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ABSTRACT

Cylinders with an elliptical, oblong, lenticular, sinus or diamond transveral shape are

very interesting geometries for the design of compact heat exchangers. This work investi-

gates the role of the porosity and of the apex angle of diamond-shaped cylinders networks

on the pressure losses, at moderate Reynolds numbers, inside micro heat regenerators.

The design of the geometry under test has been chosen so that the cross section of the

flow remains almost constant along the path of the flow between cylinders. Experiments

have been performed at 1 ď Re ď 30 and a porosity range 0.40 ă ε ă 0.90 for an apex an-

gle of α “ 33˝. Numerical simulations have been conducted using the same Reynolds and
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porosity ranges but varying the apex angle 33˝ ď α ď 90˝. Experimental measurements

and dimensional analysis have shown that the friction factor can be affected by the poros-

ity. 2D numerical simulations confirmed that the friction factor increases with the porosity

but also with the apex angle. An analysis at the scale of a channel flanked by adjacent

cylinders has provided a original correlation able to describe easily the evolution of the

Poiseuille number and the collective effects on the drag coefficient as a function of α and

ε. Such a diamond-shaped design is found to induce much lower Poiseuille numbers than

those expected from conventional stacked spheres, woven wires and circular cylinders ar-

rays. The findings of this study can help for better understanding the optimization of low

pressure drop regenerators and how to reduce associated hydraulic power.

HIGHLIGHTS

Poiseuille numbers are globally much lower than conventional arrays.

Poiseuille numbers increase with the porosity and with the apex angle.

The variation of the tortuosity explains Poiseuille variations with the porosity.

A new simple correlation is proposed to describe both Poiseuille numbers and drag.

INTRODUCTION

In the frame of process intensification, miniaturisation leads to the design of thermally efficient

heat exchangers having the lowest energy consumption. The hydraulic power required to generate

fluid flow is the product of the volumetric flow rate by the inlet/outlet pressure drop. For a given

exchanger design it is thus important to not only evaluate heat transfer efficiency or thermally-

optimal arrangement, but also to characterize the corresponding pressure losses. , For the sake

of simplicity, references in the literature are mostly related to cylinder shaped arrays also called

’tube bundle’ or ’tube bank’ [1, 2, 3, 4, 5, 6].

By designing compact cylinders array heat exchangers, the main solution to enhance heat

flux per volume unit is to increase the total exchange area. This is usually achieved either by

decreasing the cylinders size and increasing their number per volume unit, or by changing the
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cylinders aspect ratio and their shape. The main shapes studied for heat exchangers with non-

circular cylinders arrays are elliptical or oblong [7, 8, 9], rectangle or square [10, 11, 12, 13, 14],

lenticular [15] but also, in more recent studies, sinus and diamond [16, 17, 18, 19, 20].

For in-line or staggered arrangement of square or diamond-shaped cylinders arrays with an

apex angle of α “ 90˝, heat transfer or pressure drop were characterized by Chyu et al. [17], Tanda

[18] or Jeng [19]. Chyu et al. [17] found experimentally that staggered matrix of squared shaped

cylinders exhibits a higher transfer rate than a staggered diamond shaped array, which exhibits an

higher transfer rate than a staggered circular cylinders array. Globally staggered arrangements are

found to generate higher heat transfer rates and pressure losses than in-line arrangements. The

transfer was studied using a naphthalen sublimation technique. In an air flow through diamond-

shaped cylinders arrays, Tanda [18] has quantified in 2D mass transfer rate and temperature

distribution for staggered and in-line arrangement using liquid crystal thermography and image

processing. According to the authors, at the same hydraulic powers, diamond-shaped cylinders

arrays can be up to 1.65 more efficient than an empty channel. Flow and heat transfer in a

compact diamond-shaped cylinder exchanger was also studied experimentally by Rasouli et al.

[21] using liquid nitrogen for thermal management applications in cryo-adsorbent hydrogen storage

systems. The authors observed an increase of the friction factor with the Reynolds number above

Re ą 580 ´ 650, because of flow flapping behind the cylinders. The thermal efficiency was also

investigated experimentally by Jeng [19] for the case of in-line array of diamond-shaped cylinders

using a transient method for measuring the heat transfer coefficient. The author has concluded

that for a given hydraulic power it is possible to find an optimal distance between cylinders to

maximize heat transfer.

It is important to stress that, in the literature, usually named diamond-shaped cylinders arrays

are in fact 45˝ inclined square-shaped cylinders (i.e. diamond shape with an apex angle of α “

90˝). The effect of varying the apex angle (or cylinder section aspect ratio) is not systematically

considered.

Heat exchangers with a diamond shape having an apex angle equal or lower to 90˝ were

studied for electronic cooling applications in space industry [16, 22, 20]. Pressure drop coeffi-
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cients in such geometries with an apex angle of 45 or 90˝ and a porosity of 65% were charac-

terised experimentally and numerically by Sparrow & Grannis [16] for the Reynolds number range

20 ă Re ă 2700, in order to give correlations to assist dimensioning of an air/air heat exchanger

for a space shuttle. That question was in the same time studied numerically in a companion paper

of Grannis & Sparrow [22] using a finite-element method. The authors have simulated a periodic

domain to investigate the flow and the pressure drop in similar diamond-shaped cylinder staggered

arrangements. For α “ 45˝, the authors propose two correlations of the friction factor and suggest

that the Poiseuille number is quite constant for the range 0.22 ď ε ď 0.70 for an arrangement cor-

responding to an equilateral triangular pattern (Po « 108) and to a regular staggered arrangement

(Po « 97). For α “ 90˝ and same arrangements, the authors propose correlations considering a

singular pressure drop per row of cylinders. In this reference, the authors admitted that it is very

difficult to collapse results with α “ 45˝ and α “ 90˝ under a common description.

Later, diamond-shaped cylinder networks were also investigated by Vanapalli et al. [20] for

their use as a micro-heat exchanger for the cryocooling of satellite electronic. For laminar flows

at moderate Reynolds numbers (50 ď Re ď 500) and apex angle of α “ 37.15˝, [20] found exper-

imentally that a diamond-shaped cylinder matrix generates a higher pressure drop than circular,

square, elliptical or sinus shapes.

For a turbulent flow regime and downstream an array of diamond-shaped cylinders, the jet for-

mation with a specific flapping instability has been observed at the outlet of a liquid flow emerging

into air [23, 24]. For such a flow, by using numerical simulations and experimental measurements,

Hirasawa et al. [25] proposed correlations to describe the pressure drop and heat transfer in an

array of diamond-shaped cylinders with an apex angle of α “ 30˝.

In micro-fluidics, the diamond-shaped cylinders arrays have also been investigated for liquid

phase chromatography applications [26, 27, 28]. This geometry seems to offer better chromato-

graphic performances than circular or ellipse cylinders arrays. Finally, porous diamond-shaped

cylinders are also expected to be interesting for biological filtering processes [29]. As a result,

various applications could benefit from the knowledge of the pressure drop in an array of diamond-

shaped cylinders.
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In the literature, the pressure losses in cylinders arrays depends on the compactness of the

heat exchanger. This is usually quantified by considering the exchanger porosity that is the ratio

between the volume occupied by the fluid to the total volume of the exchanger. Pressure losses in

non compact heat exchangers with cylinders arrays at high and moderate porosity are presented

as the sum of singular pressure losses controlled by the number of cylinder rows in the array, using

the maximal velocity in the network for the calculation of the Reynolds number [1, 3, 16, 8, 5]. This

approach can be justified for a dilute array of cylinders, where a row of cylinders can be considered

as a singularity. For more compact exchanger, decreasing the porosity make the exchanger close

to a porous media and pressure losses can be described as a linear pressure drop considering the

friction of the flow on the walls. This approach consists in using the Darcy-Weisbach coefficient

is typically the one employed for compact heat exchangers [30, 22, 12, 18, 13, 20, 19, 14] using

a mean velocity for the Reynolds calculation. In addition, a large number of correlations exists to

describe the pressure drop in cylinders arrays. Usually it is found from numerical or experimental

works that the friction factor is not only controlled by the Reynolds number but also monitored by

the lateral or longitudinal dimensionless distances and the arrangement (in-line or staggered [31]).

Different comparative studies have pointed out the fact that available correlations in the literature

are not able to predict experimental pressure drop accurately (see [32, 33] and [34]). As a matter

of fact, even if the literature on that subject is large, the understanding of flow behaviour and

associated pressure losses in cylinders arrays remains a question of interest. Moreover, to our

knowledge, for diamond-shaped cylinder arrays, no available correlation able to predict pressure

losses for a wide range of porosity and apex angle has been published.

The paper is organized as follows. First, the geometrical parameters of the exchanger under

investigation and its micro-fabrication are presented. Then, the parameters used to characterize

the flow are introduced. After that, the experimental investigations performed are detailed for

diamond-shaped cylinders arrays with an apex angle of α “ 33˝ and a porosity of 0.45 ď ε ď 0.78.

Finally, a numerical investigation is achieved for the same geometry and porosity range but with a

larger range of apex angle 33˝ ď α ď 90˝. In those two last sections, preliminary validation tests

are performed and results are compared to the literature.

5 FE-20-1575, Colombet, 5



Journal of Fluids Engineering

The main novelity of this work is to extend the investigations of Sparrow & Grannis ([16, 22]

which were limited to a single porosity (ε “ 65% and α “ 45 or 90˝) at a much larger range on the

porosity ε but also on the apex angle α. The second asset of this work is to consider a specific

staggered arrangement intended to maintain a constant flow cross section, that is known to be

an important parameter to minimize pressure drops as shown previously by Ruhlich & Quack [15]

thanks to a numerical study on the optimisation of regenerators design. Indeed, if the flow cross

section varies continuously and significantly, one important contribution to the pressure losses is

the flow acceleration and deceleration along its path. In this work, a geometrical constraint is im-

posed to follow this principle and keep the flow cross section quite constant. The third advantage

of this work is to propose to use three complementary approaches (experiments, numerical simu-

lations, dimensional analysis) to bring new findings on that topic. Finally, compared to many other

previous works using random arrays of spheres or wires as a regenerator, as already performed

by a few research teams before (see for example [20]), the last originality of this study is to control

perfectly the geometry of the regenerators thanks to the developpment of MEMS techniques.

GEOMETRICAL PARAMETERS

The samples used in our study consist of straight channels with a rectangular cross section

and with micro structures inside, that act as a porous media. Figure 1 shows the layout and a

picture of one of our sample. The width and the length of the main channel are the same for all

the samples. The circular tanks at the ends are used to connect the inlet and outlet easily. In our

experiments, the porous area consists of a micro-size solid cylinders matrix located in the center

of the channel. These cylinders are diamond-shaped with an apex angle α equals to 33 degrees

(see Fig, 1a). This angle corresponds to an aspect ratio of 0.30 that was identified in a previous

work to be a potential compromise between efficient heat transfer and moderate pressure losses

[15]. In the numerical investigations, the apex angle has been changed to estimate the influence

of the apex angle on the pressure drop.

The present work focuses on the case of a periodic staggered arrangement of diamond shaped

cylinders as presented in Fig. 2 with a width ’a’ and length ’b’ that depends on the apex angle
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α “ 2 ˆ atanpa{bq. The parameter c “
a

rpa{2q2 ` pb{2q2s is the length of one of the cylinder face

so that for one cylinder the wetted surface in contact with the fluid is 4cH, where H is the cylinder

height. ’e’ is the distance between two cylinders faces, but it can also be presented as the width of

the channel formed between the diamond-shaped cylinders. ∆x stands for the distance between

the front (resp. rear) apex angle and the inlet (resp. outlet) of the chosen periodic domain. ∆y

corresponds to the distance between the top (resp. bottom) equator angle and the top (resp.

bottom) side of the periodic domain. LL “ b ` 2∆x and LT “ a ` 2∆y are respectively the length

and width of the periodic pattern.

As explained in the introduction, to minimize the singular pressure losses due to fluid accel-

eration/deceleration, heat exchanger geometries having a quasi constant cross section between

matrix columns have been investigated in the present work. To fulfill this condition, the geometrical

constraint e “ ∆y has been imposed to the studied gemotries. From Fig. 2b, with this constraint,

it can be shown that this imposes π “ 2β ` π{2 ` θ and π “ π{2 ` θ ` α{2 (upper triangle) so

that β “ α{4 and then ∆x “ e tanpα{4q. Consequently, the size of a periodic domain for such

geometries is simply LL “ b ` 2e tanpα{4q with LT “ a ` 2e.

It is now possible to define the exchanger porosity (or volume fraction of fluid) as a function of

the geometrical parameters as follows

ε “ Vfluid{Vtotal “ 1 ´
Vcylinders

Vtotal

“ 1 ´
ab

pb ` 2e tanpα{4qqpa ` 2eq
(1)

with Vtotal “ Vfluid ` Vcylinders “ LL LT H “ pb ` 2∆xqpa ` 2∆yqH “ pb ` 2e tanpα{4qqpa ` 2eqH

and Vcylinders “ 2pab{2qH “ abH.

According to the porous media approach, the hydraulic diameter of the heat exchanger matrix

is defined as follow
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Dh “
4εVtotal

Acont ` AW
cont

(2)

where the wetted surface in contact with the column is Acont “ 8cH. In our experiments the

wetted surface in contact with the top an bottom channel walls is AW
cont “ 2LLLT ε while for 2D

simulations one has AW
cont “ 0. In practice, experimental samples were designed by varying the

porosity between 0.4 and 0.8 with α « 33˝ for a given cylinder distance ’e’ (10 ´ 20 ´ 40 µm).

For a fully 2D geometry, where H is much larger than all other lengths as in numerical sim-

ulations (Acont ąą AW
cont), by noticing that 1 ´ ε “ ab{Vtotal, it is easy to show that the hydraulic

diameter can be simplified into a function of the cylinder width ’a’, the apex angle and the proposity

Dh “
4εVtotal

Acont
“

ˆ

ε

1 ´ ε

˙

a cospα{2q (3)

It should be noticed that from a numerical perspective the periodic domain is not the smallest

periodic pattern since an additional axial symmetry can be considered along the line passing at the

two front and rear apex angles. The choice of the current periodic domain was initially motivated

to enable further study of side wall boundary effects in the channel (complete adherence condition

on one side). But this was finally out of the scope of the present study.

DEVICE MICRO-FABRICATION

The fabrication of the device is based on MEMS techniques. First, the pattern of the channel

is transferred from a chromium mask onto a 140 ´ 400 µm thick silicon substrate by lithographical

steps (spin coating of a S1818 positive photoresist and UV irradiation of 30mJ{cm2. ) Then,

the pattern of the exchanger with the cylinders matrix is etched using a customized Bosch deep

reactive ion etching process (DRIE). As shown in Fig. 3, by controlling the number of cycles, pas-

sivation coating, etching and cooling steps durations, a special recipe was established to provide
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structures with a high aspect ratio (H{a) and vertical walls. An overview of the sample matrix,

observed with an optical microscope with the same magnification factor of ˆ20, is presented in

Fig. 4. As shown in this figure, for a given cylinder spacing ’e’ the increase of the porosity induces

a decrease of the column sizes (’a’,’b’).

Finally, the silicon channel is anodically bonded to a Pyrex 1 mm thick cap that has been

preliminary drilled at its extremities for inlet and outlet pipe connexions (see Fig. 1). The sealing

between the Pyrex cap and the inlet/outlet holes is insured by using stainless steel slices equipped

with vitton O-rings.

The depth of the channel depends on the number of etching cycles. Two kinds of samples

have been micro-machined: for the first one the etched depth H is lower than the silicon substrate

thickness (100 ď H ď 190µm, silicon/Pyrex samples); while for the second one the silicon sub-

strate, previously bonded to a second Pyrex cap, is etched through its entire thickness, making

possible the production of transparent Pyrex/Silicon/Pyrex samples.

Dimensions after etching may be different from those of the original mask because of the un-

desirable side wall etching effects. The real dimensions are determined by analysing a set of

optical microscopy photographs. Using the gray level histogram, a threshold is manually adjusted

on the gray level images from the optical microscope to binarise the image such that diamond-

shaped cylinders are put in white while background is in black (empty areas). Then, to accurately

characterize the geometry of the etched samples, a conventional images treatment is used for

labelling detected objects and extract data statistics [35]. An example of image used for the mea-

surements of the sample dimensions is presented in Fig. 4e. With this method, the ’bounding

box’ gives the access to ’a’ and ’b’ values for one cylinder while vertical and horizontal distance

between cylinders centroids give the measurements of the periodic pattern sizes LL “ b ` 2∆x

and LT “ a ` 2∆y. Finally, the arithmetic average of those measurements is considered and the

other parameters such as ’c’, ’e’, ’ε’ or Dh are then calculated using relations introduced in the

previous section.

The channel depth has been measured using two methods : in the first one, with a profilometer

in an area of the channel without any cylinder (just before or after the porous area); in the second
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one, some samples of the batch are cut crosswise and the depth of the channel is measured by

scanning electron microscopy (see Fig. 3, c). The etch depth inside the porous media have been

also checked by focusing consecutively on the top and on the bottom of cylinders with an optical

microscope equipped with a vernier. Table 1 lists the geometric parameters of the 11 samples

micro-fabricated for this work.

FLOW CHARACTERISATION

The flow and pressure drop have been investigated by varying the Reynolds number Re of the

exchanger, calculated as

Re “
ρU Dh

µ
(4)

The pressure drop between the inlet and outlet of the flow is then quantified by calculating the

Darcy-Weisbach coefficient

f “
Dh

L

∆P

1{2ρU2
∆P “ Pin ´ Pout (5)

L is the exchanger length (L “ LL for simulations), U is the average flow velocity calculated in

the experiment. This formulation based on the linear pressure drop is more adapted to compact

heat exchangers than considering singular pressure drop per cylindere row (see for example [22]).

Our results have been also analysed using the Poiseuille number defined as the product of the

pressure drop coefficient with the Reynolds number Po “ f ˆ Re.

During our numerical simulations, the flow around a single cylinder inside the matrix has been

also characterized by the corresponding drag coefficient. The drag coefficient is calculated from

the drag force Fd by integrating the pressure and viscous stress τ on the cylinder surface
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CD “
||Fd||

App1{2qρU2
“

1

App1{2qρU2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

S

p´p ¨ n ` τ ¨ nqdS

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(6)

with n the unit vector normal to the cylinder surface, Ap “ aH corresponds to the projected

surface area based on the product of the cylinder width with its height. The drag coefficient varia-

tion is analysed with respect to the Reynolds number of the cylinder ReD characterizing the flow

at the scale of one cylinder and defined as follow

ReD “
ρU a

µ
(7)

EXPERIMENTAL INVESTIGATIONS

Experimental setup

Experiments were performed with helium gas as the working fluid. Fig. 5a shows a diagram

of the experimental set-up. Helium gas is supplied by a high pressure gas bottle (200 bar). In

order to protect the rest of the experimental assembly, the gas is expanded in a first buffer before

passing through the sample. The gas flow and the second buffer pressure are manually controlled

by three precision needle valves. The gas flow rate and the inlet-outlet pressures are recorded

by a thermal mass flow meter (BrooksDelta, 0.55 NL{min) and two pressure transducers (Keller

PR33X, 0 to 20 bar). Two k-type thermocouples are also installed inside the capillaries located

upstream and downstream the channel, to record the inlet and outlet temperatures. By using the

ideal gas law to estimate the density (ρ “ PM{RT ) and by considering the mass flow conserva-

tion along the exchanger (ρUS “ const), it is easy to demonstrate that the ratio between outlet

and inlet velocities is simply Uout{Uin9pPin{PoutqpTout{Tinq. In present experiments, temperature

measurements show that the ratio Tout{Tin remains close to unity (0.99 ď Tout{Tin ď 1.11 ). Thus,

in order to keep the flow density quite constant and to avoid large velocity variations along the ex-
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changer in our installation the ratio of inlet and outlet pressure has been kept as close as possible

to unity. To do that the outlet pressure in the second buffer tank was kept at around 8-10 bar for

a pressure drop globally lower than 2 bar (one experiment at 3 bar of maximum). As a result, the

velocity of the flow in the exchanger can be calculated directly from the measured mass flow rate

at the inlet as follow U “ Qm{pρStotale εq. The averaged gas density ρ and also average viscosity

µ are calculated from the average inlet/outlet temperature Tm and pressure Pm using respectively

the ideal gas law ρ “ PmM{RTm and the correlation proposed by Petersen [36] (Eq. 6.1 in the

paper).

As shown in Fig. 5b, the assembly has been designed to facilitate the replacement of samples.

The metal structure holds the fluidic connections on the inlet and outlet ports. In the experiments

presented here with gaseous helium as the working fluid, it was verified that the Knudsen number

remains small enough (K « 0.015) to avoid slip-like condition at the wall, so the fluid is considered

as a continuum [37]. It can also be noted that the regular pressure drop induced in the empty parts

of the channel (« 12mm) has been subtracted from the measured pressure drop [38]. The relative

part of this regular pressure drop corresponds to less than 2% of the total measured pressure drop

so that the total measured pressure drop is mainly generated by the cylinders.

Preliminary validation

In order to check the validity of measurements, some empty channels (without porous region)

were micro-machined using KOH wet anisotropic etching. This method enables to produce chan-

nels with a perfectly well defined trapezoidal shape cross section.

Channels were etched with a small depth to obtain a sufficiently high pressure drop together

with a gas flow (10 ď H ď 30µm, W “ 2 mm width ). With such a low channel aspect ratio

(H{W ă 2%), the flow inside these calibration channels is similar to the one between two parallel

plates. The results presented in Fig. 6, show clearly a good agreement with the theoretical friction

factor expected for such a reference flow (f “ 96{Re). At small Reynolds numbers large error bars

are associated to the friction factor. This is due to the larger uncertainty in the measurement of the

flow rate at low Reynolds numbers, typically for Re ă 10. For Re ą 10, the relative uncertainty on

the measurement of the Reynolds number for experiments with empty channels or channels with
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cylinders is lower than 10%.

Experimental results

Experimental friction factor

Experimental measurements of the friction factor were performed for 11 samples on a Reynolds

number range of 1 ă Re ă 30. The channels were tested under the same outlet pressure condi-

tions (« 6.7bar) and under the same average gas temperature (« 20˝C). The flow rate range is

0.02 ď Qv ď 0.54 NL{min while the measured pressure drop range is 0.070 ď ∆P ď 3.0 bar. An

example of friction factors obtained for samples with the same e « 20µm and different porosities,

is reported in Fig. 7 as a function of the Reynolds number. As expected, it is first observed that at

low Reynolds number the friction factor evolves as f “ Po{Re. Each sample with a given porosity

can thus be characterized by one Poiseuille number. As previously for friction factor measure-

ments inside empty channels, a high inaccuracy of measurement is obtained for Reynolds number

below 10. That is why the Poiseuille number of each sample has been estimated only for data with

Re ą 10 insuring an uncertainty on its measurement lower than 20%.

Secondly, it is found that globally the friction factor tends to increase with the porosity ε for

a fixed value of the apex angle (here α « 33˝). In the literature, the dependency of the friction

factor on the porosity for a porous medium in regenerator applications was first mentionned by

Gedeon & Wood [39] but not proved experimentally (Eq. 2.3 in the report of the reference). Even

if this behaviour was not clearly noticed by the authors, the increase of the friction factor with ε

was also present in numerical results presented by Costa et al. [40] (Fig. 17 in the paper). In

that reference, the authors proposed a single global correlation for four different porosities (ε “

0.52, 0.60, 0.64, 0.72). Nevertheless, it is important to mention that the increase of ’f’ with ε does

not mean that increasing the porosity generates higher pressure drop since many parameters can

be affected by ε.

The experimental Poiseuille numbers are plotted versus the porosity in Fig. 8 (* symbols)

and are reported in the last column of Tab. 1. These experimental data are compared to the

results of numerical simulations presented below. For an apex angle α « 33˝, both numerical and

experimental results display a slight increase of the friction factor when increasing the porosity.
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The small discrepancies between the experimental measurements and the numerical results can

be induced by sample border effects (walls) so that the flow is not completly 2D. In all the cases,

the Poiseuille number is always higher or equal to the limit given for a flow between two parallel

plates (Po “ 96). This behaviour will be understood in section ”Parallel-plates flow analogy” by

considering the flow at the scale of the channel formed between cylinders.

Our results are in agreement with the main observation made by Sparrow & Grannis on the fact

that at low apex angle, the Poiseuille number remains nearly constant for ε ď 0.60 (Fig. 11 & 12 in

[22]). However, a direct comparison with this previous work is made difficult, because the authors

do not use exactly the same velocity scale as ours for the calculation of the Reynolds numbers

and the friction factors. Nevertheless, the present work displayed the same order of magnitude

of Poiseuille numbers than what has been presented by this team (Po « 100 for α “ 45˝ and

ε ď 0.70).

Moreover, one of the most important result of this work is that the diamond-shaped array

geometry is found to generate experimentally lower Poiseuille numbers than conventional solutions

used to design regenerators. As reported in Fig. 8, measured Poiseuille numbers are found to be

smaller that stacked woven wire matrices (Po “ 123, Costa et al. [41] for 1 ď Re ď 400) or stacked

sphere matrices randomly arranged (Po “ 133, Ergun [42] for moderate Reynolds number, see

[43] appendix B) for ε ď 60´70%. This result confirms that well controlled geometries can improve

regenerators pressure losses and more globally heat exchanger performance.

Lastly, another important new result emerging from Fig. 8 is that contrary to the experimental

results presented by Vanapalli et al. [20] for sinus (Po « 29.65) or ellipse-shaped (Po « 26.98)

cylinders, our experimental results do not display Poiseuille numbers below the parallel-plates

limit (Po ď 96 in our case). There is no reason that the Poiseuille number should be lower than

the squared cross section channel limit (Po “ 56.9). The result of Vanapalli et al. maybe a

consequence of the singular pressure corrections applied to the porous media extremities, or of

an inaccurate hydraulic diameter used that does not take into account the additional friction on the

bottom and top walls (A1
cont).

Those interesting observations make very promising the use of this geometry for the design
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of exchangers with low pressure drop, and complementary studies on heat transfer efficiency

with such a geometry will have to be performed. The dimensional analysis presented now will

help to understand that the Poiseuille number depends on porosity before being confirmed by the

numerical simulations.

Dimensional analysis

To confirm experimental observations and before developping numerical simulation, a dimen-

sional analysis was applied in order to identify the main dimensionless numbers that influence the

friction factor in the studied geometries. In our configuration the pressure drop ∆P through the

sample can be influenced by the seven following parameters: U , ρ, µ, a, b, Dh and L (the porous

area length). The dimensions of those parameters are recalled in Tab. 2. Note that the porosity

ε or the interchannel width e are not included since they are both linked to parameters a, b, Dh.

In addition, the channel height H is not taken into account since we consider here a 2D case with

a{H ăă 1 and b{H ăă 1. As shown in Tab 2, there is n “ 8 parameters and m “ 3 fundamental

dimensions (L, T, M). As a result, applying the Vaschy-Buckingham theorem [44, 45], our system

is controlled by n ´ m “ 5 dimensionless numbers that can first be expressed as

Π1 “ ∆PU´2ρ´1D0

h “
∆P

ρU2
(8)

Π2 “ µU´1ρ´1D´1

h “
µ

UρDh

(9)

Π3 “ aU0ρ0D´1

h “
a

Dh

(10)

Π4 “ bU0ρ0D´1

h “
b

Dh

(11)

Π5 “ LU0ρ0D´1

h “
L

Dh

(12)

Among those numbers, it is important to note that in our case, the condition Π5 “ L{Dh Ñ 8

is always verified. Our system can thus be reduced to 4 dimensionless numbers that can be

rearranged as
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Π1

Π5

“
∆PDh

ρU2L
“ f (13)

Π
´1

2
“

UρDh

µ
“ Re (14)

Π3 “
a

Dh

“ p1 ´ εq{rcospα{2qε{s (15)

Π3{Π4 “
a

b
“ tanpα{2q (16)

Consequently, the dimensional analysis confirms that the friction factor depends on the Reynolds

number Re, on the apex angle α (or tanpα{2q) and on the porosity. For a fixed value of the

apex angle, the dimensional analysis confirms that the friction factor is influenced not only by

the exchanger Reynolds number but also by the porosity value. One can note that this param-

eter can be also interpreted as the effect of the variation of the cylinder Reynolds number since

Π3{Π2 “ Uρa{µ “ ReD. It is important to notice that in the literature, it is known that the pressure

drop in staggered arrangements depends on the center-to-center longitudinal and transversal dis-

tances LL and LT {2 (see for example [31]). Since in our geometry the constraint ∆y “ e makes

a direct link between longitudinal and transversal distances, the porosity quantifies here the dis-

tances between column center.

Our experimental measurements show that the Poiseuille number increases with the porosity.

To go further in the possible use of diamond-shaped arrays for micro regenerators geometry, it is

now important to confirm and understand this behaviour and to investigate the effect of varying

the apex angle. This is the objective of the next part of the article where those open questions are

addressed using numerical simulations.

NUMERICAL SIMULATIONS

In this section, the numerical procedure, the validation of the procedure and results are pre-

sented for a 2D flow through a diamond-shaped cylinders array.
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Governing equations

One considers the numerical simulation of a flow through a cylinder matrix with a volume

averaged mean velocity ’U “ p1{V q
ş ş ş

uxdv’ along the main flow axis. The cylinders aspect ratio

is considered to be small enough so that the flow is in 2 dimensions (i.e. a{H ăă 1). Due to

the Reynolds number range, the flow regime is laminar. The local velocity ’u’ and pressure fields

’p’ are given by solving numerically the Navier-Stokes equations for an incompressible Newtonian

fluid

∇ ¨ u “ 0 (17)

ρu ¨ ∇u “ ´∇p ` ∇ ¨ τ ` S0 (18)

where τ “ µ
`

∇u ` ∇Tu
˘

is the viscous contribution of the stress tensor, ρ and µ are respec-

tively the fluid density and the dynamic viscosity. The flow is generated by imposing a source term

S0 “ Bp{Bx as a negative pressure variation along the x-axis matrix and using periodic boundary

conditions for both velocity and pressure as detailed in the next section.

Numerical procedure

The conservation equations are solved with the finite volume method in 2D with OpenFoam

using a double-precision writing format [46]. For solving the Navier-Stokes equations, an upwind

second order scheme and a centered second order scheme are used for the spatial discretization

of respectively the advective and the diffusive fluxes. The pressure and velocity fields are linked

by the SIMPLE algorithm. The convergence of the flow calculation is achieved when the drag

coefficient is stable and when the residuals are lower than 10´7.

The calculation domain is presented in Fig. 9a. It corresponds to a periodic pattern with

periodic boundary conditions at the inlet and at the outlet for the velocity and the pressure (i.e.

upx “ 0, yq “ upx “ LL, yq and ppx “ 0, yq “ ppx “ LL, yq). An adherence condition is imposed at

the cylinder walls (u “ 0). A symmetry boundary condition is set on the upper and bottom sides.
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Some preliminary simulation tests on a domain corresponding to a concatenation of five periodic

patterns have shown that the periodic boundary conditions on velocity and on residual pressure

are reached as soon as the second periodic box is passed for present Reynolds range.

An example of the grid refinement strategy is shown in Fig 9b for a coarse grid. Around the

cylinder a refined body fitted rectangular mesh is used. The grid-independence of results has

been checked for each case. The size of the grids used in this work is detailed in Tab. 3. Globally,

the number of cells between columns faces varies as 50 ă Ne ă 300 (Ne “ N∆y). The number

of cells along the cylinder surface (2c) is in the range 62 ă 2Nc ă 180. And the number of cells

between two consecutive apex angles is fixed to be 2N∆x “ 10. The number of cells indicated

here are linked to segments presented in Fig. 2 (c, e, ∆x, ∆y). In the present simulations, since

the Reynolds number remains low the boundary layer are thick. Thus the smallest size of the cell

at the cylinder surface is not fixed from a boundary layer constraint but by respecting a cell aspect

ratio between 2 and 4 and checking the result independence to the grid refinement.

Numerical results and discussion

The preliminary validation of the numerical procedure was carried out using two test cases.

The first test case is the flow between two parallel plates considering a periodic slice. Numerical

results show a perfect agreement with the theory with Po “ 96 for 1 ď Re ď 100. The second

validation test case is a flow through a staggered arrangement diamond-shaped cylinders matrix

with a porosity of ε “ 65% and an apex angle of α “ 45˝ as studied experimentally by Sparrow &

Grannis [16]. A correct agreement is globally found with respectively a difference of 3.8%. 4.5%

and 15% for the three measurments presented by the authors (see Fig. 3.5, Tab. 3.2 and Fig.

3.4b in [43]).

In this section, the pressure drop is presented for a flow through diamond-shaped cylinders

matrix, with variable apex angles (33 ď α ď 90˝), porosity (40 ď ε ď 90%) and Reynolds number

range (1 ď Re ď 30) matching the experimental study. Then, to understand Poiseuille variations,

our results are also analysed at the scale of a channel flanked by neighbouring cylinders and at

the scale of one cylinder in the matrix.
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Pressure drop at the exchanger scale

Some examples of velocity fields obtained by the simulations for Re “ 1´30, α “ 33´60´90˝

are presented in figures 10 and 11 for ε “ 40% and ε “ 80% respectively. In Fig. 10 for ε “ 40%,

at Re “ 1 (LHS) it can be observed that whatever the apex angle is, the flow displays a velocity

profile very close to the parabolic velocity profile that is usually found for a parallel-plates flow. As

shown in the same figure, at Re “ 30 (RHS), the velocity profiles became a bit asymmetric when

increasing the apex angle. A velocity deficit is observed just after the top and bottom equator

angles but no recirculation is formed at the rear of the cylinder. Present velocity fields are in

agreement with previous observations of [22] or [26, 27] (α “ 43 ´ 60˝ and ε “ 40 ´ 60 ´ 80%). In

Fig. 11 for ε “ 80%, at Re “ 30 (RHS) it is found that the increase of the apex angle generates

stronger flow asymmetry compared to ε “ 40%. As a conclusion, the analysis of velocity fields

demonstrates that at low Reynolds number, a low porosity and a low apex angle support the

establishment of a velocity profile close to the parabolic one expected for creeping flow between

two parallel plates.

The corresponding evolutions of friction factor as a function of the Reynolds number for α “ 33

and 90˝ are shown in Fig. 12. In agreement with the experiments, it is verified that the calculated

friction factor increases with the porosity ε and remains always higher than the one expected for the

flow through a flat rectangular channel (f ě 96{Re or Po ě 96). In addition, numerical simulations

indicate also that the friction factor can increase substantially with the apex angle. This may be

explained by the flow deviation induced by an α enlargement. An increase of the pressure drop

due to flow deviation has been also reported experimentally by [47] for the case of a flow following

a sinusoidal trajectory. However, the dependency of the friction factor on the porosity is for the

moment not clearly explained.

Globally at low Reynolds number the Stokes flow is clearly verified (f91{Re) so that a Poi-

seille number Po “ f Re can be affected to each geometrie. Poiseille numbers obtained from the

numerical simulations are reported in Table 4 and plotted in Fig. 8. Considering the experimental

errorbars with an uncertainty around 20% on the experimental Poiseuille number, a good agree-

ment is found between the numerical results and the experimental measurements for α “ 33˝. To
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justify and to better understand the effect of the porosity and apex angle on the Poiseuille number,

we propose now to analyse the flow at different scales.

Parallel-plates flow analogy

It is a common practice, for porous media, to make the analogy with channelling flows to try to

understand the effect of the different parameters [42, 48]. This approach is particularly justified in

our geometry considering previous observation on the velocity field. The channel formed between

cylinders, corresponding to the area limited by red dashed lines in Fig. 2, is now considered for

applying the parallel-plates flow analogy. Thus, in order to make possible the analysis at the scale

of the channel formed between cylinders, the length L1
L, which corresponds to the averaged flow

path length, is now introduced (see Fig. 2).

By considering the mid distance between the top and bottom walls, an estimation of the flow

path length can be given as following (for more details see [43])

L1
L “ 4∆x

a

1 ` pa{p2bqq2 ` 2pb{2 ´ ∆xq
a

1 ` pa{bq2 (19)

As for the whole exchanger, the hydraulic diameter, the Reynolds number and the friction factor

corresponding to this channel can be defined as

D1
h “ 4eH{p2pe ` Hqq “ 4e{p2pe{H ` 1qq « 2e (20)

Re1 “ U D1
h{ν « ReD1

h {Dh “ Re 2e {Dh (21)
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f 1 “
D1

h

L1
L

∆P

1{2ρU2
“

D1
h

L1
L

LL

Dh

f “
D1

h

Dh

LL

L1
L

f (22)

The channel friction factor (f’) can thus be calculated directly from previously defined friction

factor for the whole exchanger (f) and from the length ratios L1
L{LL and D1

h{Dh. Those two length

ratios are plotted in Fig. 13 as a function of the porosity for different apex angles.

A first attempt to apply the ’channel’ flow analogy for diamond-shaped cylinders array was

proposed by Grannis & Sparrow [22]. They did not take into account real flow path (L1
L) and only

use the porous media hydraulic definitions. In porous media the length ratio L1
L{LL corresponds

to the so-called tortuosity that compares the mean real path length of the flow through the pores

network to the length of the porous matrix. By definition this ratio is larger or equal to unity. In Fig.

13a, one can show that for present geometry even if the range of apex angle is large (33 ď α ď 90˝)

the tortuosity remains lower than 1.4. Moreover the tortuosity seems to be significantly affected

by the porosity only for α ą 50˝. In addition, decreasing the apex angle makes this ratio very close

to unity. As a result one particularity of the diamond-shaped cylinder matrix regenerators is to be

characterized by a low tortuosity. In the same time, as depicted in Fig. 13b, the hydraulic diameter

ratio D1
h{Dh is found to decrease when the porosity increases, and to be lower than unity. For

a given porosity and total volume, this ratio is proportional to the corresponding wetted surfaces

ratio so that D1
h{Dh9Acont{A

1
cont. Since in our geometry, the fluid is not wetting all the border of

the channel formed between cylinders (area delimited by a red dashes line in Fig. 2) the wetted

surface Acont is smaller than the one expected in a straight channel having the same length L1
L

so that Acont ă A1
cont and D1

h{Dh ă 1. The observation that in both numerical and experimental

approaches the Poiseuille number tends to the parallel-plates flow limit Po “ 96 when decreasing

the porosity and apex angle, is therefore explained by the behaviour D1
h{Dhpα Ñ 0, ε Ñ 0q Ñ 1

and L1
L{LLpα Ñ 0, ε Ñ 0q Ñ 1. In those conditions the flow is similar to the one in an assembly of

parallel flat channels with length LL “ L1
L and hydraulic diameter Dh “ D1

h “ 2e. In addition, when

ε Ñ 1, this behaviour should also be found. For such conditions, in Eq. 2, the wetted surface in
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contact with the top an bottom channel walls AW
cont is predominant compared to the wetted surface

in contact with the column Acont and the hydraulic diameter tends to Dh “ 2H. If the aspect ratio is

low H{W ăă 1, the Poiseuille number when ε Ñ 1 should also be Po “ 96 and the main channel

flow become similar to the parallel-plates flow.

It is now possible to estimate the Poiseuille number Po1 corresponding to the pressure loss at

the scale of the channel formed between cylinders as follow

Po1 “ Re1f 1 “

ˆ

D1
h

Dh

˙2
LL

L1
L

fRe “

ˆ

D1
h

Dh

˙2
LL

L1
L

Po (23)

The evolution of Po1 as a function of the porosity is presented in Fig. 14a. It is first observed

that the Poiseuille variation is much lower than previously in Fig. 8 (95 ă Po1 ă 140 whereas

107 ă Po ă 357) and that for a given apex angle α the value of Po1 is weakly affected by the

variation of the porosity. To verify this assertion, the average value of Po1 for a given angle α

(ă Po1 ą), the standard deviation compared to this value (STDpPo1q) and the maximal absolute

difference with this average value (∆Maxp|Po1´ ă Po1 ą |q) have been reported in Tab 5. For the

simulations presented here, the standard deviation and the maximal difference are both lower than

6%. As a consequence, the quasi stagnation of the Poiseuille number of the channel Po1 versus

ε show us that the dependence of the Poiseuille number Po on the porosity of the exchanger is

mainly explained by the change of the scale considered to analyse the results (exchanger scale /

channel scale).

In addition, as shown in Fig. 14b, it is therefore possible to plot the evolution of the average

Poiseuille number ă Po1 ą as a function of the apex angle α. The evolution of ă Po1 ą can be

fitted by

ă Po1 ą“ 41 rtanpα{2qs2 ` 96 (24)
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with α in radian. This relation was constructed considering that, as mention previously, ă

Po1 ą pα Ñ 0q “ 96 and using the aspect ratio tanpα{2q “ a{b that reflects the velocity field

deviation intensity induced by the apex angle value. The increase of ă Po1 ą with the apex angle

can be explained by the fact that the highest the apex angle is, the strongest the flow deviation

and associated pressure loss are. In Fig. 14b, it can be noticed that the fact of not having data for

ε larger than 70% for α “ 40˝ and 50˝ may explained that corresponding values for ă Po ą are a

bit higher than the curve given by Eq. 24.

This data analysis have the advantage to enable the estimation of Popα, εq values from an

average value of Po that is only a function of α (Eq. 24). From Eq. 23 and Eq. 24, it becomes

now possible to estimate the effect of the apex angle and to use the hydraulic diameter ratio and

the tortuosity to estimate the effect of the porosity on the Poiseuille number considered at the

scale of the whole exchanger. The results reported in Fig. 8 (dash lines) are found to be in good

agreement with the numerical simulations, especially at low apex angle.

Collective effect on drag coefficient

In the literature on collective effect on drag, it is claimed that the variation of the drag exerted

on one cylinder in an array can be influenced by two contributions. If two cylinders are aligned

in the direction of the flow, the decrease of the distance between them tends to reduce the drag

: this is the longitudinal contribution (see for example [49] ). If two elements are now aligned

perpendicularly to the flow direction, then it is admitted that the drag of both cylinders increases

if they get closer because of the fluid blockage and the induced increase of friction: this is the

transversal contribution (see for example [50] or [51]). Consequently, the drag exerted on one

cylinder results from the interaction of these two contributions.

Some example of the typical evolution of the drag coefficients of a cylinder in the matrix are

plotted in Fig. 15 for α “ 33 and 90˝. Globally, for a given angle α, it is observed that the

drag increases systematically when the porosity decreases and the spacing between cylinders is

reduced. In addition, the correlation found by Sochinskii et al. [52] for a single diamond-shaped

cylinder is also reported in this figure. As for an array of particles [53, 42], it is found that the

drag for one cylinder in a matrix is always larger than the one expected for a single cylinder. This
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behaviour is also in agreement with the literature on collective effect on drag force for a staggered

array of cylinders [2]. We can note that, at low Reynolds numbers, the drag coefficient seems to

remains inversely proportional to the cylinder Reynolds number even if the porosity is reduced.

To understand the link between the collective effect on drag and the friction factor correspond-

ing to the pressure loss in the cylinder matrix, it is possible to write the momentum global balance

for a volume corresponding to the present periodic pattern. The calculation developed in AP-

PENDIX A shows that the pressure loss is induced by the force applied on the cylinders so that

the drag and friction coefficients are linked by the relation

CD « f
LLLT

Dh 2a
“

ˆ

PoLLLT

2D2

h

˙

1

ReD
“

˜

ă Po1 ą L1
LLT

2D1
h
2

¸

1

ReD
(25)

This result, usually presented as Eq. 30, is also found by Larson & Higdon [54] or Van der Hoef et

al. [55] and has been verified in our simulations with a maximum difference of 3%.

From the begining of Eq. 25, it can be shown that the concomitant increase of f and decrease

of CD with the porosity can be explained by the strong reduction of the ratio pLLLT q{pDh 2aq 9 ε´1

that is inversely portional to the porosity. Indeed, by considering Eq. 3, ab{pLLLT q “ 1 ´ ε and

tanpα{2q “ a{b, this ratio can be simply expressed as

LLLT

Dh 2a
“ r2sinpα{2qεs´1 (26)

From Eq. 25 and 24, it becomes now possible to estimate the drag coefficient at low Reynolds

numbers. The result is reported as dotted lines in Fig. 15 and is in a very good agreement with

our simulation results. Consequently, the analysis of the flow at the scale of the channel formed

between cylinders has allowed us to develop a description of an average Poiseuille number, that

can be used for the prediction of pressure losses at the scale of the heat exchanger but also for
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the estimation of collective effects on the drag coefficient at the scale of one cylinder.

Comparison to circular cylinders and spherical particles arrays

This section compares our method and results on Poiseuille numbers with those expected for

a square and staggered arrangement of circular cylinders matrix and for conventional spherical

particles arrays.

The collective effect on drag for circular cylinders arrays is well documented, and the Poiseuille

number of such an arrangement can be calculated directly from the drag force. The detail of the

calculations that make the link between the Poiseuille numbers and the drag for a circular cylinders

array is presented in the first part of APPENDIX B. The numerical results of Sangani & Acrivos [2]

and the hybrid model of Yeom et al. [6] constructed from experimental measurements are reported

in Fig. 16. Our first observation is that the Poiseuille number obtained using a circular cylinders

array is always higher than the one using a diamond-shaped cylinders array, except for α “ 90˝.

This result allows to appreciate the potential of using a diamond-shaped cylinder geometry for a

low pressure loss design for heat exchangers operated at low and moderate Reynolds numbers.

In contrast with our results, the obtained Poiseuille variation with the porosity for circular cylinders

exhibits a ’U’ shape reaching a minimum value around ε “ 0.70´75. The increase of the Poiseuille

number when decreasing the porosity is thought to be the consequence of the strong variations of

the cross section of the flow along its path, generating acceleration/deceleration when decreasing

the porosity. Furthermore the increase of the Poiseuille number when increasing the porosity is

found to be in agreement with our results for α “ 90˝ and typically for ε ą 0.8. This behaviour is

first explained by the fact that when the porosity gets close to unity the flow around the cylinders

gets close to the flow around a single cylinder whatever the arrangement is. Secondly, as reported

recently by Sochinskii et al. [52] the drag for a circular cylinder is very close to the one obtained

from a diamond-shaped cylinder with an apex angle of α “ 90˝. As a result, the arrangement of

circular or 90˝ diamond-shaped cylinders gives similar drag law and Poiseuille number when the

porosity tends to unity. This is confirmed by the fact that the dimensionless drag force predicted

by the relation proposed by Yeom et al. [6] for ǫ “ 0.99 with a square array of circular cylinders (

F {µU “ 3.16) is close to the dimensionless drag force experienced by a single diamond-shaped
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cylinder with α “ 90˝ at low Reynolds number (F {µU “ rpCD{2qpDhqρU2s{pµUHq “ 6.98{2 “ 3.49,

[52]).

In addition, as mentioned previously, the Ergun correlation is dedicated to randomly arranged

spherical particles arrays at moderate Reynolds numbers. In the literature, the drag force on

well controlled arrangements of spherical particles is also well documented. The details of the

calculations that make the link between the Poiseuille numbers and the drag for spherical particles

arrays are presented in the second part of APPENDIX B. The numerical results of Sangani &

Acrivos [56], valid for low Reynolds number, are now reported in Fig. 16 for simple, body centred

and face centred cubic arrays of spherical particles. It is found again that, typically for ε ď 70%,

those specific sphere networks tend to generate higher Po than diamond-shaped cylinders arrays

but lower Po than circular cylinders arrays. The Poiseuille number curves for body and face centred

cubic arrays still exhibit a ’U’ shape. Meanwhile for the simple cubic array, Po shows a monotonous

increase with the porosity. As for the circular cylinders arrays, at high porosity (ε ą 80%) the type

of arrangements do not influence the Poiseuille number that increases strongly with the porosity.

In fact, for a very dilute particle flow at low Reynolds numbers, the drag coefficient of the particles

is close to the one of a single particle (CD “ 24{ReD, F “ 3πUµD [57]). Rearranging equations

from APPENDIX B, with such a drag law, one finds easily that at high porosity Poiseuille numbers

follow

Popǫ Ñ 1q “
Kε2

1 ´ ε
(27)

with K “ 16 for spherical particles arrays. As reported in Fig. 16, this asymptotic behaviour

is in agreement with the results of Sangani & Acrivos [56]. The identification of the behaviour

of Po for a dilute flow with the circular cylinders arrays is made difficult because of the com-

plexity of available drag laws at low Reynolds numbers. Similarly, for the present geometry with

diamond-shaped cylinders arrays, under very dilute conditions the drag experienced by cylinders

remains close to the one on a single cylinder whatever the arrangement is (CD « 7{ReD for
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ReD ď 10 [52]). The rearrangement of the equations show that the asymptotic behaviour of

very dilute diamond-shaped cylinders arrays follows the same previous equation (Eq. 27) with

K “ 14 tanpα{2q{prtanpα{2qs2 ` 1q. As shown in Fig. 16, it is difficult with our results (where the

maximum porosity is 90%) to verify this limit. Nevertheless, the fact that the K factor increases

with the apex angle support the idea that, as observed previously in Fig. 8, Po is less influenced

by the porosity when decreasing the apex angle. It is important to note that such a divergence of

the Poiseuille number when ǫ Ñ 1 could be only observed experimentally for condition close to

a unbounded 2D flow (a{H ăă 1, a{W ăă 1 and AW
cont ăă Acont). As explained previously, by

increasing the porosity if AW
cont ąą Acont the pressure drop will be controled by the main channel

size (H, W , L) .
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SUMMARY AND CONCLUSIONS

In this work, three complementary approaches(experiments, dimensional analysis and numer-

ical simulations) were developped to investigate pressure losses in diamond-shaped cylinders

arrays at moderate Reynolds numbers. Experiments have been performed to study the influence

of the porosity on the friction factor on a micro-fabricated diamond-shaped cylinders array with an

apex angle of α “ 33˝.

‚ The measurements exhibited a weak increase of the Poiseuille number with the porosity, con-

firming a trend that can be found in recent numerical studies of Costa et al. [40].

‚ The fact that the Poiseuille number depends on the porosity is confirmed by a dimensional

analysis.

‚ Experimental Poiseuille numbers are higher than the value expected from a two parallel plates

geometry (Po ě 96). But they remains lower than those reached by conventional solutions

used up to now to design regenerators (spheres and wires stacking arrays or even circular

cylinders arrays). That result enhances all the capability of the diamond-shaped geometry for

the design of heat exchangers with low pressure drop, enabling the reduction of exchangers

hydraulic power.

The flow in diamond-shaped cylinders arrays has been investigated using numerical simula-

tions for a large range of apex angles 33˝ ď α ď 90˝.

‚ The numerical results confirm the increase of the Poiseuille number with the porosity, but also

with the apex angle.

‚ The analysis of the results at the scale of a channel located between two adjacent cylinders,

shows that the role of the porosity is mainly explained by the variation of the real flow path

length. The contribution of the apex angle variation is the consequence of the pressure drop

induced by the flow deviation.

‚ The analysis of the collective effect on drag is found to be in agreement with the literature and

shows an increase of the drag when the distance between cylinder is reduced.

‚ From a multi-scale analysis, a simple correlation has been identified that enables the descrip-

tion of both the Poiseuille number and the drag coefficient variation for a large range of apex
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angles 33˝ ď α ď 90˝ and porosities 40 ď ε ď 90% at moderate Reynolds number.

Forthcoming works will be devoted to experimentally characterize the role of the apex angle of

the diamond-shaped cylinders on the Poiseuille number for low Reynolds numbers, and to verify

that the results match those obtained numerically for α ą 33˝. The main challenge will be then to

investigate numerically and experimentally the heat exchange efficiency for such a geometry.
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NOMENCLATURE

Roman symbols

a diamond-shaped cylinder width, m

Acont cylinder wetted surface in contact with the fluid, m2

AW
cont channel caps wetted surface in contact with the fluid, m2

A1
cont wetted surface for the channel considered between cylinders, m2

b diamond-shaped cylinder length, m

c diamond-shaped cylinder half side length, m

CD drag coefficient

D circular cylinder or spherical particle diameter, m

Dh hydraulic diameter of the exchanger, m

D1
h hydraulic diameter of the channel formed by cylinders, m

e distance between cylinders walls and width of channel formed by cylinders, m

f friction factor at the exchanger scale

f 1 friction factor considering the channel formed by cylinders

Fd drag force vector for one cylinder, N

F drag force magnitude per cylinder length (F “ ||Fd||{H), N{m

H cylinder height (or etching height), m

LT width of the periodic domain, m

LL width of the periodic domain, m

L1
L estimation of the real flow path length along the channel in the periodic domain, m

L experimental exchanger length section with the diamond-shaped cylinders array, m

p local pressure, Pa

Po Poiseuille number at the scale of the exchanger (Po “ fReq

Po1 Poiseuille number at the channel (Po1 “ f 1Re1q

Qm mass flow rate, kg s´1

R Ideal gas constant (R “ 8.314 J mol´1K´1q

Re Reynolds number based on the exchanger hydraulic diameter and mean flow velocity (Re “ UDh{ν)
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Re1 Reynolds number based on the channel hydraulic diameter and mean flow velocity (Re1 “ UD1
h{ν)

ReD cylinder Reynolds number based on the cylinder width and mean flow velocity (ReD “ Ua{ν)

S cross section area, m2

Tm average inlet/outlet temperature, K

u local velocity vector, ms´1

U mean flow velocity, ms´1

Greek symbols

α apex angle, ˝

ε exchanger porosity

µ dynamic viscosity, Pa s

ν kinematic viscosity (ν “ µ{ρ), m2 s´1

ρ density, kgm´3

Mathematical symbol

|| ´ || vector magnitude
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Table 1. Geometrical parameters of the samples fabricated and studied in this work and the corresponding experimental Poiseuille

number. Sizes are in micron, angle in degree. The measurements of a, b, LL, LT from statistic averages from image treatment, *

values calculated (Dh using Eq. 2, t = transparent Py/Si/Py samples)

sample ε˚ e˚ α a b c˚ LL LT D˚
h H

Aw
cont

Acont
Po

At 0.45 20.2 34 65.8 218.9 114.3 245.7 106.2 46.0 230 0.11 113

B 0.46 20.95 33 64.4 217.6 113.5 246.1 106.3 45.6 154 0.17 96

C 0.57 20.7 33 41.7 139.6 72.8 161.7 83.1 42.9 120 0.22 104

Dt 0.65 20.25 33 30.0 96.4 50.5 117.9 70.5 48.3 240 0.11 149

Et 0.68 21.6 34 27.3 97.2 50.5 117.8 70.5 46.6 140 0.19 132

F t 0.64 40.65 32 59.6 202.4 105.5 235.1 140.9 74.1 144 0.35 138

G 0.65 40.85 34 59.1 197.0 102.8 234.8 140.8 78.6 160 0.32 109

Ht 0.50 10.5 34 32.1 101.8 53.4 122.3 53.1 28.2 212 0.07 113

I 0.55 11.5 34 30.0 98.0 51.2 122.4 53.0 30.4 127 0.13 98

J 0.70 10.9 33 13.4 45.5 23.7 57.8 35.2 26.4 108 0.13 119

K 0.78 11.65 33 11.8 37.9 19.8 57.7 35.1 34.8 140 0.14 121
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Table 2. Dimensions of the problem parameters: L: length, T: time, M: mass

∆p U Dh ρ µ a b L

L -1 1 1 -3 -1 1 1 1

T -2 -1 0 0 -1 0 0 0

M 1 0 0 1 1 0 0 0
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Table 3. The grid dimensions of the flow simulations in the cylinders array (Ne number of cells on ∆y, Nc number of cells along

one ’c’ segment, Ntotal total number of cells)

α ε Ntotal Ne Nc

33 0.4 16400 50 80

0.5 23520 70 81

0.6 35200 100 83

0.7 64800 180 82

0.8 96000 250 84

0.9 139200 300 90

40 0.4 10800 50 52

0.5 15680 70 53

0.6 22400 100 52

0.7 34800 150 52

50 0.4 6800 50 32

0.5 9520 70 31

0.6 14400 100 32

0.7 22800 150 32

60 0.4 9600 40 55

0.5 9920 40 56

0.6 19600 70 60

0.7 27200 100 54

0.8 64800 180 65

90 0.4 8400 50 36

0.5 12320 70 36

0.6 19200 100 36

0.7 32400 150 36

0.8 51200 200 36
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Table 4. Poiseuille numbers obtained from numerical simulations for the case of a flow through a diamond-shaped cylinders matrix

for 1 ď Re ď 30

α ε Po

33 0.40 109.58

0.50 111.81

0.60 115.32

0.70 121.06

0.80 132.04

0.90 160.01

40 0.40 116.56

0.50 119.91

0.60 125.29

0.70 133.58

50 0.40 130.09

0.50 135.44

0.60 144.17

0.70 157.03

60 0.40 143.88

0.50 151.39

0.60 161.84

0.70 178.36

0.80 206.52

90 0.40 234.69

0.50 252.45

0.60 272.99

0.70 305.07

0.80 357.11
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Table 5. Statistic about obtained Poiseuille number Po1
: average value ă Po1 ą, standard deviation STDpPo1q and maximal

absolute difference ∆Maxp|Po1´ ă Po1 ą |q compared to this value

α ă Po1 ą STDpPo1q ∆Maxp|Po1´ ă Po1 ą |q

33 98 1.74 3.15

40 101.9 0.37 0.49

50 106.7 0.27 0.35

60 108.3 2.1 3.51

90 137.3 4.3 7.07
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(a)

(b)

Fig. 1. (a) Schematic of a micro-channel with the micro structure region zoomed; (b) the picture of a Pyrex/Silicium/Pyrex sample
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Fig. 2. Geometrical parameters of the periodic diamond-shaped cylinders pattern considered in this work: (a) global parameters and

(b) scheme for the calculation of the length ∆x imposed by the geometrical constraint ∆y “ e
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(a)

(b)

(c)

Fig. 3. SEM images of a sample: top view showing the porous region (a) border and (b) center with an incident angle of 30˝
; (c)

front view used for the height measurements and showing vertical walls
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(a) B - ε “ 0.46 e “ 21 µm a “ 64.4 µm (b) H - ε “ 0.50 e “ 10.5 µm a “ 32.1 µm

(c) C - ε “ 0.57 e “ 20.7 µm a “ 41.7 µm (d) I - ε “ 0.55 e “ 11.5 µm a “ 30 µm

(e) E - ε “ 0.68 e “ 21.6 µm a “ 27.3 µm (f) K - ε “ 0.78 e “ 11.7 µm a “ 11.8 µm

Fig. 4. Example of optical microscope visualisations at same magnification factor (ˆ20, images size 562ˆ421µm), (e) example

of image treatment for the measurements of sample dimensions with bounding box (in green) and centroid (in red), letter are related

to the samples in Tab. 1
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(a)

(b)

Fig. 5. (a) Experimental set-up used for pressure drop measurements and (b) picture of the sample support
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Fig. 6. Friction factor versus Reynolds number for three empty 2mm width test channels of different height (without porous region):

N h “ 17.2 µm; ‚ h “ 22.4 µm; � h “ 31.4 µm. The experimental data are compared to the theoretical friction factor for

two parallel plates — f “ 96{Re

51 FE-20-1575, Colombet, 51



Journal of Fluids Engineering

5 10 15 20 25 30
2

5

10

20

30

40

Re

f

Fig. 7. Experimental friction factor versus Reynolds number for five samples with different porosity with e « 20 µm for α “ 33˝
:

˚ B ε “ 0.46, � C ε “ 0.57, N D ε “ 0.65 and for α “ 34˝
: ‚ A ε “ 0.45, , İ E ε “ 0.68
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Fig. 8. Poiseuille number as a function of the matrix porosity: * experimental Poiseuille number for the 11 samples with α « 33˝
;

Numerical simulation results for ˝ α “ 33˝
, △ α “ 40˝

, * α “ 50˝
, ▽ α “ 60˝

and ˝ α “ 90˝
; ´ ´ ´ estimation of the

Poiseuille number from the parallel-plates flow analogy (Po “ă Po1 ą pDh{D1
hq2pL1

L{LLq and Eq. 24); ... stacked spheres

matrices Po “ 133 [42]; ... stacked woven wire matrices Po “ 123 [41]; -.- flow between two parallel plates Po “ 96
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wall

wallwall
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(a)

(b)

Fig. 9. (a) Computational domain and (b) example of a coarse mesh for α “ 33˝
and ε “ 60% (here Ntotal“ 1792,

Ne“ 16 and Nc“ 24 against Ntotal“ 35200, Ne“ 100 and Nc“ 83 for the mesh used for the numerical simulation, see

Tab.3)
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(a)

Re “ 1 Re “ 30

(b)

(c)

Fig. 10. Velocity field in a periodic domain for ε “ 40% with (a) α “ 33˝
, (b) α “ 60˝

and (c) α “ 90˝
at Re “ 1 (left),

Re “ 30 (right)

55 FE-20-1575, Colombet, 55



Journal of Fluids Engineering

(a)

Re “ 1 Re “ 30

(b)

(c)

Fig. 11. Velocity field in a periodic domain for ε “ 80% with (a) α “ 33˝
, (b) α “ 60˝

and (c) α “ 90˝
at Re “ 1 (left),

Re “ 30 (right)
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Fig. 12. Friction factor as a function of the exchanger Reynolds number Re for (a) α “ 33˝
and (b) α “ 90˝

with ˝ ε “ 0.40,

˝ ε “ 0.50, ˝ ε “ 0.60, ˝ ε “ 0.70, ˝ ε “ 0.80, ˝ ε “ 0.90; -.- flow between two parallel plates f “ 96{Re
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Fig. 13. (a) Tortuosity and hydraulic diameters ratio as a function of the porosity for : ˝ α “ 33˝
, △ α “ 40˝

, * α “ 50˝
, ▽

α “ 60˝
et ˝ α “ 90˝
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Fig. 14. Parallel-plates flow analogy (a) Poiseuille number Po1
as a function of the porosity for: ˝ α “ 33˝

, △ α “ 40˝
, *

α “ 50˝
, ▽ α “ 60˝

et ˝ α “ 90˝
; -.- flow between two parallel plates Po1 “ 96; (b) Corresponding average Poiseuille

numbers ă Po1 ą as a function of the apex angle: ˝ numerical simulations and – Eq. 24
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Fig. 15. Drag coefficient as a function of the cylinder Reynolds number ReD : (a) α “ 33˝
(b) α “ 90˝

and ˝ ε “ 0.40, ˝
ε “ 0.50, ˝ ε “ 0.60, ˝ ε “ 0.70, ˝ ε “ 0.80, ˝ ε “ 0.90; ´ ´ ´ CD drag coefficient for a single cylinder according to

Sochinskii et al. [52]; .... estimation of the drag coefficient using xPo1y Eq. 24 and 25
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Fig. 16. Poiseuille number comparison to the circular cylinders and spherical particles array cases: square array of circular cylinders

according to ▽ numerical simulations of Sangani & Acrivos [2] and △ experiments of Yeom et al. [6]; Ź staggered array of circular

cylinders according to numerical simulations of Sangani & Acrivos [2]; * simple cubic array of spheres, + body centered cubic array

of spheres, ˆ face centered cubic array of spheres according to numerical simulations of Sangani & Acrivos [56]; present numerical

simulations with diamond-shaped cylinders arrays for ˝ α “ 33˝
and ˝ α “ 90˝

; ´ ´ ´ estimation of the Poiseuille number

applying the parallel-plates flow analogy (Po “ă Po1 ą pDh{D1
hq2pL1

L{LLq and Eq. 24); -.- flow between two parallel plates

Po “ 96; asymptotic behaviour for very dilute — spheres arrays and diamond-shaped cylinders arrays with — α “ 33˝
and —

α “ 90˝
(Eq. 27)
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APPENDIX A: LINK BETWEEN FRICTION FACTOR AND DRAG COEFFICIENT

In a common steady incompressible flow, we recall here the way to link the pressure loss to

the drag force exerted on internal surfaces simply by writing the global momentum balance on the

calculation domain. The momentum balance in a volume can be written as follow

ρ

ż ż

@S
pu ¨ nq ¨ u “

ż ż

@S´Sf

p ¨ n `

ż ż

@S´Sf

τ ¨ n ` FSf
(28)

with n the unit vector normal to the volume faces (outgoing), S are all the surfaces at the boundary

of the volume, u is the velocity profile at the surfaces. Sf are the surface where a drag force

is exerted, FSf
is the drag force applied on internal surfaces Sf . p and τ are respectively the

pressure and the viscous constraints. @S means that the surface integration is performed on all

the boundary surfaces. While p@S´Sf q indicates that the surface integration is performed on all the

boundary surfaces except the one where we estimate the drag force. This balance corresponds to

the classical Euler theorem for a steady flow with the addition of the variation of momentum due

to viscous effects.

In the present periodic domain, Sf corresponds to the two cylinders surfaces and FSf
“ 2F H

is twice the drag force applied on one cylinder. The first term of the equation 28 on the LHS

corresponds to the variation of the advective flux of the momentum, it is null when the normal unit

vector and the velocity are perpendicular to each other such as along wall or symmetry boundary.

In addition, the periodic condition on the velocity imposes a zero advective flux of momentum in our

calculation domain (upx “ 0q “ upx “ LLq). The first term on the RHS corresponds to the variation

of the momentum in the flow due to the pressure constraints. Since the pressure is constant at the

inlet and outlet of the periodic domain, this integration is equal to H LT pPin ´ Poutq. The second

term on the RHS corresponds to the momentum variation induced by the viscous constraints linked

to velocity gradient. Again because of the periodic condition, the velocity gradients at the inlet and

outlet are so close to each over that this term is almost cancelled in practice. As a result, in our

geometry the momentum balance can be simplified as
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LT pPin ´ Poutq “ 2F (29)

In the literature on flow in periodic domains this result is also found in the following format (see for

example [54, 55]),

BP

Bx
Vtotal “ ´

ÿ

F (30)

with BP {Bx “ pPin´Poutq{LL the pressure gradient along the domain, the domain total volume

Vtotal “ LL LT and
ř

F the sum of forces applied on objects in the calculation domain. Indeed Eq.

29 corresponds to Eq. 30 rewritten as

LTLL

Dh

pPin ´ PoutqDh

0.5ρU2 LL

“ 2
F

0.5ρU2
(31)

By using the expression of the friction factor f “ pPin ´ PoutqDh{p0.5ρU2 LLq and the drag

force F “ 0.5ρU2aCD, it is then easy to established the link between the drag coefficient and f as

LTLL

Dh

f “ 2aCD (32)

CD “ f
LTLL

Dh 2a
(33)
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APPENDIX B: POISEUILLE NUMBER OF AN ARRAY OF CIRCULAR CYLINDERS OR SPHER-

ICAL PARTICLES

As reported in the previous appendix, the pressure gradient along the flow is given by

dP

dx
“ ´

ř

||Fd||

Vtotal

(34)

Where ||Fd|| is the drag force magnitude on cylinders or particles in the considered periodic box,

while Vtotal is its total volume.

Poiseuille number for a circular cylinders array

We consider here a square and a staggered array of cylinders of size LˆLˆH corresponding

to a total volume of Vtotal “ L2H with H ąą L.

The friction coefficient and the Poiseuille number can then be expressed as

f “
|dP {dx|

p1{2qρU2
Dh “

ř

||Fd||{H{L2

p1{2qρU2
Dh (35)

Po “ fRe “

ř

||Fd||{H{L2

p1{2qρU2
DhpρDhUq{µ (36)

Po “ 2

„ř

||Fd||{H

Uµ



D2

h

L2
(37)

The cylinder’s diameter can be calculated from the porosity ε as follow

ε “ 1 ´ n
πD2{4

Vtotal

“ 1 ´ n
πD2{4

L2
(38)

D “ r4L2p1 ´ εq{pnπqs1{2 (39)

with n “ 1 for a square array of circular cylinders (εmin “ 21.5%) and n “ 2 for a staggered
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array of circular cylinders (εmin “ 9.3%) . In addition, the corresponding hydraulic diameter is

simply (Acont “ nπDH)

Dh “
4εL2

nπD
(40)

For a periodic box, the sum of drag force per cylinder length applied in the periodic box is the

one applied on the n cylinders
ř

||Fd||{H “ nF and the Poiseuille expression is

Po “ 2n

„

F

Uµ



D2

h

L2
(41)

where the dimensionless drag force F {pUµq can be found in the literature from the numerical work

of Sangani & Acrivos [2] (Table 1 and 2 in the article) or from the hybrid model of Yeom et al. [6]

constructed on experimental measurements.

Poiseuille number of a spherical particles array

For a spherical particles array of size L ˆ L ˆ L (Vtotal “ L3), the Poiseuille number can be

expressed as

Po “ 2

„ř

||Fd||

Uµ



D2

h

L3
(42)

The diameter of the particle can be linked to the porosity as follows

ε “ 1 ´ n
πD3

6L3
(43)
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D “

ˆ

p1 ´ εq6L3

nπ

˙1{3

(44)

with n “ 1 for a simple cubic array (εmin “ 48%), n “ 2 for a body centred cubic array

(εmin “ 32%) and n “ 4 for a face centred cubic array (εmin “ 26%). In addition, the corresponding

hydraulic diameter is

Dh “
4εL3

nπD2
(45)

The sum of drag forces applied in the periodic box is n times the one applied on one particle

ř

||Fd|| “ nF and the Poiseuille expression is

Po “ 2

„

nF

Uµ



D2

h

L3
“ 6nπ

„

F

3πDUµ



DD2

h

L3
(46)

where the dimensionless drag force for one particle F {p3πDUµq can be found in the literature from

the numerical work of Sangani & Acrivos [56] (Table 3 in the article, ’K converged’ values).
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