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The dynamics of coupled genetic incompatibilities in
parapatry

Matthieu Alfaro ', Quentin Griette 2, Denis Roze ? and Benoit Sarels .

Abstract

In this paper, we explore the interaction between two genetic incompatibilities (un-
derdominant loci in diploid organisms) in a population occupying a one-dimensional
space. We derive a partial differential equation system describing the dynamics of
allele frequencies and linkage disequilibrium between the two loci, and use a quasi
linkage equilibrium approximation in order to reduce the number of variables. We
investigate the solutions of this system and demonstrate the existence of a solution
in which the two clines in allele frequency remain sticked together. In the case of
asymmetric incompatibilities (i.e., when one homozygote is favored over the other at
each locus), these coupled clines move as a traveling wave. The two cases of inter-
est (standing together and traveling together) are studied and results are established
accordingly.

Keywords: genetic incompatibilities, heterozygote inferior case, quasi linkage equilib-
rium, standing wave, traveling wave, perturbation analysis.

1 Introduction

The evolution of reproductive isolation between incipient species corresponds to the ac-
cumulation of genetic incompatibilities among different groups of individuals, which may
occur in the presence or in the absence of gene flow between them [7], [10]. Incompatibil-
ities are thought to be mainly caused by epistatic interactions among loci (Dobzhansky—
Muller incompatibilities, [8], [11]) and are revealed by experiments in which a portion of
the genome of a species is introgressed into the genome of another (e.g., Table 1 in [9]). As
shown by [4], different incompatibilities segregating in the same population (sympatry) are
expected to become coupled through the buildup of linkage disequilibrium among them. A
similar coupling phenomenon is also expected to occur in parapatry (restricted gene flow
due to the limited dispersal of individuals). Indeed, genetic incompatibilities may generate
clines in allele frequencies [2], while clines generated by different incompatibilities will tend
to attract each other until they coincide, due to the fact that the migration of individuals
generates linkage disequilibrium among loci involved in those incompatibilities [3].
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In this paper, we explore the dynamics of coupled genetic incompatibilities in a pop-
ulation occupying a continuous, linear habitat. As in [3], we focus on a simple example
of incompatibility corresponding to selection against heterozygotes in diploid organisms
(underdominance). This form of selection may generate clines in allele frequency, whose
width depends on the average dispersal distance of individuals and on the strength of
selection against heterozygotes [6], [2]. The interaction between several underdominant
loci was explored by [3] in the symmetric case (both homozygotes have the same fitness),
who showed that linkage disequilibria between loci generated by gene flow between spatial
locations with different allele frequencies tend to increase the effective strength of selection
against heterozygotes and steepens the clines. Here, we consider the asymmetric situation
in which one homozygote is fitter than the other homozygote at each underdominant locus.
In this case, the fitter homozygote tends to spread, causing the cline to move as a traveling
wave [2]. We will consider the scenario in which two such incompatibilities are coupled,
and use a perturbation argument to demonstrate the existence of a single traveling wave
and quantify its speed.

The organization of the paper is as follows. In Section 2 we derive the mathematical
model, a PDE system involving nonlinear gradient terms. Through a phase plane analysis,
we construct stationary solutions in Section 3. Then, in Section 4, we construct traveling
fronts thanks to a perturbation argument. We conclude and present some perspectives in
Section 5.

2 Derivation of the mathematical model

The PDEs describing the dynamics of two underdominant loci in a 1-dimensional continu-
ous habitat can be obtained by combining the works [2] and [3]. For the self-containedness
of the present work, we present here a derivation of these equations, obtained by approx-
imating a discrete-time model by a continuous-time model.

2.1 Selection stage in a discrete in time setting

We start by considering a single population of diploid, hermaphroditic individuals with
nonoverlapping generations. At the end of a generation (at time t), individuals release
gametes and immediately die. The next generation, at time ¢+ 1, is formed by the random
fusion of gametes. Under these hypotheses, it is sufficient to follow the frequencies of
gametes produced at each generation, which completely determine the next generation of
individuals (by the law of large numbers).

Let us go into more details. We consider that the fitness of a (diploid) individual is
affected by two loci: a first locus with two alleles A and a and a second locus with two
alleles B and b. We assume that heterozygotes have the lowest fitness (underdominance),
the fitness of the different genotypes at each locus being given by:

’ genotype \ fitness ‘ ’ genotype \ fitness ‘
AA 14 2s4 BB 1+ 2sp
Aa 1+5s4—854 Bb 1+sp— 5B
aa 1 bb 1

where the constants s4,sp, 54, Sp satisfy 0 < s4 < Sa, 0 < sgp < Sp. We then assume
multiplicative effects among loci, so that the fitnesses W of two-locus genotypes are given
by:



’ H AA ‘ Aa ‘ aa ‘

BB (14+2sp)(1+2s4) (14+2sp)(14+sa—Sa) 1+ 2sp
Bb || (1+sp—SB)(14+2s4) | (1 +sp—Sp)(1+sa—Sa) | 14+sp—SB
bb 14 2sy 1+s4—S54 1

(however, because we will derive expressions to the first order in s4, sp, S4 and Sp,
assuming additive effects among loci would lead to the same results). Denote by Ya» Ya,
Ya, ya the frequencies of the different types of gametes at generation ¢. The fusion at
random of these four combinations gives birth to sixteen types of individuals (“ordered”
in the sense that z;; # z;); for i # j)

. A Aa a
Ziljo Z7]€{BvbyBab )

with proportions p; ;. Notice that, for ¢ # j, the fusion can be male-female or female-male

VA
so that we have p;; = 2 X %yiyj, thus

DPijj = YiY;-

Fach one of these individuals then produces gametes according to its fitness, providing
the generation of gametes vy, ¥4, yéB , yé at time ¢t + 1. Here we assume that there is a
B b

probability of recombination 0 < r < % between the two loci. For each of the sixteen

diploid genotypes, the process is as one of the three following examples:

e the individuals zal4, whose proportion is 3%, release gametes ’g, in proportion 1.
B'B B

e the individuals zaa, whose proportion is Yaya, release gametes g in proportion %
and gametes 34 in proportion %
e the individuals Za e, whose proportion is Yyays, release gametes é and § both in
proportion 1—57’
nation).
All these processes are weighted by the fitness of each type of individual, as in the

above table. After a tedious but straightforward analysis, one obtains:

1
Vi = W {(1 +254)(1+2sp)yd + (1 +254)(1+ 55 — Sp)yaya + (1 + 54 — Sa)(1+ 255)yays

(no recombination), and gametes ;' and % both in proportion 5 (recombi-

+(1=r)(14+54—84)(1+ 5B — SB)ygyg +r(l4+sa—Sa)(1+sg— SB)y%yA

1
Y = :{(1 +254)y3 + (1 +254)(1 + 55 — Sp)yaya + (1 + 54 — Sa)yaya
b w b b B b 7b
+(1—=r)(1+4+s54—5a) (145 — SB)y?y% +r(l4+sa—Sa)(l+sp— SB)ygyg}
1
yfé = W{(l + QSB)y% +(1+sp—Sp)yays + (1 +sa—54)(1+ QSB)y%yg
(I—=7r)(1+sa—Sa)(1+sp— SB)y%yéq +7r(1+sa—Sa)(1+sp— SB)y]AByg}
1
Yo = W [yf + (L+sa—Sa)yeya + (1 + s — Sp)yzys,

+(1=r)(1+ 54— Sa)(1+ 55— Sp)ypya +7(1+ 54— Sa)(1+ 55— Sp)yzyal,

where W is the average fitness:

= > zWay

.. A A
sze{Bvb 7aB7aB

=



(1+254)(1+25p)y3 + (L+2s)y3 + (1 + 25p)y3 + yi

+ 2(1+2s4)(1+ 55 — SB)yaya +2(1 + 54 — Sa)(1 + 2sp)yays
+ 2(1+s4—854)1+sp— SB)ygyg +2(1+s4—S4)(1+sp— SB)yg;y%
+ 2(1 + 54 — SA)yglyg + 2(1 + sp — SB)y%yg.
Notice that adding the four above equations, one can check vy + v/ + yl}% + yl’bl = % =1
B b
For ease of notation, we now let
UI:yg, U::yé“a w::y%v Z::yga (1)
so that
u+v+w+z=1. (2)
As in [3], we shall rather work on the three components system satisfied by
pi=u+v, ¢:=u+w, D:=uz—ow, (3)

where

e p measures the frequency of allele A,

e ¢ measures the frequency of allele B,

e D stands for the linkage disequilibrium, measuring the association between alleles A
and B within gametes (notice than, equivalently, D = u — pq).

Notice that

u=pq+D, v=p(l-q)=D, w=(1-p)g—D, z=01-p)(1-¢+D. (4

Next, we assume that sa, sp, Sa, Sp, r are small and of the same order of magnitude,
that is
SA ¢ Saq, 8p <+ spa, Sa < Saa, Sp<+ Spa, r<ra, (5)

for 0 < a < 1. Taking into account (1), (2), (3), (4), (5), one can perform straightforward
(but tedious) computations and obtain to the first order in «:

P =p+a[(Sa2p—1)+s4)p(l —p) + (Sp(2g — 1) +55) D)

¢ =q+al(Sp20—1)+s8)a(1 — )+ (Sa2p— 1) +52) D] (6)

D' =D afr+ (20 —1)(Sa2p—1)+54) + (20— 1) (Sp(20 — 1) + 55) | D.

2.2 Inserting a spatial structure and switching to continuous time

Finally we consider the associated problem with a spatial structure z € R (corresponding
to the position of individuals along space) and continuous time ¢ > 0. More precisely,
we assume that gametes migrate according to a dispersal kernel centered on 0 and with
2. In the diffusion limit, and from (6), the equations for the frequencies p =

p(t,l‘), q= Q(t7x) are

variance o

{pt = % Paa + (Sa(2p — 1) + 54) p(1 —p) + (Sp(2¢ — 1) + s5) D

@ = %qu +(Sp(2¢—1)+sp)q(l —q)+ (Sa(2p— 1)+ s4) D,



where o > 0. As for the equation for the disequilibrium D = uz — vw, we have additional
gradient terms (e.g., [5], [3]) since

02 0_2 0_2 0_2

2

o
5 (Dyg + 2(—ugpzy + vpwz)) + - -
o2

where we have used the identity
Pxlz = (u + U)x(u + w)x = ux(ux + v + w:):) + VW = —Ug 2y + VW

Hence, from (6), the equation for D = D(t, z) is
2

D, = %Dm +0%peqe — [r+ (2p — 1) (Sa(2p — 1) + 54) + (2¢ — 1) (Sp(2¢ — 1) + sB)] D.

2.3 Conclusion and goals

Hence the system for the allele frequencies p = p(t, z), ¢ = q(t,z) and the linkage disequi-
librium D = D(t, ) is written

P = %2pm + (Sa(2p—1)+s4)p(1 —p) + (Sp(2¢ — 1) + sg)D
G = % qe+ (S32¢—1)+58)q(1 —q) + (Sa(2p — 1) + 54)D

Dy =% Dyw+0%page — [r+ (20— 1) (Sa(2p — 1) + 54) + (20 — 1) (S5(2¢ — 1) + 55)] D,
(7)
where ¢ > 0, r > 0, s4 > 0, sp >0, s4 > 0 and Sg > 0 are given parameters. When
D = 0 (no disequilibrium), the dynamics of p and g are decoupled but the gradient terms
pz and ¢, cause disequilibrium and thus coupling [3].

In the sequel, we use a simplified version of system (7) by using a quasi linkage equi-
librium approximation: assuming that recombination r is sufficiently large relative to the
strength of selection against heterozygotes (Sa, Sp, determining the gradients in allele
frequencies, e.g., [2]), one expects that the linkage disequilibrium D should remain small
(D < 1) as well as its derivatives, see [3]. Then D approximately follows

Dt ~ UQPa:Qw - TD:

and we then reach a quasi equilibrium situation where
2
o
D= —Ppula- (8)

: T 2
As a result, the system is recast (for simplicity we select % = 1)
{pt = Paw + Saf(p) + 549(p) + 2(SB(2¢ — 1) + 5B)Pota;

G = Gue+SBF(0) +589(q) + 2(Sa(2p — 1) + $4)Pula,

where
flw) :=uu—1)(1 —u), g(u):=u(l—mu).



Last, we assume that
Sa=S8p=15, sa=sp=¢, (9)

and thus focus on the system

{pt = Pea + Sf(p) +9(p) + 2(S(2¢ — 1) + €)page,
(10)

G = Qoo+ Sf(q) +e9(q) + 2(S(2p — 1) + €)paga-

Notice that f is a balanced bistable nonlinearity, which is slightly unbalanced by the term
€g.

In the sequel, our goal is to inquire on conditions insuring that the A cline, measured
by p, and the B cline, measured by ¢, remain “sticked together”. To do so we look after
u = p = q solving the nonlinear equation

Uy :um—l—Sf(u)—l—sg(u)—|—§(S(2u—l)+5)ug. (11)

We suspect the existence of a stationary solution connecting 1 to 0 for € = 0 and that of
a front connecting 1 to 0 and traveling at a speed ¢, ~ ¢ for ¢ > 0 (at least sufficiently
small). These facts are proved in Section 3 and 4.

3 Standing together (¢ = 0)

In this section, we construct a stationary solution connecting 1 to 0 in (11) when £ = 0,
and then prove its stability.

3.1 Construction of the standing wave

We are here looking after a ug : R — R solving

2
" /1\2
uy + S f(uo) + - S(2up — 1)(up)* =0 on R, 12)

up(—o0) =1, wp(+00) =0.

Lemma 3.1 (A priori estimates). Any standing wave solution of (12) has to satisfy
0 <wup <1 anduy(£oo) =0.

Proof. If ug < 11isnot true then, from the boundary conditions, ug has to reach a maximum
value strictly larger than 1 at some point but, testing the equation at this point, this cannot
hold. Hence ug < 1 and, from the strong maximum principle, ug < 1. Similarly ug > 0.
From the equation and the boundary condition, uj > 0 in some (A, +00), so that ug
is increasing on (A, +00). As a result u( has a limit in 400, which has to be zero since ug
is bounded. Similarly uf(—o0) = 0. O

Using a phase plane analysis (x,y) = (ug,u(), the equation in (12) is recast

v (13)
y = —Sf(z) — 252z — 1)y?.

The phase plane analysis is depicted in Figure 1. The equilibria (0,0) and (1, 0) are saddle

points, the eigenvalues of the Jacobian matrix at these points being ++v/S, whereas the

equilibrium (%, 0) is a center, the eigenvalues of the Jacobian matrix at this point being
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Figure 1: Phase plane analysis for (13). In red, the nullcline 2’ = 0, in green the nullcline
y' = 0, in brown dashed the linear unstable manifold at (1,0), in blue (an approximation
of) the heteroclinic orbit from (1,0) to (0,0). Left: the parameters are S = 0.6, r = 0.25
so that (14) holds. Right: the parameters are S = 0.85, r = 0.15 so that (14) does not
hold.

:l:i\/g . At equilibrium (1,0) the linear unstable manifold is the line y = v/S(z — 1). To
prove the existence of a heteroclinic orbit from (1,0) to (0, 0), we consider the orbit leaving
(1,0) along the unstable manifold. As long as it has not reached = = % this trajectory
satisfies 2/ < 0 and y' < 0 (south west trajectory). In order to prove that the trajectory
does cross the vertical line z = %, we need to construct a barrier, from below, preventing
the situation z — [ > %, y — —oo. We choose the line y = a(x — 1) with a > 0 to be
selected large enough. Choosing o > /S insures that the trajectory is above the barrier

in a neighborhood of (1,0). We thus need to show that

[a—y

/
||y/|| <« on the points (z,y) such that y = a(z — 1), 3 <z<l
x

After some straightforward computations, this is recast

2

( 2a2> 202 «
l—— o+ —| < —
r T

1
o(x) = (2x—1) o for all 5 <z <1

1

202
1-— 2

Assuming 22 <0, and evaluating the maximum of ¢ on |

T
(211

which can be obtained with « sufficiently large provided

1], we reach

S < 4r. (14)

Notice that, from the modelling point of view, assumption (14) is consistent with the
asymptotics “S small” performed in Section 2 (quasi linkage equilibrium approximation).

7



On the other hand, even if (14) does not hold, the (right) phase plane analysis of Figure
1 suggests that the heteroclinic orbit joining (1,0) to (0,0) still exists, but the above
argument does not apply.

As a result, under assumption (14), the orbit touches the line z = % at some point
(%, —3) for some $ > 0. Since the problem is symmetric with respect to z = %, we
conclude that the orbit then converges to the equilibrium (0, 0) along the stable manifold,
the linear stable manifold being given by y = —/Sz. This trajectory provides a positive
and decreasing solution ug to (12).

In other words, we have (nearly) proved the following.

Proposition 3.2 (Stationary solution for ¢ = 0). Let us assume (14). Then there is a
unique ug : R — R solving (12) and satisfying the normalization condition ug(0) = %
Moreover, ug s positive, decreasing, symmetric in the sense that

uo(—z) =1 —wup(x) forallz € R,
and has the asymptotics
1 —ug(z) ~ CeVS® as x — —oc0, up(x) ~ Ce V57 45 2 — 400, (15)
for some C' > 0.

Proof. From the above phase plane analysis, we are already equipped with a positive,
decreasing and symmetric ug solving (12). The asymptotics (15) is rather classical but,
for the convenience of the reader, we sketch a short and direct proof. We work as z — +oc.
We know from the phase plane analysis that uj(z) ~ —v/Sug(z) so that

up(x) = e~ VSeto() (16)

Now, from the nonlinear ODE, we have, for some K > 0,
—Kud(z) < uf(x) — Sup(z) < Kud(z).

Multiplying this by u(x) < 0 and integrating from x to +oo, we have,

K 1 S
—gug(x) < —5(%)2(95) + 5“3(95) < gug(m),
so that, for some M > 0,
—Mud(z) < uf(z) + VSug(z) < Mud(z). (17)

From this and (16) we deduce that e\/gm(uf)(x) + VSup(z)) = &L (e\/gacuo(a:)) must be

integrable in +00. As a result there is C' > 0 such that e\/gmuo(x) — C as x — +o00. Now
the left inequality in (17) implies
M,/
JS< Y _ U _ V5"
= M, 2~ M,
U + ﬁug uo 1 —+ ﬁuo

u0(0)
1+ %uo (0)

so that C' > 0 and we are done with (15).

Integrating this from 0 to x provides as a positive lower bound for e‘/g‘”uo (x)



It remains to prove uniqueness. We use a sliding method argument. Let vg be “another”
solution such that vo(0) = 3. For K > 0, define the shifted function v (z) := vo(z — K).
Since vy must also have some asymptotics of the form (15), say with some constant C’ > 0
instead of C', we see that ug < vg on R for K > 0 sufficiently large. As a result the real
number

Ko :=inf{K € R:up(z) <vg(z),Vr € R}

is well defined and nonnegative. Assume by contradiction that Ky > 0. Then there is
a point zp € R where ug(2z0) = vi,(z0) and ug(zo) = v, (zo) so that, from Cauchy-
Lipschitz theorem, ug = vk, on R, which is excluded by the normalization conditions. As
a result Ko = 0 and thus ug < vy. Similarly vg < ug and we are done. ]

3.2 Stability of the standing wave

We prove here that the standing wave constructed in Proposition 3.2 is linearly stable in
the L norm. More precisely the following holds.

Proposition 3.3 (Stability of standing waves). Let ug be the standing wave constructed
in Proposition 3.2. Let h € C’I} (R) be given. Let v solve the parabolic Cauchy problem

{vt(t,x) = Uz (t,x) + Sf(v(t,x)) + %S(Zv(t,x) — D)(vg(t, )% t>0,2cR,
v(0,2) = up(x) + eh(x), xz €R.

Then there is A\g > 0 such that, for any 0 < XA < Ag, the following holds: for sufficiently
small e, there is a continuous function y(g) satisfying

10 = [ wpup(e)e P EE s,
R
and a constant K > 0 such that, for all t > 0,
lolt, ) = wo(- + ()l y < Ke .

Proof. We aim at applying a result of Sattinger, namely [12, Theorem 4.1]. To do so, we
need to show that the linear operator (obtained by linearizing (12) around the solution

uo) 45
Lh:=h"+

2o~ uph + 5 (£uo) + ()7 )
satisfies the assumptions (i) and (i7) of [12, Lemma 3.4]. Since equation (12) is a scalar
quasilinear second-order differential equation set on R and with a smooth nonlinearity,
the assumption (i¢) of [12, Lemma 3.4] can be readily checked thanks to [12, Lemma 5.4].
As for the assumption (i) of [12, Lemma 3.4], we point out that [12, Corollary 5.7] does
not apply to our situation, and we thus need to determine the spectrum of L.

The liner operator L admits u(, as principal eigenvector with eigenvalue 0. We remark
that L can be written as

25

Lh = 000 (he T (610

where )
Mk := k" + <2f(2u0 — 1) f(uo) + S’f’(uo)> k=:k"+ c(x)k.



Since the weight function e’ (5= is hounded and uniformly positive, the operators L

and M can be considered as acting on the same space C,?(R). In particular, A\ — L admits
a bounded inverse if and only if A\I — M does (where I is the identity mapping on CP(R)),

and we have
2

(M — L)1 = e~ F @u)(\[ — pp)~le% (ug—uo)

Below, by following ideas of [12], we analyze, for g € C(R), the set of solutions to the
resolvent equation

(M — M)k = —K"+ (X — c(x))k = g(z), (18)
and then determine the spectrum of M.

1. System of fundamental solutions to the homogeneous equation: we first look
for a system of fundamental solutions to

—K"+ (A —c(x))k =0, (19)

whose behaviour near £0o can be determined (see [12, Lemma 5.1] for related arguments)
for A € C such that A+ S ¢ R™.

Near +o00, this is performed by substituting ¢1(z) = z1(z)e” % in (19), where v € C
solves ’7-2|— = A+ S5 and Rev; > 0. We obtain

—2{ +2v421 — (S +c(x))z =0, (20)

which is recast
— (2172 — (S + ¢(z))z1e” 2+ =0,

so that, assuming 2} (400) = 0,

+o0
A@) = [ TS 4 y)ay)dy. 1)
and thus, assuming 21 (+00) = 1,
oo 27+ (z—y) _ 1
ale) =1+ [ (S elw)a )y (22

Hence 27 is written as the solution of a fixed-point problem (22) set on Cp (R™). Notice that
the asymptotic behaviour (15) of ug implies y — S+c(y) € L'(R*). As a result, for a given
xo > 0, the right-hand side operator appearing in (22) is globally Lipschitz continuous on

CY([zo, +00)) with Lipschitz constant ﬁ ;Ooo |S + ¢(y)|dy. Hence, equation (22) has a

unique solution z1 on CY([zg, +00)) for zg sufficiently large, and this 21 can be extended to
(—00, zo) by solving the adequate Cauchy problem associated with (20). We have therefore
constructed a solution ¢1(z) = 21(z)e™+% to (19) with z; € CP(RT), 21 (+00) = 1.

By the same procedure, but integrating on [z¢, 2| instead of [z, 4+00) in (21), we can
construct a solution ga(x) = 22(z)e’+* to (19) with 29 € CY(R*) provided by the fixed-

point problem
1 — =27+ ()
zo(x) =1+ 2—(5 + c(y))z2(y)dy.
z0 T+

By the continuous dependence of the fixed-point with respect to the parameter zq [15,
Proposition 1.2], and by selecting z( sufficiently large, zo(z) can be made arbitrarily close
to 1. Indeed zo(x 4 z0) is the unique fixed point of the operator

] — e~ 2v+(z—y)
Tyo2(z) =1 + / (S + a0 +)=(y)dy,
0 T+

10



and T}, converges uniformly to the constant operator T’y ..z = 1 as ¢ — 4o00:

T2z = Uegiooon < (507 [ 15+ cldn) Ll soon 775 0

ro—00

Therefore we have found a system of fundamental solutions (1, 2) to (19) whose
behaviour near +oo is known. We can proceed similarly near —oo and find another system
of fundamental solutions (1, 12) whose behaviour near —oo is known.

Summarizing, for each A € C\ (—o0, —5], we have

e €T (23)

PLE) Moo €T 0h(7) Rpoo €7, Y (T) Moo €17, (7)) Rooo €T, (24)

AS
O
X
+
8
9]
5
+
8
AS)
=
=
X
+
8
@
o)
+
<
&
X
9]
2
+
. 8
<
&
0%

where A(z) X4 B(x) means 0 < liminf, 4 ‘gg ;' <limsup, ‘ggg' < 4o00. Notice

that, if A is not an eigenvalue of M, we further know that ¢; is unbounded as * — —o0
(or else it would be an eigenvector), and %; is unbounded as x — +oo. Notice also that
the constants involved in the above estimates are locally uniform in A.

2. Solving equation (18) if A € C\ (—o0, —S] is not an eigenvalue of M: from the
behaviours near —oo, the functions ¢ and 1, are linearly independent. Therefore, up to
redefining p9 = 1)1, we may consider that (p1,p2) is a system of fundamental solutions
satisfying

P1(7) Moo €T, 02(2) Rioo €7, p1(2) Moo €7, pa(7) Rooo €7,

PE) Rioo €777, 0h(T) Moo €11, P(T) Roso €T, 0h(x) R €717

We use the method of variation of constants to solve (18) and straightforwardly reach

ko) = (=g [ esan) @+ (G- [ awewi) e

where C and Cy are arbitrary constants and W is the constant Wronskian W = W (z) =
o1(x)oh(z) — P (x)p2(x). Therefore, there is a unique bounded solution k(z), which
corresponds to C; = Cy = 0.

Hence, for each g € CP(R) there exists a unique k € CZ(R) such that (A\] — M)k =
By the open mapping theorem, the operator A\I — M has a bounded inverse (A — M)~*
CY(R) — CZ(R) — CP(R). In particular,

if A € C\ (—o0,—S] is not an eigenvalue of M, then A is in the resolvent set of M.

3. The eigenvalues in C\ (—oo, —S] of M: if A € C\ (—o0, —S5] is an eigenvalue of M
then, from (23), the eigenvector must be proportional to both ¢ and 1, hence ¢ and 1;
are not linearly independent. Hence the Wronskian ¢11] — ¢/1; must vanish. Since the
Wronskian is analytic in A (see [12, Lemma 5.2]) and not identically zero, the eigenvalues
of M in C\ (—o0, —S] are isolated.

Let A € C\ (—o0,—S] be an eigenvalue of M. Then the associated eigenvector ¢
is a solution to (18) and the former analysis applies. In particular, ¢ and ¢’ converge
exponentially fast to 0 near +0c (at rate Fv4, Reyy > 0) and therefore ¢ € H!(R). Since
M is symmetric on H'(R), we have in fact A € R. Reproducing the argument of [12,
Theorem 5.5], we see that there are no positive eigenvalues of M.
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We conclude from the above analysis that the eigenvalues of M in C\ (—o0, —S] form
a sequence (Ap)nen (with A\g = 0) of isolated values in (—S,0]. As a result the spectrum
of M satisfies

o(L,CY(R)) = o(M,CP(R)) C (o0, —S] U {An,n > 0}.

This shows that the assumption (i) of [12, Lemma 3.4] holds in our case and concludes
the proof of Proposition 3.3. O

4 Traveling together (0 <& < 1)

In this section, we construct a traveling front connecting 1 to 0 in (11), when 0 < ¢ < 1,
through a perturbation argument from the case ¢ = 0 studied above.

We are here looking after a nonnegative profile v : R — R and a speed ¢ € R solving

(25)

{u” +ou + Sf(u) +eg(u) + 2(S2u—1) +)(u)*=0 onR,
u(—o0) =1, wu(+o0)=0.

Observe that, from the strong maximum principle we have v > 0. Also, as in the proof of
Lemma 3.1, we have u < 1. Hence, we a priori know 0 < u < 1.
We use a perturbation technique and look for « in the form

u = ug + h,

where wug is provided by Proposition 3.2 and with, typically, h(+too) = h/(+o0) = 0.
Plugging this ansatz into the equation, we see that we need F(e, ¢, h) = 0, where

F:RxRxE—E
is defined by
F(e,e,h) :=h"+ cuy + ch’ + S(f(ug + h) — f(uo)) + eg(ug + h)
+ % (S(2ug +2h — 1) + &) (uy + h')* — %S(mo —1)(up)?. (26)
As for the function spaces, we choose the weighted Holder spaces
E:=C2*R), E:=C)*[R), 0<a<l, (27)
where, for k € N,

Cho(R) = {f € C*R) i Il oy < +90} s I Fllgro = |z = Y f(a)|

cka(R)’

for well-chosen p > 0. Here, C**(R) denotes the Holder space consisting of functions of
the class C*, which are continuous and bounded on the real axis R together with their
derivatives of order k, and such that the derivatives of order k satisfy the Holder condition
with the exponent 0 < o« < 1. The norm in this space is the usual Hélder norm.

Our main result in this section then reads as follows.

12



Theorem 4.1 (Traveling waves for 0 < ¢ < 1). Let 0 < pu < /S be given. Let F :
R xR x C2%(R) — Cp*(R) be defined as in (26).

Then there is g > 0 such that, for any 0 < e < gq, there exists (c.,h:) € R x E such
that F (e, ce,he) = 0. Moreover the map € — (ce, he) is continuous, the speed c. satisfies

2
— [ (stw0) + Zup)? ) e e
R T

Ce = e+o(e), ase—0, (28)
ul 2€%(u87u0)
[ (@)
whereas the perturbation profile h. satisfies
/Rhgulo =0, forall0<e<egy. (29)

In what follows we aim at applying the Implicit Function Theorem A.1 to the operator
F defined in (26), see [1] for a related argument. We straightforwardly compute the
derivatives with respect to ¢ and h at the origin (0,0, 0):

9:F(0,0,0)(c) = cuy,

and
Lh = 9,7(0,0,0)(h) = " + gué@uo W+ S ( F(uo) + i(u6)2> he(30)

We need to show that 0. ;F(0,0,0) given by
(e, h) — Lh + cuy

is bijective from and to a well-chosen pair of function spaces. Our strategy is as follows.
In subsection 4.1, thanks to some results of [14], [13] (recalled in Appendix), we show
that L is a Fredholm operator and compute its index (which depends on the choice of
p). Next, in subsection 4.2, we determine the kernel of L. In particular u{, is the only
bounded solution. We also determine the kernel of L* thanks to an algebraic symmetric
formulation in a well-chosen weighted L? space, from which we deduce the surjectivity of
0c,nF(0,0,0). Then we conclude the proof of Theorem 4.1 in subsection 4.3.

4.1 Fredholm property

Lemma 4.2 (Fredholm property). The operator L : CZ’O‘(R) — CH(R), defined in (30),
is Fredholm if u # /S and we have

. 0 if 0<pu<VS,
ind L =
-2 if u>+/S.

Proof. In view of Remark A.4 it suffices to study the limiting operators (L*)* associated
with L# defined as in (38), namely

(LM h = 0" 7 2uh’ + (u? — S)h,

thanks to Theorem A.3. First since —&2 F2uié 4+ p? — S = 0, corresponding to (36), has no
real solution, L is Fredholm. Next, the associated characteristic equation, corresponding
to (37), writes

X% +2uX + (u? - S) =0,
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and has the following roots:

Xiy=-n+ VS,

Xi,=+n+VS.
If 0 < p < VS we deduce that kK = 1 and s~ = 1 (in the notations of Theorem A.3),
hence ind L = 0; if /S < p we have kKt = 0 and k= = 2, hence ind L = —2. This
completes the proof of Lemma 4.2. O
4.2 Kernels of L, L* and surjectivity of 0.,F(0,0,0)

Lemma 4.3 (The kernel of L). Two linearly independent solutions to the linear homoge-
neous ordinary differential equation

45 4
Lh:=h"+ 7u6(2u0 -1 +S <f/(u0) + r(u6)2> h = (31)
are given by
z 1 45 (.2
u/ and vy :x— uh(x / 76_7(“0(2)_“0(2))dz.
: 0l J )

Among the two, uf, is the only bounded solution.
As a result, for 0 < u < /S, the kernel of the operator L acting on the space Cﬁ’o‘(R)
into Cg’a(R) is given by
ker L = span .

Proof. We investigate the solutions h to (31). This is a second-order linear homogeneous
ordinary differential equation and we already know a solution wj, (as seen by differentiating
(12)). In this case a second solution vy can be sought in the form vo(z) = z(x)ug(z). Indeed
plugging this ansatz into (31) yields the following first order linear ordinary differential
equation for 2':
vo48
2"+ <2u? + —(2up — 1)u6> 7 =0,
ug r

or, equivalently,
45

r

2"+ (ln((u'O)Q) + —(ug — uo)>/z’ =0.

As a result, we can select the solution

1 4S (. 2
Az = 76_7(7%@)_“0(35))
©) = ar@

which we integrate to reach z(x), and thus

vo(z) = Uf)(x)/o (uh)2(z)

Now, from the analysis in Section 3, we know that, for some C > 0,

)

x 1 s

o~ £ 00 g, (52)

ug(2) ~ Ce V5% asz— +oo. (33)
Since ug(+00) = 0, the integrand in (32) is equivalent to %62‘/@ as z — +o0o, and thus

]' x
wole) ~ 02\/56\@ ’

as r — +o00. (34)
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Thus vy is unbounded and, in particular, vy ¢& C’EL’O‘(R). Since solutions to (31) are
the linear combinations of uy € C2*(R) when 0 < p < VS, vy ¢ C2*(R), and since
L:Cr*R) — CZ(R), we conclude that ker L = span uy when 0 < p < VS, O

Lemma 4.4 (The kernel of L*). If 0 < pu < /S then the kernel of the adjoint operator
L* is

ker L* = span (uge%(ugﬂ‘o)) .
On the other hand, if > /S then

45 (.2 4S8/ 2
ker L* = span (%67(%7"0),voeT(Uo*UO)) ’

z 1 4S (.2
where vo(zx) := uh(x / 76_7(“0(2)_u0(z))dz 1s as in Lemma 4.3.
0( ) O( ) 0 (UIO)Q(Z) 4

Proof. Our starting point is to notice that the coefficient of the first-order term in the
definition of L, that is uf(2ug — 1), is the derivative of u2 — ug so that

Lh=h"+ g(ug —ug)'h + S (f’(uo) + i(u6)2) h,

from which we deduce the formulation
Lh = (e 05w o~ 2w 4 g ( F(uo) + 4(%)?) h,
r
which is symmetric in the adequate weighted L? space:

JoremelReioe = = [ RaRE s [ () + b)) ke 06

/ (Lk)her (—uo),
In particular, for any k € C2*(R), we have
4
/k: Lh) / (h/ 4§(uouo)>’e4§<ugu0)+5<f/(u())+(u6)2> -
"
= / - ke—%u%—uo))’hfe%(ug—uo)
R
4
+ / 5 (100 + 2)?) n (he B0 205w
T
[ b (e ) )

Therefore, if ve*g(“gﬂtO) = k € ker L, then we have
/(L*U)hZ/U(Lh)
R R
= / h (L(Ue—g(“?)—%))) 2 (ug—uo) _ 0,
R

provided each integral is finite. In particular, since C»*(R) is dense in CJ}*(R), this shows
that s
span (uéeT(“O_uo)) C ker L*.
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Assume 0 < p < /S. Then we deduce from Lemma 4.2 and Lemma 4.3 that
dimker L* = —ind L + dimkerL = 0+ 1 = 1, and therefore we do have ker L* =

span (u6eg(u3—uo)).
Assume g > +/S. This time, the asymptotics for vy being given in (34), terms

Iz vohe ™ (#8=10) are finite as soon as h € C*(R), and therefore
span (voe%(“g_uo)) C ker L*,

by a density argument. Then we deduce from Lemma 4.2 and Lemma 4.3 that dim ker L* =
45 45
—ind L + dimker L = —(—2) + 0 = 2. Since %67(1%—%) and vge r (“67%) are linearly

independent, we do have ker L* = span (u{)e%(u%—m)’ voe%(ug_uo)). O

Lemma 4.5 (Surjectivity of 0,5, F(0,0,0)). Let 0 < p1 < V'S be given. Then, the applica-
tion
aC,h]:(Oy O, O) : R x Cz’a (R) — CS,OC(R)
(¢ h) —  Lh+ cy

s surjective.

Proof. We check that wg is not in the range of L. Since L has closed range we have
2

1
rg L = (ker L*)*, and thus rg L = (span (uae%(“o_“(’U) from Lemma 4.4. But

o 1\2 35 (u2—ug)
><02’Q<R>>*,CB’Q<R> - /R(UU) et >0

so that u(, & rg L. Since rg L has codimension 1 by Lemma 4.2 and 4.3, we have CS’O‘(R) =
rg L & span u. This shows that d.;F(0,0,0) is surjective. O

45 (2
(upe 052,

Remark 4.6. We present here an alternate way to prove that uj, ¢ rg L remains true when
© > +/S. To do so, let us solve the second-order linear ordinary differential equation

w’ + gu{)@uo —Dw' + S (f’(uo) + i(u6)2) W = uyg. (35)

Recall that the solutions of the associated homogeneous equation are spanned by u(, and
vo provided by Lemma 4.3. To find a particular solution to (35), we use the method of
variation of constants. We see that ¢(z) := A1 (z)ug(z) + A2 (x)vo(x) solves (35) as soon
as
/Iy r
u(])\l + UOAQ = O
ugN Ny =,
which yields
!/
_ Vo
MNy—2 = =, N =——M\,.
2 uf) 0> 1 U6 2

48
Since ufvf — ujvy is nothing else than the Wronskian, it is equal to §~le™ "+ (%6~40) for

some 6 #£ 0, and thus

N, (z) = —0vo(z)ul(z)e r (W@ —uo@) , __6_

{%@”=am@%meﬁﬁw%ww»~ec%2%%
2V/S’
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where the equivalents are taken as x — +00 and where we have used (33) and (34). Hence,
we can select

45 uUn(2)—uplz - x
Ao(x) = = [ 0(up)2(z)e (0O dz ~ SO 2V
M(z)=—J§ 91}0(z)u6(z)eg(ug(z)_%(z))dz ~ —%x.

Hence the solutions to (35) are
w(z) = (C1 + Mi(2))up(x) + (Co + Aa(x))vo(x)

for any C7 € R, Cy € R. If C5 # 0 then, from all the above asymptotic, w is unbounded.
If C5 = 0 then, from all the above asymptotics,

w(x) ~ _ e_\/gx, as r — +00.

This above asymptotics shows that w ¢ C’ﬁ"" (R) when p > +/S, and thus uj ¢ rg L.

4.3 Construction of traveling waves

We are now in the position to complete the proof of Theorem 4.1, that is the construction
of traveling waves for (25) when 0 < ¢ < 1.

Proof of Theorem 4.1. Assume 0 < p < v/S. Let us recall that F : R x R x ijo‘(R) —
Cg’o‘(R) is given by (26). It is Fréchet differentiable (even of the class C'') with respect to
each of its variables, and we have

65]:(07 07 0) = g(uo) + 7(’&0)2,
0.F(0,0,0) = ul
4 4
L=0,F(0,0,0) : hes Lh=h"+ TSuf)(Quo W+ S (f/(uo) + T(u6)2> h.

We have shown, in Lemma 4.2, that L is a Fredholm operator with indice 0 and, in Lemma
4.3, that the kernel of L is span u, in the considered weighted Holder space.

Our concern is the derivative 0.5 F(0,0,0) : (¢, h) — Lh + cuj. It has been shown in
Lemma 4.5 that it is surjective. It is not difficult to show that

ker 9., F(0,0,0) = {0} x span uy,

and that the restriction of 0. ;F(0,0,0) to R x N, where

N o= {f € C2°(R) ; /Rfug :o}

is a topological complement of ker L, is injective and still surjective. Therefore we can
apply the Implicit Function Theorem A.1 to the restriction of 7 to R x R x N. We deduce
the existence of a branch (c., h:), 0 < & < 1, of solutions with € — (c., he) continuous and
he satisfying (29).

It remains to prove (28). Since F is C! in all its variables we deduce from F (g, cc, he) =
0 and the chain rule that

dee

65]-"(5, Ce, hz—:) + de ac]:(ea Ce, hs) + 8h]:(5a Ce, hs) <dh€> =0,

de
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which we evaluate at € = 0 to get

2 de
g(uo) + ;(%)2 + CT;

dhe
de

u6+L<

e=0

) —0,
e=0
48

i
Since rg L = (ker L*)* = (span (%67(“3_"0))) , multiplying the above by u)e ™ (“6—0)
and integrating over R, we reach

= [ (stw0) + 2 up)? ) e ot
R

de
T; - 45 (, 2 >0,
e=0 /(u6)2€7(u0—u0)
R
which yields (28) and concludes the proof of Theorem 4.1. O

5 Conclusion and perspectives

In this paper we have investigated the solutions of equation (11), describing the dynamics
of two coupled, asymmetric genetic incompatibilities (underdominant loci) with identical
fitness effects, in a quasi linkage equilibrium regime. The two main results are as follows:
first, we have shown that when ¢ = 0, there is a unique standing wave ug under a nor-
malization condition; then, in Section 4, we have shown that when ¢ > 0 is small enough,
there exists a traveling wave u. defined as a perturbation of wug.

Those results were obtained under a series of assumptions that we recall here for
discussion:

T
—

~— ~— — “—

SA,8B < S
sA,8p, S K r

T =
W o

Sa =SB, sa=sgB
pP=4q.

A~ o~ o~
s
I

Assumption (H1) is the frame of this work which was devoted to the heterozygote
inferior case. It is therefore not a hypothesis we want to discuss per se.

Assumption (H2) expresses that we are in the case of small selective advantages. When
it does not hold, D may not be small, in which case the quasi linkage equilibrium approx-
imation (that allowed us to reduce the number of variables) is no longer valid. It can
easily be seen that —i <D< % always holds, and that, as shown by the D equation
in (7), positive D is generated whenever p and ¢ travel in the same direction (that is
Pzqr > 0), while negative D is generated otherwise. These facts help to understand the
kind of contribution D makes to the coupling between p and ¢ in (7).

Assumption (H3) is basically a hypothesis of symmetry between loci. Although this
allowed us to simplify the algebra, different incompatibility loci should have different
fitness effects, and it would thus be of interest to relax this hypothesis.

Last but not least, assumption (H4) conveys the strong argument that the A cline
and the B cline have sticked together forever in the past and will stick together forever
in the future. This is indeed a good starting point from a mathematical perspective.
Nevertheless, in the context of population genetics, more interesting questions arise when
(H4) does not hold. In such a situation, the coupling in (7) can give rise to non-standard
behaviours, such as adaptation of the speed. The questions that arise are such as: can
a traveling front be pinned by a standing front? Will a front traveling at a large speed
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crossing a slower traveling front adapt its speed so as to remain sticked with the slower
one? A preliminary numerical exploration has shown that there can be a vast zoology of
situations. We hope to present them in a future work.

A Some useful results and tools

We recall the Implicit Function Theorem, see [15, Theorem 4.B] for instance.

Theorem A.1 (Implicit Function Theorem). Let X, Y and Z be three Banach spaces.
Suppose that:

(i) The mapping F : U C X XY — Z is defined on an open neighbourhood U of
(z0,90) € X XY and F(xo,y0) = 0.

(ii) The partial Fréchet derivative of F with respect to y exists on U and

Fy(zo,yo) : Y — Z is bijective.

(iii) F and F, are continuous at (xg, yo).
Then, the following properties hold:

(a) Existence and uniqueness. There exist 1o > 0 and r > 0 such that, for every z € X
satisfying ||z — xol| < ro, there exists a unique y(x) € Y such that ||y — yol| < r and
F(z,y(x)) = 0.

(b) Continuity. If F is continuous in a neighbourhood of (xo,yo), then the mapping
x — y(x) is continuous in a neighbourhood of xg.

(c) Higher regularity. If F is of the class C™, 1 < m < oo, on a neighbourhood of
(z0,Y0), then x — y(x) is also of the class C™ in a neighbourhood of xg.

In Section 4 we apply Theorem A.1 to the operator F defined in (26), with X = R,
r=¢e20=0,Y =RxC*R), y = (c,h), yo = (0,0), and Z = C)*(R).

Next, we quote some results on Fredholm operators. Let us recall that the operator L
has the Fredholm property with index 0 if ker L has a finite dimension, rg L is closed and
has finite codimension and

ind L := dimker L — codimrg L = 0.
In particular, since its range is closed, such an operator is normally solvable:
Ju0,Lu=f & Ve (rgl),¢(f) =0,

and remark that (rg L)+ = ker L*.
We recall below a theorem from Volpert, Volpert and Collet [14, Theorem 2.1 and
Remark p787].

Theorem A.2 (Fredholm property on the line). For 0 < a < 1, consider the operator
L:C*%R) — C*(R) defined by

Lu = a(z)u” + b(z)u' + c(z)u,
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where the coefficients a(x), b(z), ¢(x) are smooth, and a(x) > ay for some ag > 0. Assume
further that the coefficients a(x), b(x), and c(x) have finite limits as x — oo and denote

. . .
a .—xgrilooa(x), b .—xll)l:ltloob(x), c .—xgrilooc(a:).

Finally, let us define the limiting operators
LFu:= ot + b5 + ctu,
and assume that for any A > 0, the equation
Lfu—du=0

has no nontrivial solution in C**(R).
Then L is Fredholm with index 0.

Let us also recall a Fredholm property result for second-order ordinary differential
equations, see the monograph of Volpert [13, Chapter 9, Theorem 2.4 p. 366].

Theorem A.3 (Fredholm property for second-order ODEs). With the notations of The-
orem A.2, the operator L is Fredholm provided the two equations

—aTE +bFiE+ =0 (36)
has no real solution £ € R. In this case the index of L is given by the formula
ind L=xr"—k",

+

where k= is the number of complex solutions to the characteristic equation

a*X? - bEX + =0 (37)
which have a positive real part.

Remark A.4 (Fredholm property in weighted Holder spaces). We cannot directly apply
Theorem A.2 and Theorem A.3 to our situation since we consider the operator L acting
from C3*(R) into Cg(R), and not from C**(R) into C**(R). To circumvent this, we
consider the operator L* : C**(R) — C%(R) defined by:

L (u) := etV 14+a® 1 (ue*’“ 1“”2)

= a(z)u” + [\/%a(x) + b(:):)} u

2,2 72 X
(*‘ e n )a<x>—“b<x>+c<x> w“  (3)

_|_
1+a? " (1442)3  V1+a? T+ 22

Since T, : u € C’Z’O‘(R) — etV1T2%y, e C2(R) is continuously invertible, and Tu_l tu €
COX(R) s e~ mVIH2%y ¢ C*(R) is continuously invertible, the map L = T, ' L*T}, shares
the same Fredholm property and index as L*. As a result, if L* satisfies the assumptions

of Theorem A.2, or Theorem A.3, then L is a Fredholm operator with the same index as
that of L*.
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