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Problem description

Let us consider a time-consuming black-box simulator f : Rd → R.

Aim: building a regression model of f given a set of observations
Y = (y1, . . . , yN)> at design locations X = (x1, . . . , xN)> when:

observations are noisy, low signal to noise ratio
noise variance is varying across Rd

Examples of stochastic simulators:

Car crash-worthiness Cosmology
Many examples in physics, operations research, epidemiology, ML, ...
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Applications

Optimization or safety
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Also: sensitivity analysis, dimension reduction,...
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Gaussian processes (GPs)

GPs make popular surrogates because their predictions
are rarely beaten in out-of-sample tests,
have appropriate coverage (and can interpolate).

Definition (Gaussian vector)
A d-dimensional random vector Y is Gaussian iif ∀a ∈ Rd , a>Y is
Gaussian.

Definition (Gaussian process)
A random process Y indexed by D is said to be Gaussian iif
∀xi ∈ D,∀n ∈ N, (Y (x1), . . . ,Y (xn)) is a Gaussian vector.

GPs are fully characterized with their mean and covariance functions.
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Gaussian processes (GPs)

Same with images:
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Gaussian process regression

Observation model: y(xi) = f (xi) + εi , εi ∼ N (0, r(xi))

For a zero mean GP with kernel k, MVN conditional identities give:

Y |Y ∼ GP(µ, σ2) with

µ(x) = E(Y (x)|Y) = k(x)>(KN + ΣN)−1Y,
σ2(x) = Var(Y (x)|Y) = k(x, x)− k(x)>(KN + ΣN)−1k(x) + r(x)

where Y = (y(xi))>1≤i≤N , k(x) = (k(x, xi))>1≤i≤N ,
KN = (k(xi , xj))1≤i ,j≤N , ΣN = Diag(r(x1), . . . , r(xN))

Remark: interest also in P(y(x)|data), not only P(f (x)|data)
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Gaussian process regression (2)

ΣN = Diag(τ2)

µ(x) = k(x)>K−1
N Y,

σ
2(x) = k(x, x)− k(x)>K−1

N k(x)
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Motivating example for heteroskedasticity

Silverman (1985)’s motorcycle accident data
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Motivating example for heteroskedasticity

Silverman (1985)’s motorcycle accident data
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Gaussian process regression results with estimated constant noise:
→ predictive mean is fine, but predictive variance is not.
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Parameter estimation

Typically, the covariance kernel belongs to a parametric family (e.g.,
Gaussian or Matérn).

Estimation of the corresponding hyperparameters based either on:
model error (i.e., cross validation, training/testing sets)
variogram analysis
likelihood

Likelihood, i.e., multivariate normal density:

L = 1
(2π)N/2|KN + ΣN |1/2

exp
(
−1
2Y>(KN + ΣN)−1Y

)
.

This gives for the log-likelihood:

log(L) = −N
2 log(2π)− 1

2 log(|KN + ΣN |)−
1
2Y>(KN + ΣN)−1Y
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Parameter estimation (cont’d)

With stationary kernels, we use the following parameterization:

k(x, x′) = νc(x− x′; θ) with ν the process variance

Rewrite: KN + ΣN = ν(CN + ΛN), giving a plug-in estimator of ν:

ν̂ = N−1Y>(CN + ΛN)−1Y

Concentrated log-likelihood:

log(L) = −N
2 log(2π)− N

2 log ν̂ − 1
2 log |CN + ΛN | − N/2

Limitations: O(N2) storage and O(N3) computational complexity

But we need N to be large when the signal-to-noise ratio is low...
...and in addition, r(x) is seldom known.
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First option: using replicates

Now suppose that replication is present, with repeated design sites:
provides a powerful tool to separate signal from noise.

Additional notations:
x̄i , 1 ≤ i ≤ n unique input locations, potentially n� N
y (j)
i jth out of ai ≥ 1 replicates collected at x̄i

Ȳ = (ȳ1, . . . , ȳn)> averages of replicates, ȳi = 1
ai

ai∑
j=1

y (j)
i

Σn = Diag(r(x̄1)/a1, . . . , r(x̄n)/an)

Σ̂n = Diag(σ̂21/a1, . . . , σ̂2n/an), where σ̂2i = 1
ai−1

ai∑
j=1

(y (j)
i − ȳi)2

Generally, we use the n lower script for averaged quantities.
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Stochastic kriging (SK) (Ankennman et al., 2010)

Show that the predictive equations using Σ̂n:

µn(x) = kn(x)>(Kn + Σ̂n)−1Ȳ
σ2n(x) = k(x, x)− kn(x)>(Kn + Σ̂n)−1kn(x) + r(x)

are asymptotically unbiased and MSE-optimal.

Corresponding log-likelihood is:

log L̄ := −n
2 log(2π)− 1

2 log |Kn + Σ̂n| −
1
2Ȳ>(Kn + Σ̂n)−1Ȳ

Pros: O(n3) complexity, huge potential savings

Cons: requires a minimum amount of replication
do not provide out-of-sample variance predictions
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Second option: using latent variables

Idea: modeling jointly the (log-)variance by a second GP
assumes smoothly varying noise across the input space
introduces latent variables (log-variances)

But, the posterior on the joint process is intractable.

Existing approaches:
full MCMC computation (Goldberg et al., 1998)
hard-EM approximation (Kersting et al., 2007)
hard-EM corrections for replicates (Boukouvalas et al., 2009)
variational approximation (Lazaro-Gredilla et al., 2011)

They do not require replicates, but do not exploit them fully either.
And EM and MCMC brings a computational burden.
⇒ hybrid method with SK
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Mapping large-N quantities to small-n ones

Similarly to SK, we exploit the structure coming from replication:

X = (x̄1, . . . , x̄1, . . . x̄n)> = UX̄, with U = Diag(1a1,1, . . . , 1an,1)

the N × n block matrix, where 1k,l the k × l matrix of ones.

It applies to all quantities, e.g., KN = UKnU> and ΣN = UΣnU>.

Motivates the use of familiar identities:

Woodbury and matrix determinant formulas
(D + UBV)−1 = D−1 −D−1U(B−1 + VD−1U)−1VD−1
det(D + UBV) = det(B−1 + VD−1U) det(B) det(D)

with D ∈ RN×N and B ∈ Rn×n are invertible, and U, V> ∈ RN×n

Here: D = ΣN , B = KN , V = U>, U>U = Diag(a1, . . . , an) = An
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Large-N to little-n GP predictive equations

Recall the covariance parameterization: KN + ΣN = ν(CN + ΛN)

The Woodbury identity directly gives :

kN(x)>(KN + ΣN)−1Y = cn(x)>(Cn + ΛnA−1n )−1Ȳ
kN(x)>(KN + ΣN)−1kN(x) = νcn(x)>(Cn + ΛnA−1n )−1cn(x)

Reduced equations requires O(n3) time instead of O(N3).

They inherit all the properties of the full-N ones.

What about the likelihood?
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Reduced concentrated log likelihood

Lemma
Let Υn := Cn + A−1n Λn. Then the little-n identity for the large-N
expression for the concentrated log likelihood is

log L = cst.− N
2 log ν̂N −

1
2

n∑
i=1

[(ai − 1) log λi + log ai ]−
1
2 log |Υn|

where ν̂N := N−1
(
Y>Λ−1N Y− Ȳ>AnΛ−1n Ȳ + Ȳ>Υ−1n Ȳ

)
.

Still requires O(n3) time and allow closed-form derivatives:

∂ log L
∂·

= N
2
∂
(
Y>Λ−1N Y− ȲAnΛ−1n Ȳ + nν̂n

)
∂·

× (N ν̂N)−1

− 1
2

n∑
i=1

[
(ai − 1)∂ log λi

∂·

]
− 1

2tr
(

Υ−1n
∂Υn
∂·

)
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Learning the latent
Direct optimization of Λn?
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Second GP

We borrow the machine learning idea of using a second GP on the noise
variance:

Λn = C(g)(C(g) + gA−1n )−1∆n

(smoothing of latent ∆n = Diag(δ1, . . . , δn) values)

Additional hyperparameters: lengthscale φ, nugget g

Remains tractable:

∂ log L
∂∆n

= ∂Λn
∂∆n

∂ log L
∂Λn

= C(g)(C(g) + gA−1n )−1∂ log L
∂Λn

, where

∂ log L
∂λi

= N
2 ×

ai s2i
λ2i

+ Ȳ>Υ−1n Υ−1n Ȳ
ai

ν̂N
− ai − 1

2λi
− 1

2ai
(Υn)−1i ,i

Optional: replacing Λn with exp(Λn) to ensure positivity
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Joint optimization of the full set of hyperparameters:
{θ, φ, ∆n, g}
Objective function is the concentrated joint log-likelihood:

log L̃ = − N
2 log ν̂N −

1
2

n∑
i=1

[(ai − 1) log λi + log ai ]−
1
2 log |Υn|

− n
2 log ν̂(g) −

1
2 log |C(g) + gA−1n |+ cst.

with closed-form derivatives once a form for Cn and C(g) is chosen.

Allows testing for heteroskedasticity.

Interestingly, smoothing is for naught: L̃ is maximized when g = 0.

But, this ad-hoc smoothing is a useful device in three ways:
connects SK to Goldberg’s latent representation
eases the optimization with an annealing effect
yields a smooth solution if optimization is stopped prematurely
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Example 1: motorcycle data
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Example 2: Assemble to order (Hong et al., 2006; Xie et
al., 2012)
Inventory management problem:

5 products are produced, requiring some of 8 different items
sold products bring profit, storing items have a cost
orders come randomly over a time period
random replenishment of items
variables are the target stock of each item ([0, 20]8)
output is the profit per unit time

Experiment:
full data is a Latin Hypercube sample of size 2000, with 10 replicates
each
training data is 1000 designs, with uniformly sampled number of
replicates
testing data is the other half, and remaining replicates
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Example 2: Assemble to order (Hong et al., 2006; Xie et
al., 2012)
Results focusing on the mean accuracy relative to predicted variance
based on a proper scoring rule (Gneiting et al., 2007):

S(P, y) = −
(y − µP
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Example 3: Epidemic management (Hu et al., 2015)
Study disease outbreak dynamics based on stochastic compartmental
modeling:

Susceptible, Infected, Recovered (SIR) counts
The continuous time state (St , It ,Rt) is a Markov chain, with
transition S + I → 2I and I → R
considered output is the total number of newly infected:

f (x) := E[S0 − lim
T→∞

ST |(S0, I0,R0) = x] = γE
[∫ ∞

0
It dt|x

]
estimated by Monte Carlo

Experiments:
total population M = 2000
testing set is 2000 designs on the grid, 100 replicates
training set is 1000 designs, 500 with 5 replicates, 250 with 10, 150
with 50, 100 with 100
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Example 3: Epidemic management (Hu et al., 2015)

Reference mean and noise surfaces
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Example 3: Epidemic management (Hu et al., 2015)

Comparison of standard deviation estimations
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Generalities on experimental design

General design methods:
space-filling designs (e.g., Latin hypercubes (LHS), maximin-LHS,
minimax-LHS, maxPro-LHS),
orthogonal arrays,
sparse-grids,
hybrids, . . .

Model based design criteria:
integrated mean square prediction error,
maximum prediction error,
entropy,
Fisher information, . . .

They can be optimized for design points all at once or sequentially.
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Sequential design procedure

Sequential design framework
1 Construct initial space-filling design
2 While stopping criterion not met:

1 Train GP model
2 Enrich design with selected criterion

Preferred approach when hyperparameters are unknown.

Specifically for replicates, they are added
by batches of fixed size (e.g., Boukouvalas et al., 2014)
in a separate phase (e.g., Ankenman et al., 2010; Liu et al., 2010)

We aim for something more flexible, adding replicates on the fly, without
specifying a batch size.
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Integrated Mean Squared Prediction Error (IMSPE)
Here, we use IMSPE as a criterion:

IMSPE (X) =
∫

x∈D
σ2N(x)dx

=
∫

x∈D
k(x, x)− kn(x)>(Kn + Σ̂n)−1kn(x)

Commonly approximated as a sum over a set of points.
Closed form expression e.g., for separable Matérn, Gaussian kernels.

Sequential version, adding xN+1:

IMSPE (X, xN+1) =
∫

x∈D
σ2N+1(x)dx

=
∫

x∈D
σ2N(x)− kold,N(x, xN+1)>(KM + ΣN+1)−1kold,N(x, xN+1)dx
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Why replicating?
In sequential design, there are a few cases where replication occurs:
1) The optimum is at an existing design
2) Optimization effect: local optimum not better than existing design
Example:

0.0 0.2 0.4 0.6 0.8 1.0

-5
0

5
10

15

x

f(x
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

36
0.

00
37

0.
00

38
0.

00
39

0.
00

40

x

IM
SP

E

3) Rounding effect (or discrete search space)
4) Computational efficiency: faster update, discrete search
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Sequential IMSPE

A) When adding a new x̃:

IN+1(x̃) = IN −
(
σ2n(x̃)g(x̃)>Wng(x̃) + 2w(x̃)>g(x̃) + σ2n(x̃)−1w(x̃, x̃)

)
with w(xi , xj) =

∫
x∈D k(xi , x)k(xj , x) dx, 1 ≤ i , j ≤ n and

g(x̃) = −σ2n(x̃)−1K−1n kn(x̃)

Closed form expressions and derivatives are available (e.g., for separable
Matérn, Gaussian kernels).

B) When replicating at xk , 1 ≤ k ≤ n, we show that:

IN+1(x̄k) = IN − tr(BkWn)

with Bk =
(K−1n )

.,k(K−1n )k,.
ak(ak+1)/r(x̄k)−(Kn)−1k,k

, a rank-one matrix
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Replication: IMPSE optimal with heteroskedasticity

Proposition
Given unique design locations x̄1, . . . , x̄n, replicating is optimal if ∀x̃ ∈ D

r(x̃) ≥ k(x̃)>K−1n WnK−1n k(x̃)− 2w(x̃)>K−1n k(x̃) + w(x̃, x̃)
tr(Bk∗Wn) − σ̌2n(x̃)

where k∗ ∈ arg min1≤k≤n IN+1(x̄k).
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Also: discretization or optimization effects
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Myopic IMSPE

Like most criteria, IMSPE ignores the limited budget.

Example (fixed hyperparameters)
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Myopic IMSPE

Like most criteria, IMSPE ignores the limited budget.

Example (fixed hyperparameters)
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Myopic IMSPE

Like most criteria, IMSPE ignores the limited budget.

Example (fixed hyperparameters)
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If monotone submodularity holds, with fixed hyperparameters, the gap
between the two methods is bounded.
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Looking ahead principle
Aim: taking into account the future steps of optimization:

find xN+1 ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+h)
where x∗N+1+i ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+i), 1 ≤ i ≤ h.

Example: looking one step ahead (h = 1)
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Looking ahead principle
Aim: taking into account the future steps of optimization:

find xN+1 ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+h)
where x∗N+1+i ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+i), 1 ≤ i ≤ h.

Example: looking one step ahead (h = 1)
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Looking ahead principle
Aim: taking into account the future steps of optimization:

find xN+1 ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+h)
where x∗N+1+i ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+i), 1 ≤ i ≤ h.

Example: looking one step ahead (h = 1)
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Looking ahead principle
Aim: taking into account the future steps of optimization:

find xN+1 ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+h)
where x∗N+1+i ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+i), 1 ≤ i ≤ h.

Example: looking one step ahead (h = 1)
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Looking ahead principle
Aim: taking into account the future steps of optimization:

find xN+1 ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+h)
where x∗N+1+i ∈ arg min IMPSE (X, xN+1, x∗N+2, . . . , x∗N+1+i), 1 ≤ i ≤ h.

Example: looking one step ahead (h = 1)
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But, as the horizon increases, it becomes quickly slow. 30 / 51



Looking ahead principle for replication

Recall that n should remain moderate. In this context:
sampling a new design impacts both the remaining budget of new
designs, and the computational time of future iterations
while looking for the best design to replicate is fast

So how to encourage replication in the process?

Clearly, searching for the best sequence of new/replicated designs is out
of reach.

⇒ We thus simplify the problem to consider the following decision at
each step:

add a new design now (and replicate later)
replicate now (add a new design later)
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Looking ahead principle to encourage replication (2)

Graphical view of the rollout procedure, horizon h = 3:

xn+1

xn+2

xn+3

xn+4

new design

replicate

state

Note: increasing the number of steps-ahead has a flattening effect, since
when the new design is added has less and less effect.
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Illustration: 1-dimensional function

True functions
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Illustration: 1-dimensional function

Initial design: 21 equi-spaced points with 5 replicates
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Illustration: 1-dimensional function

Now consider the next decision, with h = 3:
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Selecting the horizon

How can we choose the horizon, h, in real-time?

We have simple on-line adjustments which tune the horizon in order to:
Target a ratio n/N, reducing the GP modeling cost

hN+1 ←


hN + 1 if n/N > ρ & a new x̄n+1 is chosen
max{hN − 1,−1} if n/N < ρ & a replicate is chosen
hN otherwise.

Adapt to minimize IMSPE regardless of computational cost

hN+1 ∼ Unif{a′1, . . . , a′n} with a′i := max(0, a∗i − ai)

with a∗i ∝ r(x̄i)Ki = (K−1n WnK−1n )i ,i the static optimal replicate
balancing from the SK literature.
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Example 1: 1-dimensional function
Setup: 1d test case, 20 initial points, 480 infill points.
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Example 2: Epidemic management (Hu et al., 2015)
Reference mean and noise surfaces
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Results focusing on the mean accuracy relative to predicted variance
based on a proper scoring rule (Gneiting et al., 2007):

S(P, y) = −
(y − µP

σP

)2
− log(σ2P)
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Example 2: results on the SIR problem
Variance surfaces and replication:
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Example 2: results on the SIR problem
Sequential performance averaged over 30 repetitions
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Example 3: Assemble to order (Hong et al., 2006; Xie et
al., 2012)

Inventory management problem:
5 products are produced, requiring some of 8 different items
selling products bring profit, storing items have a cost
orders come randomly over a time period
random replenishment of items
variables are the target stock of each item ([0, 20]8)
output is the profit per unit time
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Example 3: results on the ATO problem
Sequential performance averaged over 30 repetitions
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Can we use the same framework for other goals?

Other criteria:
optimization, e.g., with the Expected Improvement [Mockus et al.,
1978]:

I : x ∈ Rd → max
(

min
1≤i≤n

Y (xi)− Y (x)
)

contour finding, e.g., with the Maximum Contour Uncertainty for
level 0 [Lyu et al., 2018+]:

MCU : x ∈ Rd → Φ
(
−|µ(x)|
σ(x)

)
multi-objective, constraints, equilibria, ...

Open question: can replication be optimal in those cases too?

Looking ahead is still encouraging replication.
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Illustration of optimization/contour finding

Setup: 1d test case, 10 initial points, 490 infill points. Left: minimization
Right: -1 level set estimation
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Handling noise with larger tails than Gaussian
GPs are not robust to outliers. Consider this influenza data on mice:

[Shah2014] generalized GPs to Student-t processes, with homoskedastic
noise.
Denote α the degree of freedom parameter. The predictive equations are:

µTP(x) = k(x)>(KN + ΣN)−1Y,

σ2(x)TP = α + Y>(KN + ΣN)−1Y− 2
α + N − 2

(
k(x, x)− k(x)>(KN + ΣN)−1k(x)

)
+ r(x)

Turns out that it can be extended further as we showed for GPs.
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Comparison of heteroskedastic GPs and TPs

GP TP
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Scaling up BO to many variables: active subspaces

Observation: in many cases, the variation is concentrated around a few
directions

Model: f (x) = g(A>x) with A ∈ RD×d (ridge function)
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Scaling up BO to many variables: active subspaces

Observation: in many cases, the variation is concentrated around a few
directions

Model: f (x) = g(A>x) with A ∈ RD×d (ridge function)

Backed by empirical and theoretical evidence, e.g., Constantine et al.
(2016)

Options exist to estimate A, most rely either:
on the gradient of f , to estimate C =

∫
∇(f (x))>∇(f (x))µ(dx), see

e.g., Djolonga et al. (2013), Constantine (2015). They are usually in
two phases.
on treating A as an hyperparameter, see e.g., Garnett et al. (2014);
Tripathy et al. (2016); Marcy (2018)

In both cases, it is unclear how to split the budget between learning A
and optimizing.
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C) Active subspace estimation (2)

Commonly, C is estimated by Monte Carlo: Ĉ =
P∑
i=1
∇(f (Xi))>∇(f (Xi))

with iid X1, . . . ,XP in Ω, see, e.g., Constantine (2015).

Main limitations: 1) f may not have a gradient and, 2) iid assumption

For a GP, we show that a closed-form expression of C is directly available,
which only depends on the D lengthscale hyperparameters.

These expressions also enable learning the active subspace sequentially.
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Outline

1 Gaussian processes under replication and heteroskedasticity

2 Practical heteroskedastic modeling

3 Sequential design

4 Conclusion
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Conclusion

When the mean and variance are changing non-linearly in the input space:
coupled GPs gives accurate fits
it can be advantageous to have replication in the design.

The more heteroskedastic the more replication:
intuitively, that must be true: both signal and noise are changing
and replication is the only reliable tool for separating the two.

Replication has the added benefit of yielding faster fitting of GPs.

Extension to Student-t processes is possible to handle larger tails.

Corresponding codes are available in the R CRAN package hetGP.
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