Gaussian process regression model for distribution inputs

UQSay

<u>François Bachoc</u>¹, Fabrice Gamboa¹, Jean-Michel Loubes¹ and Nil Venet² March the 21st, 2019, CentraleSupelec Paris-Saclay

¹Institut de Mathématiques de Toulouse, ²Università degli Studi di Bergamo

The regression problem for distribution inputs

We are given *n* input/output couples $(\mu_i, y_i) \in \mathcal{P}(\mathbb{R}) \times \mathbb{R}$, and we are looking to associate an output to a new input μ_{n+1} .

The regression problem for distribution inputs

We are given *n* input/output couples $(\mu_i, y_i) \in \mathcal{P}(\mathbb{R}) \times \mathbb{R}$, and we are looking to associate an output to a new input μ_{n+1} .

The regression problem for distribution inputs

We are given *n* input/output couples $(\mu_i, y_i) \in \mathcal{P}(\mathbb{R}) \times \mathbb{R}$, and we are looking to associate an output to a new input μ_{n+1} .

Our motivations are twofold: we want to deal with regression problems which inputs are

- 1. probability distributions (ex: aggregated or anonymised data, ...)
- 2. functional objects (spectra, histograms, ...)
 - with the nonnegative values and mass 1 restrictions
 - ... which in turn allow the use of tools such as the Wasserstein distance

- 1. Gaussian Process Regression
- 2. Existence of models Stationary kernels on the Wasserstein space
- 3. Maximum-likelihood model selection Asymptotic results
- 4. Numerical performances

Gaussian Process Regression

We chose a random process $(Y_x)_{x\in\mathbb{R}}$ and consider

 $\hat{Y}(x) := \mathbb{E}(Y_x | Y_{x_1} = y_1, \cdots, Y_{x_n} = y_n)$

We chose a random process $(Y_x)_{x\in\mathbb{R}}$ and consider

 $\hat{Y}(x) := \mathbb{E}(Y_x | Y_{x_1} = y_1, \cdots, Y_{x_n} = y_n)$

We chose a random process $(Y_x)_{x \in \mathbb{R}}$ and consider

$$\hat{Y}(x) := \mathbb{E}(Y_x | Y_{x_1} = y_1, \cdots, Y_{x_n} = y_n)$$

Here we need a random process $(Y_{\mu})_{\mu\in\mathcal{P}(\mathbb{R})}$ to consider

$$\widehat{Y}(\mu) := \mathbb{E}(Y_{\mu}|Y_{\mu_1} = y_1, \cdots, Y_{\mu_n} = y_n)$$

Existence of models – Stationary kernels on the Wasserstein space

$$W_2(\mu,\nu) := \left(\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^2} |x-y|^2 d\pi(x,y)\right)^{1/2},$$

where $\Pi(\mu, \nu)$ is the set of probability distributions on \mathbb{R}^2 with margins μ and ν .

We obtain a metric space $\mathcal{W}_2(\mathbb{R})$.

$$W_{2}(\mu,\nu) := \left(\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^{2}} |x-y|^{2} d\pi(x,y)\right)^{1/2},$$

where $\Pi(\mu,\nu)$ is the set of probability
distributions on \mathbb{R}^{2} with margins μ and ν .
 π We obtain a metric space $W_{2}(\mathbb{R})$.

For $\mu, \nu \in \mathcal{W}_2(\mathbb{R})$ and F_{μ}^{-1} , F_{ν}^{-1} the associated quantile functions,

$$W_{2}(\mu,\nu) = \left(\int_{[0,1]} \left(F_{\mu}^{-1}(u) - F_{\nu}^{-1}(u)\right)^{2} du\right)^{1/2}.$$
 (1)

- This optimal coupling, which is specific to the dimension 1 case, allows the numerical evaluation of Wasserstein distances.
- It is also the main ingredient of the proofs of Theorems 1 and 2.

Theorem 1 (Fractional Brownian fields)

For ever $0 \leq H \leq 1$ and $\sigma_0 \in W_2(\mathbb{R})$,

$$K^{H,\sigma_0}(\mu,\nu) = \frac{1}{2} \left(W_2^{2H}(\sigma_0,\mu) + W_2^{2H}(\sigma_0,\nu) - W_2^{2H}(\mu,\nu) \right)$$
(2)

is a covariance function on $\mathcal{W}_2(\mathbb{R})$. Moreover, it is nondegenerated if and only if 0 < H < 1.

- We get a fractional Brownian field indexed by W₂(ℝ). It is a generalisation of the time-indexed fractional Brownian motion, which inherits many enjoyable properties:
- Statistical auto-similarity, path-regularity and long distance memory that are governed by the *Hurst parameter H*.

Theorem 2 (Stationary processes)

For every completely monotone $F : \mathbb{R}^+ \to \mathbb{R}^+$ and $0 < H \leq 1$,

$$(\mu,\nu)\mapsto F\left(W_2^{2H}(\mu,\nu)\right) \tag{3}$$

is a stationary covariance function on $\mathcal{W}_2(\mathbb{R})$.

- Recall that F ∈ C[∞](ℝ⁺, ℝ⁺) is completely monotone if (-1)ⁿF⁽ⁿ⁾ is nonnegatively valued for every n ∈ N.
- In particular for every $\sigma^2, \ell > 0$ and $0 \le H \le 1$,

$$\mathcal{K}_{\sigma^2,\ell,H}(\nu_1,\nu_2) = \sigma^2 \exp\left(-\frac{W_2(\nu_1,\nu_2)^{2H}}{\ell}\right) \tag{M}$$

is a valid covariance.

Maximum-likelihood model selection – Asymptotic results

Maximum likelihood estimator

- Consider input distributions $\mu_1, \ldots, \mu_n \in W_2(\mathbb{R})$ and observations $Y_{\mu_1}, \ldots, Y_{\mu_n}$
- Let $y = (Y_{\mu_1}, \dots, Y_{\mu_n})^\top$
- Let $\{K_{\theta}; \theta \in \Theta\}$ be a set of covariance functions on $\mathcal{W}_2(\mathbb{R})$ with $\Theta \subset \mathbb{R}^p$
- Let $R_{ heta}$ be the n imes n matrix $[K_{ heta}(\mu_i, \mu_j)]_{1 \le i,j \le n}$
- Then the maximum likelihood estimator is

$$\hat{\theta}_{ML} \in \operatorname*{argmin}_{\theta \in \Theta} \left(\mathsf{log}(\mathsf{det}(R_{\theta})) + y^{\top} R_{\theta}^{-1} y \right)$$

Condition 1 (Asymptotic expansion framework)

We consider a triangular array of observation points $\{\mu_1, ..., \mu_n\} = \{\mu_1^{(n)}, ..., \mu_n^{(n)}\}$ so that for all $n \in \mathbb{N}$ and $1 \le i \le n, \mu_i$ has support in [i, i + K] with a fixed $K < \infty$.

Condition 2 (Parametric stationary model)

The model of covariance functions $\{K_{\theta}, \theta \in \Theta\}$ satisfies

$$\forall \theta \in \Theta, \ K_{\theta}(\mu, \nu) = F_{\theta}(W_2(\mu, \nu)),$$

with $F_{\theta} : \mathbb{R}^+ \to \mathbb{R}$ and $\sup_{\theta \in \Theta} |F_{\theta}(t)| \le \frac{A}{1+|t|^{1+\tau}}$ with a fixed $A < \infty$, $\tau > 1$.

Condition 3 (Well-specified case)

We have observations $y_i = Y(\mu_i)$, $i = 1, \dots, n$ of the centered Gaussian Process Y with covariance function K_{θ_0} for some $\theta_0 \in \Theta$.

Condition 4 (Asymptotical nondegeneracy)

The sequence of matrices $R_{\theta} = (K_{\theta}(\mu_i, \mu_j))_{1 \le i,j \le n}$ satisfies

 $\lambda_{\inf}(R_{\theta}) \geq c$

for a fixed c > 0, where $\lambda_{inf}(R_{\theta})$ denotes the smallest eigenvalue of R_{θ} .

Condition 5 (First sampling condition)

 $\forall \alpha > 0$,

$$\liminf_{n\to\infty}\inf_{\|\theta-\theta_0\|\geq\alpha}\frac{1}{n}\sum_{i,j=1}^n\left[\mathcal{K}_\theta(\mu_i,\mu_j)-\mathcal{K}_{\theta_0}(\mu_i,\mu_j)\right]^2>0.$$

Theorem 3 (Consistency of MLE)

Under conditions 1 to 5, the maximum-likelihood estimator is consistent, that is to say:

$$\hat{\theta}_{ML} \xrightarrow[n \to \infty]{\mathbb{P}} \theta_0.$$

Supplementary conditions

Condition 6 (Model regularity)

- $\forall t \geq 0, F_{\theta}(t) \text{ is } C^{1} \text{ with respect to } \theta \text{ and verifies}$ $\sup_{\theta \in \Theta} \max_{i=1,\cdots,p} \left| \frac{\partial}{\partial \theta_{i}} F_{\theta}(t) \right| \leq \frac{A}{1+t^{1+\tau}}, \text{ where } A, \tau \text{ are defined in}$ Condition 2.
- For every $t \ge 0$, $F_{\theta}(t)$ is C^3 with respect to θ and $\forall q \in \{2,3\}$, $\forall i_1 \cdots i_q \in \{1, \cdots p\}$,

$$\sup_{\theta\in\Theta}\left|\frac{\partial}{\partial\theta_{i_1}}\cdots\frac{\partial}{\partial\theta_{i_q}}\mathsf{F}_\theta(t)\right|\leq \frac{A}{1+|t|^{1+\tau}}.$$

Condition 7 (Second sampling condition)

$$\forall (\lambda_1 \cdots, \lambda_p) \neq (0, \cdots, 0),$$

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{i,j=1}^n \left(\sum_{k=1}^p \lambda_k \frac{\partial}{\partial_{\theta_k}} K_{\theta_0}(\mu_i, \mu_j) \right)^2 > 0.$$

14

Theorem 4

Let M_{ML} be the $p \times p$ matrix defined by

$$(M_{ML})_{i,j} = \frac{1}{2n} \operatorname{Tr} \left(R_{\theta_0}^{-1} \frac{\partial R_{\theta_0}}{\partial \theta_i} R_{\theta_0}^{-1} \frac{\partial R_{\theta_0}}{\partial \theta_j} \right).$$

Under conditions 1 to 7, the maximum-likelihood estimator is asymptotically normal:

$$\sqrt{n} \ M_{ML}^{1/2} \left(\hat{\theta}_{ML} - \theta_0 \right) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, I_{\rho}).$$

Moreover

$$0 < \liminf_{n \to \infty} \lambda_{\min}(M_{ML}) \leq \limsup_{n \to \infty} \lambda_{\max}(M_{ML}) < +\infty.$$

Proposition 1

Assume that Conditions 2 and 6 hold, that for $\theta \neq \theta_0$, F_{θ} and F_{θ_0} are not equal everywhere on \mathbb{R}^+ , and that there does not exist $(\lambda_1, ..., \lambda_p) \neq (0, ..., 0)$ so that $\sum_{i=1}^p \lambda_i (\partial/\partial \theta_i) F_{\theta_0}$ is the zero function on \mathbb{R}^+ .

Let $(Z_i)_{i \in \mathbb{Z}}$ be iid, centred Gaussian processes on \mathbb{R} with continuous trajectories, and stationary covariance $C_0(u - v)$.

Assume that $\hat{C}_0(w)|w|^{2p}$ is bounded away from 0 and ∞ as $|w| \to \infty$. Let K > 1 be fixed. For $i \in \mathbb{N}$, let μ_i be the measure with density

$$f_i(t) = \frac{e^{Z_i(t-i)}}{\int_i^{i+K} e^{Z_i(t-i)dt}} \mathbb{1}_{[i,i+K]}(t).$$

Then, almost surely, with the sequence of random probability measures $\{\mu_1, ..., \mu_n\}$, Conditions 5 and 7 hold.

Theorem 5

Under conditions 1 to 7, the Kriging estimator under the ML-estimated parameter $\hat{\theta}_{ML}$ is asymptotically optimal:

$$orall \mu \in \mathcal{W}_2(\mathbb{R}), \; \left| \hat{Y}_{\hat{ heta}_{ML}}(\mu) - \hat{Y}_{ heta_0}(\mu)
ight| = o_{\mathbb{P}}(1).$$

Numerical performances

• Denote by $m_k(\nu)$ the order k moment of ν . We consider

$$F: \mathcal{W}_{2}(\mathbb{R}) \to \mathbb{R}$$
$$F(\nu) = \frac{m_{1}(\nu)}{0.05 + \sqrt{m_{2}(\nu) - m_{1}(\nu)^{2}}},$$
(4)

which we are going to regress.

• Denote by $m_k(\nu)$ the order k moment of ν . We consider

$$F: \mathcal{W}_2(\mathbb{R}) \to \mathbb{R}$$

$$F(\nu) = \frac{m_1(\nu)}{0.05 + \sqrt{m_2(\nu) - m_1(\nu)^2}},$$
(4)

which we are going to regress.

 Let us generate normal random variables ν₁, · · · , ν₁₀₀, with means and variances drawn uniformly at random, randomly perturbed to exhibit irregularities.

• Denote by $m_k(\nu)$ the order k moment of ν . We consider

$$F: \mathcal{W}_2(\mathbb{R}) \to \mathbb{R}$$

$$F(\nu) = \frac{m_1(\nu)}{0.05 + \sqrt{m_2(\nu) - m_1(\nu)^2}},$$
(4)

which we are going to regress.

- Let us generate normal random variables ν₁, · · · , ν₁₀₀, with means and variances drawn uniformly at random, randomly perturbed to exhibit irregularities.
- We estimate $\hat{\sigma}^2, \hat{\ell}, \hat{H}$ by maximising the maximum likelihood for the parametric model:

$$\mathcal{K}_{\sigma^2,\ell,H}(\nu_1,\nu_2) = \sigma^2 \exp\left(-\frac{W_2(\nu_1,\nu_2)^{2H}}{\ell}\right).$$
 (5)

 We evaluate the method on a test dataset (ν_{t,i})⁵⁰⁰_{i=1} which is generated in a same way as the ν_i,

• We evaluate the method on a test dataset $(\nu_{t,i})_{i=1}^{500}$ which is generated in a same way as the ν_i , with the criteria:

$$RMSE^{2} = \frac{1}{500} \sum_{i=1}^{500} \left(F(\nu_{t,i}) - \hat{F}(\nu_{t,i}) \right)^{2},$$
$$CIR_{\alpha} = \frac{1}{500} \sum_{i=1}^{500} \mathbf{1} \left\{ \left| F(\nu_{t,i}) - \hat{F}(\nu_{t,i}) \right| \le q_{\alpha} \hat{\sigma}(\nu_{t,i}) \right\}.$$

• We evaluate the method on a test dataset $(\nu_{t,i})_{i=1}^{500}$ which is generated in a same way as the ν_i , with the criteria:

$$RMSE^{2} = \frac{1}{500} \sum_{i=1}^{500} \left(F(\nu_{t,i}) - \hat{F}(\nu_{t,i}) \right)^{2},$$
$$CIR_{\alpha} = \frac{1}{500} \sum_{i=1}^{500} \mathbf{1} \left\{ \left| F(\nu_{t,i}) - \hat{F}(\nu_{t,i}) \right| \le q_{\alpha} \hat{\sigma}(\nu_{t,i}) \right\}.$$

modèle	RMSE	$CIR_{0.9}$
"Wasserstein"	0.094	0.92
"Legendre" ordre 5	0.49	0.92
"Legendre" ordre 10	0.34	0.89
"Legendre" ordre 15	0.29	0.91
"PCA" ordre 5	0.63	0.82
"PCA" ordre 10	0.52	0.87
"PCA" ordre 15	0.47	0.93

Two stage sampling

- In [6], Poczos and al. try to predict outputs *S*(*P*) corresponding to distributions *P*, where only samples of those are available.
 - 1. Starting with a kernel smoothing $\hat{P}, \hat{P}_1, \cdots, \hat{P}_n$ of the empirical distributions.
 - Then the prediction \$\hfrac{S}(\hfrac{P})\$ of \$S(P)\$ is obtained by a weighted average of \$S(P_1), ..., \$S(P_n)\$. Weights are obtained by applying some kernel to the \$L^1\$ distance between densities \$\hfrac{P}{p}\$ and \$\hfrac{P_1}{p_1}, \dots, \$\hfrac{P_n}{p_n}\$.

Two stage sampling

- In [6], Poczos and al. try to predict outputs *S*(*P*) corresponding to distributions *P*, where only samples of those are available.
 - 1. Starting with a kernel smoothing $\hat{P}, \hat{P}_1, \cdots, \hat{P}_n$ of the empirical distributions.
 - Then the prediction \$\hfrac{S}(\hfrac{P})\$ of \$S(P)\$ is obtained by a weighted average of \$S(P_1), ..., \$S(P_n)\$. Weights are obtained by applying some kernel to the \$L^1\$ distance between densities \$\hfrac{P}{p}\$ and \$\hfrac{P_1}{p_1}, \dots, \$\hfrac{P_n}{p_n}\$.
- We add a nugget term to our covariance to accomodate for the differenve between S(P) and S(P̂):

$$K_{\sigma^{2},\ell,H,\delta}(\nu_{1},\nu_{2}) = \sigma^{2} \exp\left(-\frac{W_{2}(\nu_{1},\nu_{2})^{2H}}{\ell}\right) + \delta \mathbf{1}_{\{W_{2}(\nu_{1},\nu_{2})=\mathbf{0}\}},$$

and obtain the following results:

model	RMSE	CIR _{0.9}
"distribution"	0.21	0.91
"kernel regression"	0.93	

- For distributions on ℝ^d, d > 1, the nice representation with the quantile functions does not hold any longer
- Our kernels do not remain non-negative definite when extended to distributions on \mathbb{R}^d , d>1
- We suggest to compute *L*² norms between optimal transport maps to obtain non-negative definite kernels.

F. Bachoc.

Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes. *Journal of Multivariate Analysis*, 125:1–35, 2014.

F. Bachoc, F. Gamboa, J.-M. Loubes, and N. Venet.
 Gaussian process regression model for distribution inputs.
 IEEE Transactions on Information Theory, 64(10):6620–6637, 2018.

F. Bachoc, A. Suvorikova, D. Ginsbourger, J.-M. Loubes, and V. Spokoiny.

Gaussian processes for multidimensional distribution inputs via optimal transport and Hilbertian embedding.

Electronic Journal of Statistics, 14(2):2742-2772, 2020.

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic analysis on semigroups. Springer-Verlag, 1984.

J. Istas.

Manifold indexed fractional fields.

ESAIM Probab. Stat., 16:222–276, 2012.

B. Póczos, A. Singh, A. Rinaldo, and L. Wasserman. **Distribution-free distribution regression.**

In In Proceedings of the 16th International Conference on Artificial Intelligence and Statistics, volume 31 of JMLR Proceedings, pages 507–515, 2013.

References iii

N. Venet.

Nonexistence of fractional brownian fields indexed by cylinders.

arXiv preprint, 2016.

N. Venet.

On the existence of fractional brownian fields indexed by manifolds with closed geodesics.

arXiv preprint, 2016.

C. Villani.

Optimal transport: old and new, volume 338.

Springer Science & Business Media, 2009.

Thank you for your attention