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The regression problem for distribution inputs

We are given n input/output couples  (ui,y;) € P(R) x R, and we are
looking to associate an output to a new input fi,.1.
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Our motivations are twofold: we want to deal with regression problems
which inputs are

1. probability distributions (ex: aggregated or anonymised data, ...)
2. functional objects (spectra, histograms, ...)

e with the nonnegative values and mass 1 restrictions
e ... which in turn allow the use of tools such as the Wasserstein
distance
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Gaussian Process Regression (Kriging)
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We chose a random process (Yx)xer and consider

\A/(X) = ]E(YX|YX1 =Y, 7YX :yn)
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Gaussian Process Regression (Kriging)

Output € R

p1 fi 3 la”Hs T nput € P(R).

Here we need a random process (Y),),cp(r) to consider

?(/1) = E(\/,“|\/,“1 =Y, 7»//1,7 :yn)



Existence of models — Stationary
kernels on the Wasserstein space



The Wasserstein distance

The Wasserstein distance between two probability distributions x4 and v
that admit a second order moment is defined by:

1/2

Wa(p,v):= (_inf x —y[dr(x,y) ) ,
meN(u,v) Jr2

where M(u,v) is the set of probability

distributions on R? with margins p and v.

We obtain a metric space W5(R).
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A core remark in WW,(R)

For j1,v € Wh(R) and F,!, F ! the associated quantile functions,

1/2
Wa(p,v) = </ (Ft(u) - Ful(U))2dU> : (1)
[0,1]

e This optimal coupling, which is specific to the dimension 1 case,
allows the numerical evaluation of Wasserstein distances.

e It is also the main ingredient of the proofs of Theorems 1 and 2.



Existence of Wasserstein-indexed models i

Theorem 1 (Fractional Brownian fields)

For ever 0 < H <1 and o9 € Wh(R),

KHJO(/J?V) = (W22H(007N) + W22H(UO7V) - W22H(/~"7 V)) (2)

N~

is a covariance function on Ws(R). Moreover, it is nondegenerated if
and only if0 < H < 1.

e We get a fractional Brownian field indexed by Wh(R). It is a
generalisation of the time-indexed .
which inherits many enjoyable properties:

e Statistical auto-similarity, path-regularity and long distance memory
that are governed by the Hurst parameter H.



Existence of Wasserstein-indexed models ii

Theorem 2 (Stationary processes)

For every completely monotone F : Rt — R* and 0 < H < 1,

(u,v) = F (W3 (,v)) (3)

is a stationary covariance function on W,(R).

e Recall that F € C®(R*,R™) is completely monotone if (—1)"F(")
is nonnegatively valued for every n € N.

e In particular for every 02,/ >0and 0 < H <1,

Koo 1(11,v2) = 07 exp (—%(”1”2)2) (M)

is a valid covariance.



Maximum-likelihood model
selection — Asymptotic results




Maximum likelihood estimator

Consider input distributions p1, ..., i, € Wa(R) and observations
\//1,17 ©coog \/,u,,,

Lety = (Yu,---s YMH)T

Let {Kp; 0 € O} be a set of covariance functions on W, (IR) with
© CRP

Let Ry be the n x n matrix [Kg (i, 1tj)]1<ij<n

e Then the maximum likelihood estimator is

O € argmin (log(det(Rg)) +y ' Ry ')
e



Conditions for our results i

Condition 1 (Asymptotic expansion framework)

We consider a triangular array of observation points
{p1, s pin} = {ugn), ...,ME,")} so that for alln € N and 1 < < n, u;
has support in [i, i + K] with a fixed K < cc.

Condition 2 (Parametric stationary model)
The model of covariance functions {Ky,0 € ©} satisfies
Vo e @7 KG(IU/7V) = FH (W2(M7 V)) )

with Fy : R™ — R and supycg |Fo(t)| < with a fixed A < oo,

7> 1.

__A
1+[¢|tF7
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Conditions for our results ii

Condition 3 (Well-specified case)

We have observations y; = Y (u;), i =1,--- , n of the centered
Gaussian Process Y with covariance function Ky, for some 6 € ©.

Condition 4 (Asymptotical nondegeneracy)

The sequence of matrices Ry = (Ko(1i, 1)), <; j<, Satisfies
Ainf(Rg) > ¢

for a fixed ¢ > 0, where \in¢(Ry) denotes the smallest eigenvalue of Ry.

11



Conditions for our results iii

Condition 5 (First sampling condition)

Ya > 0,

L. . 1
liminf inf —
n—00 [|6—6ol|>a N

Z [KF)(/LH/!‘j) — Kao(:ul'a UJ)]2 > 0.
ij=1
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Consistency of the maximum-likelihood estimator

Theorem 3 (Consistency of MLE)

Under conditions 1 to 5, the maximum-likelihood estimator is
consistent, that is to say:

A P
QML — 90.
n—oo

13



Supplementary conditions

Condition 6 (Model regularity)

o Vt >0, Fy(t) is C* with respect to 0 and verifies

O k(1)

su max
p o 89,

0€0 i=1,.p
Condition 2.

<
— 1

T where A, T are defined in

e Forevery t >0, Fy(t) is C* with respect to § and ¥q € {2,3},
V"l"'/.q (S {17p},

iFe(l’) < 4

0
sup | ag,  de, )| < Ty

0€

Condition 7 (Second sampling condition)

V()\1"' 7/\P)7é(07"' ,0),

2
R iy )
liminf — Z (Z AkafekKeo (uwu)) > 0.

= 14
ij=1 \k=1



Asymptotic normality of the maximum-likelihood estimator

Theorem 4

Let My be the p x p matrix defined by

o 1 _18R90 _10R90
(MML)I,J = on Tr <R9o 69, RGO 891 o

Under conditions 1 to 7, the maximum-likelihood estimator is
asymptotically normal:

Moreover
0 < liminf,— o0 Amin(Mumr) < limsup,,_s oo Amax(Mumr) < +o0.
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Sampling conditions are reasonable

Proposition 1

Assume that Conditions 2 and 6 hold, that for 6 # 6y, Fy and Fy, are

not equal everywhere on R*, and that there does not exist

(Mo Ap) # (0, ..., 0) so that > X\i(0/00;)Fy, is the zero function

onRT.

Let (Z;)iez be iid, centred Gaussian processes on R with continuous

trajectories, and stationary covariance Co(u — v).

Assume that Co(w)|w|?? is bounded away from 0 and oo as |w| — oo.

Let K > 1 be fixed. Fori € N, let yi; be the measure with density
eZ;(t—i)

T

L, i+ (£)-

Then, almost surely, with the sequence of random probability measures
{p1, s o}, Conditions 5 and 7 hold.
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Kriging under the ML-estimated parameter

Theorem 5

Under conditions 1 to 7, the Kriging estimator under the ML-estimated
parameter O is asymptotically optimal:

Vi € Wa(R), | V5, (1) — Yoo (12)| = op(1).

17



Numerical performances




Comparison with projection-based covariances

e Denote by my(v) the order k moment of v. We consider
F:Wh(R) - R

_ m(v)
0.05 + /mp(v) — my(v)?’

which we are going to regress.

F(v)
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Comparison with projection-based covariances

e Denote by my(v) the order k moment of v. We consider

F: Wy(R) - R

_ my(v)
F) = 0.05+ y/mo(v) — ml(l/)2’ )

which we are going to regress.
e Let us generate normal random variables vq, - - - | 1199, with means
and variances drawn uniformly at random, randomly perturbed to

exhibit irregularities.

e We estimate &2,@, A by maximising the maximum likelihood for the
parametric model:

(5)

. W 2H
Koz o 1(v1,12) = 07 exp (—M) .
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Comparison with projection-based covariances

e We evaluate the method on a test dataset (v;;)2% which is
generated in a same way as the v;,
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Comparison with projection-based covariances

e We evaluate the method on a test dataset (v;;)2% which is
generated in a same way as the v;, with the criteria:

500

1 N 2
2 _ .
RMSE? = - Z; (F( Vi) — F(vt,,)) :
500
C/R _%Zl{‘F Vt, - th)‘gqa&(yt,/)}'
modele RMSE | CIRy9
“Wasserstein” 0.094 0.92

“Legendre” ordre 5 0.49 0.92
“Legendre” ordre 10 | 0.34 0.89
“Legendre” ordre 15 | 0.29 0.91
“PCA” ordre 5 0.63 0.82
“PCA" ordre 10 0.52 0.87
“PCA” ordre 15 0.47 0.93
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Two stage sampling

e In [6], Poczos and al. try to predict outputs S(P) corresponding to
distributions P, where only samples of those are available.
1. Starting with a kernel smoothing IS7 PAl, e ,PA,, of the empirical
distributions.
2. Then the prediction $(P) of S(P) is obtained by a weighted average
of S(P1), ..., S(Py). Weights are obtained by applying some kernel to
the L! dlstance between densities P and Pl, .- ,P,,.
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Two stage sampling

e In [6], Poczos and al. try to predict outputs S(P) corresponding to
distributions P, where only samples of those are available.
1. Starting with a kernel smoothing IS7 PAl, e ,PA,, of the empirical
distributions.
2. Then the prediction $(P) of S(P) is obtained by a weighted average
of S(P1), ..., S(Py). Weights are obtained by applying some kernel to
the L! dlstance between densities P and Pl, .- ,P,,.
e We add a nugget term to our covariance to accomodate for the

differenve between S(P) and S(P):

Wa(vy, 10)?H
2 2(V1, 12 :
Kaz,e,H,é(Vh V2) = 0 €exp (—é + ”1{ Ws(v1,12)=0}»

and obtain the following results:

model RMSE | CIRyo
“distribution” 0.21 0.91
“kernel regression” | 0.93 0




Prospect: multidimensional case

e For distributions on R?, d > 1, the nice representation with the
quantile functions does not hold any longer

e Our kernels do not remain non-negative definite when extended to
distributions on RY, d > 1

e We suggest to compute L? norms between optimal transport maps

to obtain non-negative definite kernels.
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