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The regression problem for distribution inputs

We are given n input/output couples (µi , yi ) ∈ P(R)× R, and we are

looking to associate an output to a new input µn+1.
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Motivations

Our motivations are twofold: we want to deal with regression problems

which inputs are

1. probability distributions (ex: aggregated or anonymised data, ...)

2. functional objects (spectra, histograms, ...)

• with the nonnegative values and mass 1 restrictions

• ... which in turn allow the use of tools such as the Wasserstein

distance
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Outline of the presentation

1. Gaussian Process Regression

2. Existence of models – Stationary kernels on the Wasserstein space

3. Maximum-likelihood model selection – Asymptotic results

4. Numerical performances
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Gaussian Process Regression



Gaussian Process Regression (Kriging)

Output ∈ R

Input ∈ Rx1 x2 x3 x4 x5

We chose a random process (Yx)x∈R and consider

Ŷ (x) := E(Yx |Yx1 = y1, · · · ,Yxn = yn)
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Gaussian Process Regression (Kriging)

Output ∈ R

Input ∈ P(R).µ1 µ2 µ3 µ4 µ5

Here we need a random process (Yµ)µ∈P(R) to consider

Ŷ (µ) := E(Yµ|Yµ1 = y1, · · · ,Yµn = yn)
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Existence of models – Stationary

kernels on the Wasserstein space



The Wasserstein distance

The Wasserstein distance between two probability distributions µ and ν

that admit a second order moment is defined by:

R

W2(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
R2

|x − y |2 dπ(x , y)

)1/2

,

where Π(µ, ν) is the set of probability

distributions on R2 with margins µ and ν.

µ

ν

We obtain a metric space W2(R).
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A core remark in W2(R)

For µ, ν ∈ W2(R) and F−1
µ , F−1

ν the associated quantile functions,

W2(µ, ν) =

(∫
[0,1]

(
F−1
µ (u)− F−1

ν (u)
)2

du

)1/2

. (1)

• This optimal coupling, which is specific to the dimension 1 case,

allows the numerical evaluation of Wasserstein distances.

• It is also the main ingredient of the proofs of Theorems 1 and 2.
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Existence of Wasserstein-indexed models i

Theorem 1 (Fractional Brownian fields)

For ever 0 ≤ H ≤ 1 and σ0 ∈ W2(R),

KH,σ0 (µ, ν) =
1

2

(
W 2H

2 (σ0, µ) + W 2H
2 (σ0, ν)−W 2H

2 (µ, ν)
)

(2)

is a covariance function on W2(R). Moreover, it is nondegenerated if

and only if 0 < H < 1.

• We get a fractional Brownian field indexed by W2(R). It is a

generalisation of the time-indexed fractional Brownian motion,

which inherits many enjoyable properties:

• Statistical auto-similarity, path-regularity and long distance memory

that are governed by the Hurst parameter H.
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Existence of Wasserstein-indexed models ii

Theorem 2 (Stationary processes)

For every completely monotone F : R+ → R+ and 0 < H ≤ 1,

(µ, ν) 7→ F
(
W 2H

2 (µ, ν)
)

(3)

is a stationary covariance function on W2(R).

• Recall that F ∈ C∞(R+,R+) is completely monotone if (−1)nF (n)

is nonnegatively valued for every n ∈ N.

• In particular for every σ2, ` > 0 and 0 ≤ H ≤ 1,

Kσ2,`,H(ν1, ν2) = σ2 exp

(
−W2(ν1, ν2)2H

`

)
(M)

is a valid covariance.
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Maximum-likelihood model

selection – Asymptotic results



Maximum likelihood estimator

• Consider input distributions µ1, . . . , µn ∈ W2(R) and observations

Yµ1 , . . . ,Yµn

• Let y = (Yµ1 , . . . ,Yµn)>

• Let {Kθ; θ ∈ Θ} be a set of covariance functions on W2(R) with

Θ ⊂ Rp

• Let Rθ be the n × n matrix [Kθ(µi , µj)]1≤i,j≤n

• Then the maximum likelihood estimator is

θ̂ML ∈ argmin
θ∈Θ

(
log(det(Rθ)) + y>R−1

θ y
)
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Conditions for our results i

Condition 1 (Asymptotic expansion framework)

We consider a triangular array of observation points

{µ1, ..., µn} = {µ(n)
1 , ..., µ

(n)
n } so that for all n ∈ N and 1 ≤ i ≤ n, µi

has support in [i , i + K ] with a fixed K <∞.

Condition 2 (Parametric stationary model)

The model of covariance functions {Kθ, θ ∈ Θ} satisfies

∀θ ∈ Θ, Kθ(µ, ν) = Fθ (W2(µ, ν)) ,

with Fθ : R+ → R and supθ∈Θ |Fθ(t)| ≤ A
1+|t|1+τ with a fixed A <∞,

τ > 1.
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Conditions for our results ii

Condition 3 (Well-specified case)

We have observations yi = Y (µi ), i = 1, · · · , n of the centered

Gaussian Process Y with covariance function Kθ0 for some θ0 ∈ Θ.

Condition 4 (Asymptotical nondegeneracy)

The sequence of matrices Rθ = (Kθ(µi , µj))1≤i,j≤n satisfies

λinf(Rθ) ≥ c

for a fixed c > 0, where λinf(Rθ) denotes the smallest eigenvalue of Rθ.
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Conditions for our results iii

Condition 5 (First sampling condition)

∀α > 0,

lim inf
n→∞

inf
‖θ−θ0‖≥α

1

n

n∑
i,j=1

[Kθ(µi , µj)− Kθ0 (µi , µj)]2
> 0.
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Consistency of the maximum-likelihood estimator

Theorem 3 (Consistency of MLE)

Under conditions 1 to 5, the maximum-likelihood estimator is

consistent, that is to say:

θ̂ML
P−→

n→∞
θ0.
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Supplementary conditions

Condition 6 (Model regularity)

• ∀t ≥ 0, Fθ(t) is C1 with respect to θ and verifies

sup
θ∈Θ

max
i=1,··· ,p

∣∣∣∣ ∂∂θi Fθ(t)

∣∣∣∣ ≤ A

1 + t1+τ
, where A, τ are defined in

Condition 2.

• For every t ≥ 0, Fθ(t) is C3 with respect to θ and ∀q ∈ {2, 3},
∀i1 · · · iq ∈ {1, · · · p},

sup
θ∈Θ

∣∣∣∣ ∂∂θi1 · · · ∂

∂θiq
Fθ(t)

∣∣∣∣ ≤ A

1 + |t|1+τ
.

Condition 7 (Second sampling condition)

∀(λ1 · · · , λp) 6= (0, · · · , 0),

lim inf
n→∞

1

n

n∑
i,j=1

(
p∑

k=1

λk
∂

∂θk
Kθ0 (µi , µj)

)2

> 0.
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Asymptotic normality of the maximum-likelihood estimator

Theorem 4

Let MML be the p × p matrix defined by

(MML)i,j =
1

2n
Tr

(
R−1
θ0

∂Rθ0

∂θi
R−1
θ0

∂Rθ0

∂θj

)
.

Under conditions 1 to 7, the maximum-likelihood estimator is

asymptotically normal:

√
n M

1/2
ML

(
θ̂ML − θ0

)
L−→

n→∞
N (0, Ip).

Moreover

0 < lim infn→∞ λmin(MML) ≤ lim supn→∞ λmax(MML) < +∞.
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Sampling conditions are reasonable

Proposition 1

Assume that Conditions 2 and 6 hold, that for θ 6= θ0, Fθ and Fθ0 are

not equal everywhere on R+, and that there does not exist

(λ1, ..., λp) 6= (0, ..., 0) so that
∑p

i=1 λi (∂/∂θi )Fθ0 is the zero function

on R+.

Let (Zi )i∈Z be iid, centred Gaussian processes on R with continuous

trajectories, and stationary covariance C0(u − v).

Assume that Ĉ0(w)|w |2p is bounded away from 0 and ∞ as |w | → ∞.

Let K > 1 be fixed. For i ∈ N, let µi be the measure with density

fi (t) =
eZi (t−i)∫ i+K

i
eZi (t−i)dt

1[i,i+K ](t).

Then, almost surely, with the sequence of random probability measures

{µ1, ..., µn}, Conditions 5 and 7 hold.
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Kriging under the ML-estimated parameter

Theorem 5

Under conditions 1 to 7, the Kriging estimator under the ML-estimated

parameter θ̂ML is asymptotically optimal:

∀µ ∈ W2(R),
∣∣∣Ŷθ̂ML

(µ)− Ŷθ0 (µ)
∣∣∣ = oP(1).
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Numerical performances



Comparison with projection-based covariances

• Denote by mk(ν) the order k moment of ν. We consider

F :W2(R)→ R

F (ν) =
m1(ν)

0.05 +
√
m2(ν)−m1(ν)2

, (4)

which we are going to regress.

• Let us generate normal random variables ν1, · · · , ν100, with means

and variances drawn uniformly at random, randomly perturbed to

exhibit irregularities.

• We estimate σ̂2, ˆ̀, Ĥ by maximising the maximum likelihood for the

parametric model:

Kσ2,`,H(ν1, ν2) = σ2 exp

(
−W2(ν1, ν2)2H

`

)
. (5)
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Comparison with projection-based covariances

• We evaluate the method on a test dataset (νt,i )
500
i=1 which is

generated in a same way as the νi ,

with the criteria:

RMSE 2 =
1

500

500∑
i=1

(
F (νt,i )− F̂ (νt,i )

)2

,

CIRα =
1

500

500∑
i=1

1
{∣∣∣F (νt,i )− F̂ (νt,i )

∣∣∣ ≤ qασ̂(νt,i )
}
.

modèle RMSE CIR0.9

“Wasserstein” 0.094 0.92

“Legendre” ordre 5 0.49 0.92

“Legendre” ordre 10 0.34 0.89

“Legendre” ordre 15 0.29 0.91

“PCA” ordre 5 0.63 0.82

“PCA” ordre 10 0.52 0.87

“PCA” ordre 15 0.47 0.93
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Two stage sampling

• In [6], Poczos and al. try to predict outputs S(P) corresponding to

distributions P, where only samples of those are available.

1. Starting with a kernel smoothing P̂, P̂1, · · · , P̂n of the empirical

distributions.

2. Then the prediction Ŝ(P̂) of S(P) is obtained by a weighted average

of S(P1), ..., S(Pn). Weights are obtained by applying some kernel to

the L1 distance between densities P̂ and P̂1, · · · , P̂n.

• We add a nugget term to our covariance to accomodate for the

differenve between S(P) and S(P̂):

Kσ2,`,H,δ(ν1, ν2) = σ2 exp

(
−W2(ν1, ν2)2H

`

)
+ δ1{W2(ν1,ν2)=0},

and obtain the following results:

model RMSE CIR0.9

“distribution” 0.21 0.91

“kernel regression” 0.93
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Prospect: multidimensional case

• For distributions on Rd , d > 1, the nice representation with the

quantile functions does not hold any longer

• Our kernels do not remain non-negative definite when extended to

distributions on Rd , d > 1

• We suggest to compute L2 norms between optimal transport maps

to obtain non-negative definite kernels.

21



References i

F. Bachoc.

Asymptotic analysis of the role of spatial sampling for

covariance parameter estimation of Gaussian processes.

Journal of Multivariate Analysis, 125:1–35, 2014.

F. Bachoc, F. Gamboa, J.-M. Loubes, and N. Venet.

Gaussian process regression model for distribution inputs.

IEEE Transactions on Information Theory, 64(10):6620–6637, 2018.

F. Bachoc, A. Suvorikova, D. Ginsbourger, J.-M. Loubes, and

V. Spokoiny.

Gaussian processes for multidimensional distribution inputs via

optimal transport and Hilbertian embedding.

Electronic Journal of Statistics, 14(2):2742-2772, 2020.

22



References ii

C. Berg, J. P. R. Christensen, and P. Ressel.

Harmonic analysis on semigroups.

Springer-Verlag, 1984.

J. Istas.

Manifold indexed fractional fields.

ESAIM Probab. Stat., 16:222–276, 2012.
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