n actually estimate the median q τ 1 n of the asymmetric heavy-tailed distribution K τ 1 n pF q of Z τ 1 n d " φ τ 1 n pY q, see Proposition 1. Accordingly, when faced with very long tails of Z τ 1 n , the burden of representing a pessimistic risk measure is thwarted by the robustness properties of the median. The mean of Z τ 1 n , which is nothing but the extremile ξ τ 1 n , bears naturally much better this burden. The plots of its two estimators p ξ n . These estimates deserve indeed to be qualified as 'pessimistic' since they do lie beyond the range of the data, but not by much. This might be good news to practitioners whose concern is to contrast 'pessimistic' and 'optimistic' judgments as in the duality between the mean and the median. Besides this duality, it should also be clear that the resulting extremile estimates have their own intuitive interpretation. Indeed, since τ 1 n " p1{2q 1{r with r « 69,314, then ξ τ 1 n " ErmaxpY 1 , . . . , Y r qs gives the expected maximum claim amount among a fixed number of 69,314 potential claims. Finally, note that the effect of Hill's estimator p γ H of the tail index γ on p ξ Q,‹ n of q τ 1 n . Instead, one may choose to use the maximum likelihood (ML) and Peaks-Over-Threshold (POT) estimators of γ and q τ 1 n . The POT estimator of q τ 1 n has the form n . Taking a closer look to the construction of these competing asymmetric least squares estimators, we see that their substantial deviation is mainly due to the use of the Hill estimator p γ H in the Weissman extrapolation method and the ML estimator r γ ML in the POT method. The volatility of the POT plots can thus be explained, on the one hand, by an averaged estimate r γ ML " 0.38 slightly higher than p γ H " 0.36 (these estimates were averaged over k P r200, 500s and k P r150, 500s, respectively), and most importantly, on 

r q ‹ τ 1 n " Y n´k,n `r σ ML r γ ML

Discussion

Extremiles have several merits which deserve to be studied in more detail. They are attractive because of their conceptual simplicity, the easy implementation of their estimators and their good properties. They can be defined for a wide range of distributions and summarize a distribution in a similar way as quantiles and expectiles do. They are specified as a least squares analogue of quantiles but, unlike expectiles, they benefit from various equivalent explicit formulations and straightforward interpretations.

As is the case in the duality between the mean and the median, the choice between extremiles and quantiles will usually depend on the application at hand. Quantiles are appealing because of their conventional probabilistic interpretation in terms of relative frequency and their inherent robustness to extreme observations. By contrast, extremiles are more appropriate in any tail analysis where sensitivity to the magnitude of extremes is of prime importance. They afford more valuable information about how spread a distribution is and can serve as a more efficient instrument of risk protection than quantiles and expectiles in actuarial and portfolio allocation problems. Their use could be of genuine interest in any other decision problem where "realistic" and "optimistic" judgments are contrasted such as, for instance, in survival analysis and medical decision making where pessimistic patients might favor the consideration of extremiles rather than quantiles to measure the realistic performance of a hypothetical medical treatment.

In risk management, quantiles do not provide a coherent risk measure because they are not subadditive. By contrast, extremiles define a coherent spectral risk measure thanks to the nice attributes of the special weight-generating function J τ . Expectiles and the Expected Shortfall are coherent as well, but they have serious disadvantages, related to the absence of comonotonic additivity for expectiles and to the dependency of the Expected Shortfall solely on the tail event. By contrast, extremiles are comonotonically additive and depend on both the tail realizations and their probability. The key advantage of expectiles over extremiles and Expected Shortfall is their property of elicitability that corresponds to the existence of a natural forecast verification and comparison methodology (see e.g. Ziegel, 2016). Yet, it is known that competing forecasting methods of
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 123 Figures 1, 2 and 3 give the relative Mean-Squared Error (MSE) in top panels and bias in bottom panels of the estimators p ξ Q,‹ τ 1 n and p ξ M,‹ τ 1n , computed over 10, 000 replications, for γ " 1{4, 1{3 and 2{5, respectively. In terms of MSE, it may be seen that p ξ M,‹ τ 1 n has a very

(

  A4) Subadditivity: Π τ rY `r Y s ď Π τ rY s `Πτ r r Y s, for any loss variables Y and r Y . (A5) Preserving of stochastic order: Π τ rY s ď Π τ r r Y s if Y ď r Y with probability 1. Finally, Π τ r¨s is a regular risk measure since it fulfills the following additional fundamental conditions [as imposed e.g. in Definition 5 of Bassett et al. (2004)]: (A6) Law invariance: Π τ rY s " Π τ r r Y s if Y and r Y have the same distribution. (A7) Comonotonic additivity: Π τ rY `r Y s " Π τ rY s `Πτ r r Y s if Y and r Y are comonotone.

  i.d. non-negative loss random variables Y 1 , . . . , Y 35 . The corresponding sample mean and standard deviation are 199,900 and 325,807, respectively. The empirical estimates of the expected shortfall, quantile, expectile and extremile risk measures are graphed in Figure 4 (right panel) against the security level τ . The first impression to be gained from this figure is the lack of smoothness and stability of both sample quantile-VaR p q τ (blue) and ES p ν τ (orange): their discreteness as piecewise constant functions of the argument τ is a serious defect, especially in the important upper tail. Indeed, a small change in τ can trigger a (severe) jump in the values of the estimated VaR and ES.
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 4 Figure 4: Trended Hurricane Losses data. (Left) Histogram and scatterplot; (Right) Empirical expected-shortfall, extremile, expectile and quantile τ -risk measures.
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  2004) and[START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF], we deal here only with the 75,789 claims for 1991. The scatterplot and histogram shown in Figure5(a) give evidence of a considerable rightskewness. Also, it has been found in bothBeirlant et al. (2004, p.123) andDaouia et al. 
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 5 Figure 5: SOA Group Medical Insurance data. (a) Histogram and scatterplot of the logclaim amounts; (b) Using the Weissman extrapolation method and the Hill estimator: The extremile plots k Þ Ñ p ξ Q,‹

τ 1 n

 1 scheme, ranging from dark red (high p γ H ) to dark violet (low p γ H ). This effect closely parallels the influence of p γ H on the other extrapolated risk estimates p ξM,‹ τ 1 n , p q ‹ τ 1 n and p e ‹ p τ 1 n . The risk estimates p q ‹ τ 1 n , p e ‹ p τ 1 n , p ξ M,‹ τ 1 n and p ξ Q,‹ τ 1 n , graphed inFigure 5 (b), are all based on the Hill estimator p γ H of γ and the Weissman estimator p q ‹ τ 1

  r σ ML and r γ ML are chosen here to be the ML estimates for the parameters σ and γ of the Generalized Pareto approximation [see, e.g., Beirlant et al. (2004), p.158]. Replacing p γ c). These plots seem to be more volatile than those obtained via the Weissman extrapolation method in Figure 5 (b). A stable region appears, however, for k from 200 up to 500, leading to the averaged estimates r q ‹ 17 million. These POT and ML-based risk values are larger and hence more conservative than their Weissman and Hill-based analogues

  the other hand, by ML estimates of γ being far more volatile than their Hill counterparts as functions of k. The advantageous stability of p γ H relative to r γ ML becomes clear by comparing the color-schemes in Figures 5 (b) and (c). Thanks to the POT method however, one may be able to obtain profile likelihood confidence intervals by applying the elegant device in Chapter 5 of McNeil et al. (2015).
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Extremiles as risk measures

A very important actuarial and financial problem involves quantifying the "riskiness" implied by the distribution of a non-negative loss variable or a real-valued profit-loss variable. Greater variability of the random variable under consideration and particularly a heavier tail of its distribution necessitate a higher capital reserve for portfolios or price of the insurance risk. A leading risk measure in banking and other financial institutions is Value at Risk (VaR) with a confidence level τ P p0, 1q. It is defined as the τ th quantile q τ of the non-negative loss distribution with τ being close to one, and as ´qτ for the real-valued profit-loss distribution with τ being close to zero. An undesirable property of the VaR measure is that it is insensitive to the magnitude of extreme losses since it only depends on the frequency of tail losses and not on their values. A solution to this problem is to use the conditional tail mean ν τ " ErY |Y ą q τ s, for non-negative loss distributions, and ν τ " ´ErY |Y ă q τ s for real-valued profit-loss distributions [START_REF] Rockafellar | Conditional Value-at-Risk for General Loss Distributions[END_REF]]. An often convenient, equivalent definition of ν τ is as a spectral risk measure called Expected Shortfall (ES) [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF]]. Practitioners who are more concerned with the risk exposure to a catastrophic event, that may wipe out an investment in terms of the size of potential losses, favor the use of the ES ν τ . The latter may, however, be criticized for being too pessimistic since it only depends on the tail event. The quantile-based VaR and ES may therefore be considered as too liberal or too conservative, depending on the tail shape of the underlying distribution. The use of expectiles as an alternative measure of risk has recently attracted a lot of interest thanks to their asymmetric least squares nature [see, e.g., [START_REF] Kuan | Assessing value at risk with CARE, the Conditional Autoregressive Expectile models[END_REF] and [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF]]. This proposal was criticized though for its lack of comonotonic additivity [START_REF] Acerbi | Backtesting Expected Shortfall[END_REF]].

We will investigate in the sequel the properties of the extremile functional from the point of view of the axiomatic theory of risk measures. The discussion in Section 4.1 pertains to non-negative loss distributions, while Section 4.2 is concerned with real-valued profit-loss random variables. Section 4.3 examines the connection between tail extremiles, expectiles and ES. Section 4.4 considers two motivating examples on inflation-adjusted hurricanes and medical insurance data.

Expected Shortfall may be compared and assessed thanks to Fissler and Ziegel's (2016) important result that certain spectral risk measures are jointly elicitable with quantiles.

Although this result does not apply automatically to extremiles, these special spectral risk measures can already be recognized as reasonable alternatives to expectiles and traditional quantile-based risk measures. Further comparisons and practical experimentations will undoubtedly yield new refinements.

Supplementary Material

The supplement to this article contains additional simulations and the proofs of all theoretical results in the main article.