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EXACT OBSERVABILITY PROPERTIES OF SUBELLIPTIC WAVE AND
SCHRÖDINGER EQUATIONS

CYRIL LETROUIT

Abstract. In this survey paper, we report on recent works concerning exact observability

(and, by duality, exact controllability) properties of subelliptic wave and Schrödinger-type

equations. These results illustrate the slowdown of propagation in directions transverse to the

horizontal distribution. The proofs combine sub-Riemannian geometry, semi-classical analysis,

spectral theory and non-commutative harmonic analysis.
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1. Introduction

1.1. Controllability and observability. The problem of (exact) controllability of PDEs,

which has been intensively studied in the past decades, is the following: given a manifold M , a

subset ω ⊂ M , a time T > 0 and an operator A acting on functions on M , the study of exact

controllability consists in determining whether, for any initial state u0 and any final state u1,

there exists f such that the solution of

(1.1) ∂tu = Au+ 1ωf, u|t=0 = u0

in M is equal to u1 at time T . Here, 1ω is the characteristic function of ω. In other words,

exact controllability holds if it is possible, starting from any initial state, to reach any final

state just acting on ω during a time T . The general answer depends on the time T , the control

set ω, the operator A, and the functional spaces in which u0, u1 and f live. This problem is

relevant in many physical situations: typical examples are the control of the temperature of a

room by a heater, or the acoustic insulation of a room just by acting on a small part of it.
1



2 C. LETROUIT

By duality (Hilbert Uniqueness Method, see [Lio88]), the exact controllability property is

equivalent to some inequality of the form

(1.2) ∃CT,ω > 0, ∀u0, ‖u0‖2 ≤ CT,ω

∫ T

0

‖1ωu(t)‖2dt,

where u is the solution of the adjoint equation (∂t+A∗)u = 0 with initial datum u0 (here again,

one should specify functional spaces). This is called an observability inequality. In other words,

controllability holds if and only if any solution of (∂t + A∗)u = 0 can be detected from ω, in a

“quantitative way” which is measured by the constant CT,ω. This paper is devoted to the study

of observability for equations of wave-type, Schrödinger-type or heat-type, i.e. we consider the

equations

(∂2
tt − L)u = 0 (Wave-type),(1.3)

(i∂t − L)u = 0 (Schrödinger-type),(1.4)

(∂t − L)u = 0 (Heat-type)(1.5)

for various time-independent operators L on M .1 By duality, all the observability results

presented here imply exact controllability results as explained above, but we won’t state them

for the sake of simplicity.

1.2. Observability of classical PDEs. Let us present a first series of results, dating back

to the 1990’s, which concern the observability problem in case M is a compact Riemannian

manifold with a metric g and with boundary ∂M 6= ∅, L = ∆g is the Laplace-Beltrami operator

on (M, g) and the equation is one of the three equations (1.3), (1.4) or (1.5), with Dirichlet

boundary conditions u|∂M = 0. We deal with these three problems in this order, following the

chronology of the results.

Throughout this section, (M, g) is a fixed manifold with boundary ∂M 6= ∅ and L = ∆g. In

this section, the notation dx stands for the associated Riemannian volume dx = dvolg(x).

1.2.1. Observability of the Riemannian wave equation. Let us start with the wave equation

(1.3) with initial data (ut=0, ∂tu|t=0) = (u0, u1) ∈ H1(M) × L2(M) and Dirichlet boundary

conditions. The energy of a solution, which is conserved along the flow, is

E(u(t)) = ‖(−∆g)
1
2u(t, ·)‖2

L2(M) + ‖∂tu(t, ·)‖2
L2(M)

which is in particular equal to the initial energy ‖∇gu0‖2
L2(M) + ‖u1‖2

L2(M). Let T > 0 and ω be

a measurable subset. The observability inequality reads as follows:

(1.6) E(u(0)) ≤ C

∫ T

0

∫
ω

|∂tu(t, x)|2dxdt.

1The wave equation involves a ∂2
tt term, and thus does not enter, strictly speaking, the framework given by

equation 1.1. However, it is possible to give a common framework for all three equations, at the cost of being

a bit more abstract. See [Cor07, Section 2.3] for a general introduction.
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Note that thanks to the conservation of energy, the left hand side of (1.2) has been replaced

by the energy of the initial datum.

We set P = ∂2
tt −∆g (which is a second-order pseudo-differential operator), whose principal

symbol is

p2(t, τ, x, ξ) = −τ 2 + g∗(x, ξ)

with τ the dual variable of t and g∗ the principal symbol of −∆g. In T ∗(R×M), the Hamiltonian

vector field ~Hp2 associated with p2 is given by ~Hp2f = {p2, f}. Since ~Hp2p2 = 0, we get that p2

is constant along the integral curves of ~Hp2 . Thus, the characteristic set C(p2) = {p2 = 0} is

preserved under the flow of ~Hp2 . Null-bicharacteristics are then defined as the maximal integral

curves of ~Hp2 which live in C(p2). In other words, the null-bicharacteristics are the maximal

solutions of 

ṫ(s) = −2τ(s) ,

ẋ(s) = ∇ξg
∗(x(s), ξ(s)) ,

τ̇(s) = 0 ,

ξ̇(s) = −∇xg
∗(x(s), ξ(s)) ,

τ 2(0) = g∗(x(0), ξ(0)).

It is well-known that the projection x(s) of a bicharacteristic ray (x(s), ξ(s)) traveled at speed

1 is a geodesic in M , i.e., a curve which realizes the minimal distance between any two of its

points which are close enough.

Let us also mention the fact that at the boundary of M , the above definition of null-

bicharacteristics has to be completed (yielding the so-called Melrose-Sjöstrand flow): due to tra-

jectories which “graze” along the boundary, one cannot always define the null-bicharacteristics

which touch the boundary by reflexion, and we refer the reader to [MS78] and [LRLTT17] for

more on this subject. In these papers, a notion of “generalized bicharacteristics” is defined,

which explains how to define bicharacteristics at the boundary. For us, this will only be useful

to give a precise statement for Theorem 1.

Definition 1.1. Let T > 0 and ω ⊂ M be a measurable subset. We say that the Geometric

Control Condition holds in time T in ω, and we write (GCC)ω,T , if for any projection γ of a

bicharacteristic ray traveled at speed 1, there exists t ∈ (0, T ) such that γ(t) ∈ ω.

The following result states that the observability of (1.3) is (more or less) equivalent to the

geometric condition (GCC)ω,T . It illustrates the finite speed of propagation for waves.

Theorem 1 ([BLR92], [BG97], [HPT19]). Assume that ω 6= ∅ is open and that (GCC)ω,T
holds. Assume also that no generalized bicharacteristic has a contact of infinite order with

(0, T ) × ∂M . Then (1.6) holds, i.e., the wave equation (1.3) is observable in time T on ω.

Conversely, if the wave equation (1.3) is observable in time T , then (GCC)T,ω holds, where ω

denotes the closure of ω.
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Note that the second statement in the last theorem is not the exact converse of the first one,

since it involves the closure ω and not simply ω. This is due to the phenomenon of grazing

rays: if there exists a ray γ which does not enter ω but which touches the boundary ∂ω, so that

the geometric control condition is not satisfied, it can however happen (notably if the flow is

“stable” close from the ray) that observability holds, see [Leb92a, Section VI.B] for an example.

Considering solutions of (1.3) of the form eit
√
λϕ where ϕ is an eigenfunction of −∆g corre-

sponding to the eigenvalue λ, the following result follows from Theorem 1:

Corollary 1.2. Assume that ω 6= ∅ is open and that there exists T > 0 such that (GCC)ω,T
holds. Then, for any eigenfunction ϕ of −∆g, there holds∫

ω

|ϕ(x)|2dx ≥ C

∫
M

|ϕ(x)|2dx.

In particular, supp(ϕ) = M .

All the observability inequalities stated in this survey paper yield similar lower bounds, but

we will not state them thereafter.

Remark 1.3 (Gaussian beams). The fact that (GCC)ω,T is a necessary condition for observ-

ability can be understood as follows. If (GCC)ω,T does not hold, then let γ : [0, T ] → M be

a geodesic which does not enter ω. By compactness, there exists ε > 0 such that γ|[0,T ] does

not meet an ε-neighborhood of ω. Then, one can construct a sequence of solutions (un)n∈N of

the wave equation whose initial energy E(un(0)) is normalized to 1, and with energy E(u(t))

localized around γ(t) at any time t ∈ [0, T ]: quantitatively, the energy of un outside a tubular

neighborhood of γ of size ε tends to 0 as n → +∞. This disproves the observability inequality

(1.6). The sequence (un)n∈N, if taken as a Gaussian profile centered at a point describing γ, is

called a Gaussian beam.

1.2.2. Observability of the Riemannian Schrödinger equation. In case of the Schrödinger equa-

tion (1.4), the observability inequality reads as follows:

(1.7) ‖u0‖2
L2(M) ≤ C

∫ T

0

∫
ω

|u(t, x)|2dxdt.

Indeed, as for the wave equation (1.3), the L2-norm of the solution is preserved along the flow,

so that ‖u(T )‖L2 = ‖u0‖L2 . A sufficient condition for observability is the following:

Theorem 2 ([Leb92b] and Appendix of [DGL06]). Assume that ω 6= ∅ is open and that

(GCC)ω,T ′ holds for some T ′ > 0. Then (1.7) holds, i.e., the Schrödinger equation (1.4) is

observable in any time T > 0 on ω.

The interplay between T ′ and T in the above result is due to the fact that the Schrödinger

equation “propagates at infinite speed” so that no matter how large T ′ is, observability holds
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in any time T > 0 if (GCC)ω,T ′ holds. This contrasts with the finite speed of propagation of

the wave equation.

The converse of the above theorem, namely to find necessary conditions on (ω, T ) for (1.7) to

hold, is notoriously a difficult problem. The main results in this direction are for the torus (see

[Jaf90], [BZ12], [AM14]), and in Riemannian manifolds with negative curvature (see [DJN19]),

where (1.7) holds for any non-empty open subset ω and any time T > 0. Indeed, it is expected

that if the geodesic flow of the background geometry is unstable, solutions of (1.4) are more

“delocalized” than those of (1.3) for example. See also the case of the disk [ALM16].

1.2.3. Observability of the Riemannian heat equation. Let us end with the heat equation. The

observability inequality reads as follows:

(1.8) ‖u(T )‖2
L2(M) ≤ C

∫ T

0

∫
ω

|u(t, x)|2dxdt.

Theorem 3 ([LR95]). Let ω 6= ∅ be open and T > 0. Then (1.8) holds, i.e., the heat equation

(1.5) is observable in time T on ω.

Note that no geometric condition on ω is required in this case. This result illustrates the

infinite speed of propagation of the heat equation.

The works presented hereafter address that same problem of observability of linear PDEs,

but with focus on subelliptic PDEs, meaning that the Laplace-Beltrami operator is replaced in

these PDEs by a sub-Laplacian, which is a subelliptic operator. The next subsection is thus

devoted to introduce the main objects of study, namely sub-Laplacians.

1.3. Sub-Riemannian geometry and sub-Laplacians. After the founding work of Lars

Hörmander, and with the development of sub-Riemannian geometry since the 1980’s, subelliptic

operators have been considered as a natural generalization of elliptic operators. In particular,

sub-Laplacians, which we will define soon, are natural generalizations of the Laplace-Beltrami

operator. Therefore, the question of observability/controllability of evolution PDEs driven

by sub-Laplacians has been investigated since a decade, with a particular focus on parabolic

(or heat-type) equations. In this survey, we mainly focus on wave-type and Schrödinger-type

subelliptic equations, for which the first results appeared in 2019.

1.3.1. Sub-Laplacians. Instead of defining subelliptic operators in full generality, we prefer here

to focus only on sub-Laplacians. The geometry naturally associated to sub-Laplacians is called

sub-Riemannian geometry. The books [Mon02] and [ABB19] are clear and detailed introduc-

tions to this geometry. Readers only interested in the results of Sections 3 and 4 could skip

this part, and focus on Examples 1.6 to 1.9 which are sufficient for these sections.

Let n ∈ N∗ and let M be a smooth connected compact manifold of dimension n with a

non-empty boundary ∂M . Let µ be a smooth volume on M .
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We consider m ≥ 1 smooth vector fields X1, . . . , Xm on M which are not necessarily inde-

pendent, and we assume that the following Lie bracket generating (or Hörmander) condition

holds (see [Hör67]):

The vector fields X1, . . . , Xm and their iterated brackets [Xi, Xj], [Xi, [Xj, Xk]], etc. span the

tangent space TqM at every point q ∈M .

We consider the sub-Laplacian ∆ defined by

(1.9) ∆ = −
m∑
i=1

X∗iXi =
m∑
i=1

X2
i + divµ(Xi)Xi

where the star designates the transpose in L2(M,µ) and the divergence with respect to µ is

defined by LXµ = (divµX)µ, where LX stands for the Lie derivative. Then ∆ is hypoelliptic

(see [Hör67, Theorem 1.1]).

We set

D = Span(X1, . . . , Xm) ⊂ TM

which is called the distribution associated to the vector fields X1, . . . , Xm. For x ∈ M , we

denote by Dx the distribution D taken at point x. Note that D does not necessarily have

constant rank. When D = TM , the operator ∆ is elliptic.

We also introduce the metric g on D defined at any x ∈M by

gx(v, v) = inf

{
m∑
i=1

u2
i | v =

m∑
i=1

uiXi(x)

}
.

This is a Riemannian metric on D. We call (M,D, g) a sub-Riemannian structure.

In the general case where D ( TM , the set TM \D can be understood as the directions where

the metric g takes the value +∞. A well-known theorem, due to Chow and Rashevskii, asserts

that any two points can be joined by a path, i.e., a continuous function γ : [0, 1] → M with

derivative γ̇(t) contained in Dγ(t) for almost any t ∈ [0, 1]. In other words, the sub-Riemannian

distance

dg(x0, x1) = inf

{∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt

∣∣ γ(0) = x0, γ(1) = x1, γ̇(t) ∈ Dγ(t) a.s. for t ∈ [0, 1]

}
is finite for any x0, x1 ∈M .

When moving in a sub-Riemannian structure, D should be understood as the “set of allowed

directions for the motion”, and, although it is not possible to move directly in directions of

TM \ D, Chow-Rashevskii’s theorem asserts that any two points can be joined by a path.

This is due to “indirect motions”, that is, paths which describe spirals turning around a fixed

forbidden direction of TM \ D and thus advancing in this direction (although indirectly).



EXACT OBSERVABILITY OF SUBELLIPTIC PDES 7

Definition 1.4. The step k is the least integer k ∈ N such that the Lie brackets of the vector

fields X1, . . . , Xm of length ≤ k (i.e., Xi, [Xi, Xj], [Xi, [Xj, X`]], up to length k) span the whole

tangent space TM .

Remark 1.5. More generally, the step kx can be defined at any point x ∈M , just by considering

the Lie brackets of the vector fields X1, . . . , Xm at point x.

1.3.2. Examples. We now give a few examples of sub-Laplacians which we shall study in the

sequel.

Example 1.6. On M = Rx × Ry, we set ∆G = ∂2
x + x2∂2

y . This sub-Laplacian is the so-called

Baouendi-Grushin operator, sometimes unproperly called simply Grushin operator (see [Gar17,

Section 11]). In this case, X1 = ∂x, X2 = x∂y and Span(X1, X2, [X1, X2]) = TM . In particular,

D = TM outside the line {x = 0}. Also, µ is the Lebesgue measure. The step is 2 on the line

{x = 0} and 1 outside this line. Since the sub-Riemannian structure is “Riemannian” outside

this line, the Baouendi-Grushin operator is sometimes called “almost-Riemannian”.

Example 1.7. More generally, for γ ≥ 0 (not necessarily an integer), one can consider ∆γ =

∂2
x + |x|2γ∂2

y on the same manifold M = (−1, 1)x × Ty. For γ ∈ N, the step is k = γ + 1. Note

that for γ /∈ N, the Hörmander condition is not necessarily satisfied, but we include this class

of examples in our study since our computations allow to handle them.

Example 1.8. Given d ∈ N∗, one can also define a sub-Laplacian arising from the Heisenberg

group Hd of dimension 2d+ 1. Recall that the Heisenberg group Hd is R2d+1 endowed with the

group law (x, y, z)·(x′, y′, z′) := (x+x′, y+y′, z+z′+ 1
2

∑d
j=1(xjy

′
j−x′jyj)), where x, y, x′, y′ ∈ Rd

and z, z′ ∈ R. Taking the left-quotient of Hd by the discrete subgroup Γ̃ = (
√

2πZ)2d× πZ, we

obtain a compact manifold M = Γ̃\Hd. Let

Xj = ∂xj −
yj
2
∂z, Yj = ∂yj +

xj
2
∂z, for j = 1, . . . ,m,

which are left-invariant and can be thus considered as vector fields on the quotient manifold

M . Finally, we define the sub-Lapacian

∆Γ̃\Hd =
d∑
j=1

X2
j + Y 2

j .

Since [Xj, Yj] = ∂z for any j, the step is 2.

Example 1.9. Heisenberg-type groups are generalizations of Heisenberg groups. They were

first introduced in [Kap80], where the fundamental solution of the associated sub-Laplacians,

which is particularly simple, was computed. These groups give rise to step 2 sub-Riemannian

structures, which center can be of dimension p > 1 (whereas the center of the Heisenberg group

Hd is of dimension 1). For a precise definition, see [Kap80].
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Example 1.10. Contact sub-Laplacians are associated to sub-Riemannian structures of “con-

tact type”. We assume that the vector fields X1, . . . , Xm span a distribution D which is a

contact distribution over M , i.e., M has odd dimension n = 2m + 1 and there exists a 1-form

α on M with D = Ker(α) and α∧ (dα)m 6= 0 at any point of M . Then, for any smooth volume

µ, the sub-Laplacian ∆ is called a contact sub-Laplacian. A typical example is given by the

Heisenberg sub-Laplacian ∆Γ̃\Hd defined above.

Example 1.11. Magnetic Laplacians are also sub-Laplacians, and we focus here on a simple

family of examples. In R3 with coordinates x, y, z, we consider the two vector fields X1 =

∂x − Ax(x, y)∂z and X2 = ∂y − Ay(x, y)∂z where Ax, Ay are functions which do not depend

on z. The magnetic Laplacian is then ∆ = X2
1 + X2

2 . The 1-form A = Axdx + Aydy is called

the connection form, and the 2-form B = dA is called the magnetic field. The modulus |b| of

the function b defined by the relation B = b dx ∧ dy is called the intensity of the magnetic

field. Taking a quotient or assuming that |b| is bounded away from 0 at infinity, it is possible

to assume that the sub-Laplacian ∆ has a compact resolvent.

Magnetic Laplacians were used by Montgomery to prove the existence of abnormal minimizers

in some sub-Riemannian geometries (see [Mon94]): abnormal minimizers are local minimizers

of the sub-Riemannian distance which are not projections of bicharacteristics, and they show

up for example as zero curves of the intensity b. Subsequently, Montgomery showed that the

spectral asymptotics of ∆ are very different depending on the fact that b vanishes or not (see

[Mon95]).

Remark 1.12. In all the previous examples, as well as in the general definition of sub-

Laplacians given above, the volume µ is assumed to be smooth. However, one can also define

sub-Laplacians for non-smooth volumes µ. This is natural when the sub-Riemannian distribu-

tion is singular, for example D = Span(∂x, x∂y) in R2 (see Example 1.6), since the Popp mea-

sure, which is an intrinsic measure defined on sub-Riemannian manifolds (see [Mon02, Section

10.6]), “blows up”. The associated sub-Laplacian is then unitarily equivalent to a sub-Laplacian

with smooth volume plus a singular potential. The essential self-adjointness of some of these

sub-Laplacians has been studied for example in [BL13]. When they are essentially self-adjoint,

the controllability/observability of the associated evolution equations can also be studied: this is

an open question which we do not address here.

1.3.3. Hypoellipticity and subellipticity. Two notions are often used to qualify the smoothing

properties of sub-Laplacians: hypoellipticity and subellipticity. Here, we briefly recall their

definitions and explain why they are not exactly equivalent.

Definition 1.13. A (pseudo-)differential operator A with C∞ coefficients in M is hypoelliptic

in M if for all u ∈ D′(M) and x ∈M , if Au ∈ C∞ near x, then u ∈ C∞ near x.
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Hypoellipticity appeared naturally in the work of Kolmogorov [Kol34] on the motion of

colliding particles when he wrote down the equation

∂tu− Lu = f where L = x∂y + ∂2
x.

Indeed, the operator L is hypoelliptic.

Definition 1.14. A formally selfadjoint (pseudo-)differential operator A : C∞(M)→ C∞(M)

of order 2 is said to be subelliptic if there exist s, C > 0 such that

(1.10) ‖u‖2
Hs(M) ≤ C((Au, u)L2(M) + ‖u‖2

L2(M))

for any u ∈ C∞(M).

Under the Lie bracket condition (Hörmander condition), Hörmander was able to prove that

any sub-Laplacian ∆ is hypoelliptic (see [Hör67] and [HN05, Chapter 2]). His proof relies on

the fact that ∆ is subelliptic; indeed, the optimal s in (1.10) is 1/k, where k is the step of the

associated sub-Riemannian structure, as proved by Rotschild and Stein [RS76, Theorem 17 and

estimate (17.20)].

Conversely, note that an hypoelliptic “sum of squares” (i.e., an operator of the form (1.9)

which is hypoelliptic) does not necessarily satisfy the Lie bracket assumption : given a smooth

function a : R → R vanishing at infinite order at 0 but with a(s) > 0 for s 6= 0, the sub-

Laplacian ∆ = ∂2
x1

+ a(x1)2∂2
x2

on R2
x1x2

is hypoelliptic although the Lie bracket condition fails

(see [Fed71] and [Mor78]).

Let us finally mention that some operators A satisfy the property that if Au is real-analytic,

then u is real-analytic: they are called analytic hypoelliptic. The so-called Trèves conjecture

describes a possible link between analytic hypoellipticity of an operator and the absence of

abnormal geodesics (see [Tre99] for the conjecture and [ABM18] for more recent results).

We end this section with a remark concerning the compactness of the manifolds M considered

in this survey.

Remark 1.15. Because of the physical nature of the problems studied in control/observability

theory, most equations are set in compact manifolds, and this survey is no exception to the rule.

Even in Example 1.8, the sub-Laplacian is defined on a compact quotient of the Heisenberg

group. Together with the hypoellipticity, the compactness of the underlying manifold implies

that all sub-Laplacians have a compact resolvent, and thus a discrete spectrum, which is of

importance for deriving properties of eigenfunctions from observability results.

1.4. Observability of subelliptic PDEs: known results. This section is devoted to stating

results which were previously known in the literature about controllability/observability of

subelliptic PDEs. All PDEs we consider are well-posed in natural energy spaces which we do

not systematically recall.
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1.4.1. Subelliptic heat equations. Let us start with the result proved in [BCG14], which concerns

the heat equation (1.5) where L = ∆γ is the Baouendi-Grushin-type operator introduced in

Example 1.7 for some γ > 0. The open subset of observation ω ⊂ (−1, 1)×T they consider is a

vertical strip of the form (a, b)× T where 0 < a < b < 1. The observability inequality is (1.8),

with the modification that u runs over the set of solutions of (1.5) with L = ∆γ. The authors

prove the following result, to be compared with Theorem 3:

Theorem 4 ([BCG14]). Let γ > 0 and ω be as above. Then

• If γ ∈ (0, 1), then for any T > 0, (1.8) holds;

• If γ = 1, i.e., ∆γ = ∆G, then there exists T0 > 0 such that (1.8) holds if T > T0 and

does not hold if T < T0;

• If γ > 1, then, for any T > 0, (1.8) fails.

The proof is done by establishing an infinite number of Carleman inequalities for operators

−∂2
x +n2x2 for n ∈ Z, with bounds uniform in n. It was proved in [BMM15] that in case γ = 1,

the minimal time T0 is equal to a2/2. The fact that T0 ≥ a2/2 can be seen by using explicit

eigenfunctions of ∆γ.

Koenig studied the observability of (1.5) with L = ∆G, but for another geometry of the

observation set ω: this time, it is a horizontal band of the form (−1, 1)× I where I is a proper

open subset of T.

Theorem 5 ([Koe17]). Let ω = (−1, 1)× I where I is a proper open subset of T. Then (1.8)

fails for any T > 0.

The proof of this result relies on the non-observability of the 1D half-heat equation ∂tu +

|∂x|u = 0 and on techniques coming from complex analysis where the complex variable is

z = e−t+iy.

Although the observability properties of the heat equation driven by general hypoelliptic

operators are still mysterious, we list here a few works addressing this question. The recent

works [Lis20], [BDE20] and [DK20] continue and generalize the analysis of [BCG14] and [Koe17]

on the control of the Baouendi-Grushin heat equation. Besides, [BC17] establishes the exis-

tence of a minimal time of observability, as in the second point of Theorem 4, for the heat

equation driven by the Heisenberg sub-Laplacian of Example 1.8. Let us finally mention the

papers [DR20] and [BPS18] which also deal with controllability issues for hypoelliptic parabolic

equations.

The above theorems show that some subelliptic heat equations driven by simple sub-Laplacians

require a larger time to be observable than the usual Riemannian heat equation, and observ-

ability may even fail in any time T > 0. As we will see, this is a very general phenomenon for

subelliptic evolution PDEs, at least for subelliptic wave equations and (some) Schrödinger-type

equations. Our results, however, do not shed any new light on subelliptic heat equations, which
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remain mysterious due to the lack of “general arguments” which would not rely on geometric

and analytic features specific to very particular sub-Laplacians.

1.4.2. Approximate observability of subelliptic PDEs. Recently, Laurent and Léautaud have

studied the observability of subelliptic PDEs but with focus on a different notion of observability,

called approximate observability. As before, all their results can also be stated in terms of a

dual notion, called approximate controllability, however we will not even mention these dual

statements in order to keep the presentation as simple as possible. Their results are quantitative,

in the sense that they give explicit bounds on the observability constants involved in their

results. The next paragraphs are devoted to a brief description of their results (see [LL20]).

Let us consider a sub-Laplacian ∆ as in (1.9), with associated sub-Riemannian structure

(M,D, g). We assume that the manifold M (assumed to have no boundary, ∂M = ∅), the

smooth volume µ and the vector fields Xi are all real-analytic. For s ∈ R, the operator (1−∆)
`
2

is defined thanks to functional calculus, and we consider the (adapted) Sobolev spaces

H`(M) = {u ∈ D′(M), (1−∆)
`
2u ∈ L2(M)}

with the associated norm ‖u‖H`(M) = ‖(1−∆)`u‖L2(M).

Theorem 6 ([LL20]). Let ω be a non-empty open subset of M and let T > supx∈M dg(x, ω).

We denote by k the step. Then there exist c, C > 0 such that

(1.11) ‖(u0, u1)‖H1×L2 ≤ CecΛ
k‖u‖L2((−T,T )×ω), with Λ =

‖(u0, u1)‖H1×L2

‖(u0, u1)‖L2×H−1

for any solution u of (1.3) on (−T, T ) such that (u, ∂tu)|t=0 = (u0, u1) ∈ H1(M)× L2(M).

The above result in particular implies unique continuation (and quantifies it): if u = 0 in

(−T, T ) × ω, then u ≡ 0. However, the exact observability inequality which we shall study

(see (1.6)) is a stronger requirement than (1.11), in particular because of the presence of the

“typical frequency of the datum” Λ in the right-hand side of (1.11). The techniques used for

proving Theorem 6 are totally different from those we present in the sequel.

1.4.3. Observability of Baouendi-Grushin Schrödinger equation. The recent work [BS19] is the

first one dealing with exact observability of a subelliptic Schrödinger equation, namely in the

context of Example 1.6 with observation set given by a horizontal band as in Theorem 5. The

observability inequality is given by (1.7), except that u runs over the solutions of the Schrödinger

equation driven by the sub-Laplacian ∆G.

Theorem 7 ([BS19]). Let M = (−1, 1) × T and ∆G = ∂2
x + x2∂2

y . Let ω = (−1, 1) × I where

I ( T is open. Let T0 = L (ω) be the length of the maximal sub-interval contained in T \ I.

Then, the observability property (1.7) holds if and only if T > T0.



12 C. LETROUIT

Again, this result shows the existence of a minimal time of control which contrasts with the

“infinite speed of propagation” illustrated by Theorem 2. Its proof relies on fine semi-classical

analysis, somehow linked to that explained in Section 3.

1.4.4. Non-linear subelliptic PDEs. Although this survey is devoted only to linear subelliptic

PDEs, let us say a word about non-linear subelliptic PDEs. To study the cubic Grushin-

Schrödinger equation i∂tu − (∂2
x + x2∂2

y)u = |u|2u, Patrick Gérard and Sandrine Grellier in-

troduced a toy model, the cubic Szegö equation, which models the interactions between the

nonlinearity and the lack of dispersivity of the linear equation (already visible in the above

Theorem 7). In [GG10], they put this equation into a Hamiltonian framework and classify the

traveling waves for this equation, which are related to the traveling waves resulting from (3.3).

1.5. Main results. Let us now present the main results contained in the papers [Let20b],

[LS20] and [FKL21]. All of them illustrate the slowdown of propagation of evolution PDEs in

directions transverse to the distribution: in a nutshell, observability will require a much longer

time to hold for subelliptic PDEs than for elliptic ones, and this time will be even larger when

the step k is larger. All our results are summarized in Figure 1 at the end of this section.

1.5.1. First main result. We start with a general result on subelliptic wave equations. Let

∆ = −
∑m

i=1X
∗
iXi be a sub-Laplacian, where the adjoint denoted by star is taken with respect

to a volume µ on M , which is assumed to have a boundary ∂M 6= ∅.2 Consider the wave

equation

(1.12)


∂2
ttu−∆u = 0 in (0, T )×M
u = 0 on (0, T )× ∂M,

(u|t=0, ∂tu|t=0) = (u0, u1)

where T > 0, and the initial data (u0, u1) are in an appropriate energy space. The natural

energy of a solution u of the sub-Riemannian wave equation (1.12) is

E(u(t, ·)) =
1

2

∫
M

(
|∂tu(t, x)|2 +

m∑
j=1

(Xju(t, x))2

)
dµ(x).

Observability holds in time T0 on ω if there exists C > 0 such that for any solution u of (1.12),

(1.13) E(u(0)) ≤ C

∫ T0

0

∫
ω

|∂tu(t, x)|2dµ(x)dt.

Theorem 8 ([Let20b]). Let T0 > 0 and let ω ⊂ M be a measurable subset. We assume that

there exist 1 ≤ i, j ≤ m and x in the interior of M\ω such that [Xi, Xj](x) /∈ Span(X1(x), . . . , Xm(x)).

Then the subelliptic wave equation (1.12) is not exactly observable on ω in time T0.

2This assumption is not necessary, since Theorem 8 also works for manifolds without boundary, but this

would require to introduce a slightly different notion of observability.
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Theorem 8 can be reformulated as follows: subelliptic wave equations are never observ-

able. The condition that there exist 1 ≤ i, j ≤ m and x in the interior of M\ω such that

[Xi, Xj](x) /∈ Span(X1(x), . . . , Xm(x)) means that ∆ is not elliptic at x; this assumption is

absolutely necessary since otherwise, locally, (1.12) would be the usual elliptic wave equation,

and its observability properties would depend on the GCC, as stated in Theorem 1.

The key ingredient in the proof of Theorem 8 is that the GCC fails for any time T0 > 0:

in other words, there exist geodesics which spend a time greater than T0 outside ω. Then,

the Gaussian beam construction described in Remark 1.3 allows to contradict the observability

inequality (1.13).

1.5.2. Second main result. Our second main result, obtained in collaboration with Chenmin

Sun, sheds a different light on Theorem 8. For this second statement, we consider the generalized

Baouendi-Grushin operator of example 1.7, i.e, ∆γ = ∂2
x+ |x|2γ∂2

y on M = (−1, 1)x×Ty, and we

assume that γ ≥ 1 (not necessarily an integer). We also consider the Schrödinger-type equation

with Dirichlet boundary conditions

(1.14)


i∂tu− (−∆γ)

su = 0

u|t=0 = u0 ∈ L2(M)

u|x=±1 = 0

where s ∈ N is a fixed integer. Given an open subset ω ⊂ M , we say that (1.14) is observable

in time T0 > 0 in ω if there exists C > 0 such that for any u0 ∈ L2(M),

(1.15) ‖u0‖2
L2(M) ≤ C

∫ T0

0

‖e−it(−∆γ)su0‖2
L2(ω)dt.

Our second main result, obtained in collaboration with Chenmin Sun, roughly says that ob-

servability holds if and only if the subellipticity (measured by the step γ + 1 in case γ ∈ N), is

not too strong compared to the strength of propagation s:

Theorem 9 ([LS20]). Assume that γ ≥ 1. Let I ( Ty be a strict open subset, and let ω =

(−1, 1)x × I. Then, for s ∈ N, we have:

(1) If 1
2
(γ + 1) < s, (1.14) is observable in ω for any T0 > 0;

(2) If 1
2
(γ + 1) = s, there exists Tinf > 0 such that (1.14) is observable in ω for T0 if and

only if T0 > Tinf ;

(3) If 1
2
(γ + 1) > s, for any T0 > 0, (1.14) is not observable in ω.

The case s = 1/2 corresponds to wave equations. Strictly speaking, it is not covered by

Theorem 9 since s is assumed to belong to N in this theorem, but we see that for any positive

γ it is roughly related to Point (3), and we thus recover the intuition given by Theorem 8 that

subelliptic wave equations should not be observable. The case γ = s = 1 allows to recover

Theorem 7, except that we do not find with our method the critical time Tinf . Let us also

notice that if γ ∈ N, since γ + 1 is the step of the sub-Laplacian ∆γ, the number 1
2
(γ + 1)
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appearing in Theorem 9 coincides with the exponent known as the gain of Sobolev derivatives

in subelliptic estimates (see Section 1.3.3).

1.5.3. Third main result. Finally, our third main result, obtained in collaboration with Clotilde

Fermanian Kammerer, illustrates how tools coming from noncommutative harmonic analysis

can be used to analyze sub-Laplacians and the associated evolution equations. Our main mes-

sage is that a pseudodifferential calculus “adapted to the sub-Laplacian” can be used to prove

controllability and observability results for subelliptic PDEs (instead of the usual pseudodiffer-

ential calculus used for example to prove Theorem 9). As we will see, in the present context,

once defined this natural pseudodifferential calculus and the associated semi-classical measures

(which relies essentially on functional analysis arguments), observability results follow quite

directly.

To relate this last result to the previous ones, let us say that it is roughly linked to the

critical case s = γ = 1 of Point 2 of Theorem 9, i.e., to the case where subelliptic effects are

exactly balanced by the strength of propagation of the equation. Indeed, we consider the usual

Schrödinger equation (s = 1) in some particular non-commutative Lie groups, called H-type

groups (see Example 1.9), which have step 2 (corresponding to γ = 1 for Baouendi-Grushin

operators). As in Point 2 of Theorem 9, we establish that under some geometric conditions

on the set of observation ω, observability holds if and only if time is sufficiently large. The

main difference with Theorem 9 relies in the tools used for the proof, which could lead to

different generalizations. For example, the tools employed in this section allow to handle the

case with analytic potential, see (1.16) below. Also, with these tools, we could imagine to

prove observability results for higher-step nilpotent Lie groups, but it requires to know explicit

formulas for their representations, since they determine the propagation properties of the semi-

classical measures we construct (see Proposition 4.3).

To keep the presentation as simple as possible, we will present our last result only for the

Heisenberg groups Hd of Example 1.8, and not for general H-type groups (which are han-

dled in [FKL21]). By doing so, we avoid defining general H-type groups, while keeping the

main message of this work, namely the use of noncommutative harmonic analysis for proving

observability inequalities.

Using the notations of Example 1.8, we consider M = Γ̃\Hd together with the equation

(1.16) i∂tu+
1

2
∆Mu+ Vu = 0

on M , where V is an analytic function defined on M . The factor 1
2

in front of ∆M plays no

role, we put it here just to keep the same conventions as in [FKL21].
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The Schrödinger equation (1.16) is observable in time T on the measurable set U if there

exists a constant CT,U > 0 such that

(1.17) ∀u0 ∈ L2(M), ‖u0‖2
L2(M) ≤ CT,U

∫ T

0

∥∥∥eit(
1
2

∆M+V)u0

∥∥∥2

L2(U)
dt.

Recall that Theorem 2 asserts that, in the Riemannian setting and without potential, the

observability of the Schrödinger equation is implied by the Geometric Control Condition (GCC),

which says that any trajectory of the geodesic flow enters U within time T . Using normal

geodesics, one can also define a sub-Riemannian geodesic flow (see Section 2.1) but in some

directions of the phase space (called degenerate directions in the sequel), its trajectories are

stationary. For them, we thus need to replace GCC by another condition. In the case of the

Heisenberg group Hd, there is only one such direction, thought as “vertical” since it is related

to the ∂z vector field.

The Heisenberg group Hd comes with a Lie algebra g. Via the exponential map

Exp : g→ Hd

which is a diffeomorphism from g to Hd, one identifies Hd and g as a set and a manifold.

Moreover, g is equipped with a vector space decomposition

g = v⊕ z ,

such that [v, v] = z 6= {0} and z (of dimension 1) is the center of g. We define a scalar product

on z by saying that ∂z has norm 1, which allows to identify z to its dual z∗. We also fix an

orthonormal basis V = (V1, . . . , V2d) of v.

We consider the “vertical” flow map (also called “Reeb”, in honor of Georges Reeb) on M×z∗:

Φs
0 : (x, λ) 7→ (Exp(sdZ(λ)/2)x, λ), s ∈ R

where, for λ ∈ z, Z(λ) is the element of z defined by λ(Z(λ)) = |λ| (or equivalently, Z(λ) = λ/|λ|
after identification of z and z∗). We introduce the following H-type geometric control condition.

(H-GCC) The measurable set U satisfies H-type GCC in time T if

∀(x, λ) ∈M × (z∗ \ {0}), ∃s ∈ (0, T ), Φs
0((x, λ)) ∈ U × z∗.

The flow Φs
0 thus replaces the geodesic flow in the degenerate direction.

Definition 1.16. We denote by TGCC(U) the infimum of all T > 0 such that H-type GCC holds

in time T (and we set TGCC(U) = +∞ if H-type GCC does not hold in any time).

We also consider the additional assumption:

(A) The lift in Hd of any geodesic of T2d enters ω in finite time. 3

3This condition can be more precisely stated as follows. For any (x, ω) ∈ M × v∗ such that |ω| = 1, there

exists s ∈ R such that Exp(sω ·V )x ∈ U . Here, ω · V =
∑2d

j=1 ωjVj where ωj denote the coordinates of ω in the

dual basis of V and it is assumed that
∑2d

j=1 ω
2
j = 1.
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Theorem 10 ([FKL21]). Let U ⊂M be open and denote by U its closure.

(1) Assume that U satisfies (A) and that T > TGCC(U), then the observability inequality

(1.17) holds, i.e. the Schrödinger equation (1.16) is observable in time T on U .

(2) Assume T ≤ TGCC(U), then the observability inequality (1.17) fails.

This statement looks like Theorem 1 which holds for elliptic waves. In some sense, “the

Schrödinger equation in Heisenberg groups looks like an elliptic wave equation”, a phenomenon

which was already pointed out by authors studying Strichartz estimates, see [BGX00] and

[BFKG16] for example.

Let us also say that, as already mentioned, Theorem 10 holds more generally in quotients of

H-type groups.

To conclude, let us draw a table summing up most of the results presented in this introduction:

Elliptic Step 2 Step 4 Step > 4

Waves and half-waves (s = 1/2) Tinf (under GCC) ∞ ∞ ∞
Schrödinger (s = 1) 0 (under GCC) Tinf ∞ ∞

bi-Schrödinger (s = 2) 0 (under GCC) 0 Tinf ∞
Heat 0 Tinf or ∞ ? ?

Figure 1. Observability of subelliptic PDEs depending on the step.

If the results are established only in particular cases, they are in blue.

The first line is covered by Theorems 1 and 8, the second line by Theorems 2, 9

and 10, the third line by Theorem 9 and the fourth line by Theorems 3, 4 and

5 (see also Corollary 3.2). For the last two interrogation marks, see Section 5.1.

Note that we illustrated Theorem 9 with the bi-Schrödinger equation, but we

could have done it for a general s.

1.6. Organization of the survey. The goal of this survey is to give an overview of the ideas

behind the three main results (and their proofs), namely Theorems 8, 9 and 10, to point out

their common features, to develop ideas which were not necessarily written in the papers, and

to explain how the tools developed along the proofs could be generalized.

In Sections 2, 3 and 4, we explain respectively the main lines of the proofs of Theorems

8, 9 and 10. Therefore, Section 2 is quite geometric and presents for example the notion of

nilpotentization of vector fields; Section 3 is more “semi-classical” and illustrates how resolvent

estimates can be used to prove observability inequalities; and Section 4 is also “semi-classical”,

but the pseudo-differential operators used in this section are adapted to the group structure

(that is, they come from non-commutative Fourier analysis). Sections 3 and 4, although proving
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quite similar results, call for very different generalizations, which are discussed notably in

Remark 4.4.

In Section 5, we finally list a few natural open questions and directions of research which

follow from our work.

Acknowledgments. I first thank Clotilde Fermanian Kammerer and Chenmin Sun for these

very interesting collaborations, and my PhD advisors Emmanuel Trélat and Yves Colin de

Verdière who taught me so much about the subject. I also thank Clotilde Fermanian, Chenmin

Sun and Emmanuel Trélat for their suggestions and comments on a preliminary version of this

survey. While working on the series of works reported here, I benefited from the interactions

with many other mathematicians, among whom I am particularly grateful to Richard Lascar

and Véronique Fischer for several interesting discussions. I was partially supported by the grant

ANR-15-CE40-0018 of the ANR (project SRGI).

2. Subelliptic wave equations are never observable

In this section, we explain ideas of proof for Theorem 8. Let T0 > 0 and ω ⊂ M be a

measurable subset. We assume that there exist 1 ≤ i, j ≤ m and x in the interior of M\ω such

that [Xi, Xj](x) /∈ Span(X1(x), . . . , Xm(x)). Under these assumptions, Theorem 8 will follow

from Propositions 2.1 and 2.2. The first of these propositions says that given any open set of M

containing x, there exists a normal geodesic of the Hamiltonian attached to X1, . . . , Xm traveled

at speed 1 which does not leave this open set on the time-interval [0, T0]: this phenomenon is

not true in Riemannian manifolds but is true in sub-Riemannian manifolds under the above

assumptions. Thus, this normal geodesic remains far from ω on the time-interval [0, T0]. The

second proposition tells us that, as in the elliptic setting, it is possible to construct a sequence

of solutions of the wave equation whose energy concentrates along this geodesic. This last fact

contradicts the observability inequality.

Before stating these propositions, let us mention that, as in the elliptic setting, a normal

geodesic is the projection of a null-bicharacteristic associated to the principal symbol p2 of ∆

(see Definition 2.3).

Proposition 2.1. For any T0 > 0, any x ∈M such that [Xi, Xj](x) /∈ Span(X1(x), . . . , Xm(x))

and any open neighborhood V of x in M (with the initial topology on M), there exists a non-

stationary normal geodesic t 7→ x(t) (traveled at speed 1) such that x(t) ∈ V for any t ∈ [0, T0].

Proposition 2.2. Let [0, T0] 3 t 7→ x(t) be a non-stationary normal geodesic (traveled at speed

1) which does not meet ∂M . Then there exists a sequence (uk)k∈N∗ a sequence of solutions of

the wave equation (1.12) such that

• The energy of uk is bounded below with respect to k and t ∈ [0, T0]:

(2.1) ∃A > 0,∀t ∈ [0, T0], lim inf
k→+∞

E(uk(t, ·)) ≥ A.
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• The energy of uk is small off x(t): for any t ∈ [0, T0], we fix Vt an open subset of M for

the initial topology of M , containing x(t), so that the mapping t 7→ Vt is continuous (Vt
is chosen sufficiently small so that this makes sense in a chart). Then

(2.2) sup
t∈[0,T0]

∫
M\Vt

(
|∂tuk(t, x)|2 +

m∑
j=1

(Xjuk(t, x))2

)
dµ(x) →

k→+∞
0.

The “easy part” is Proposition 2.2, while the proof of Proposition 2.1 is more complicated.

Therefore, we start with a sketch of proof for Proposition 2.2 in Section 2.1, and we give ideas

for the proof of Proposition 2.1 in Section 2.2.

2.1. Gaussian beams in sub-Riemannian geometry. We set P = ∂2
tt−∆ and we consider

the associated Hamiltonian

p2(t, τ, x, ξ) = −τ 2 + g∗(x, ξ)

with τ the dual variable of t and g∗ the Hamiltonian (or principal symbol) associated to −∆.

For ξ ∈ T ∗M , we have

g∗ =
m∑
i=1

h2
Xi
.

Here, given any smooth vector field X on M , we denoted by hX the Hamiltonian function

(momentum map) on T ∗M associated with X defined in local (x, ξ)-coordinates by hX(x, ξ) =

ξ(X(x)). Then g∗ is both the principal symbol of −∆, and also the cometric associated with g.

In T ∗(R×M), the Hamiltonian vector field ~Hp2 associated with p2 is given by ~Hp2f = {p2, f}.
Since ~Hp2p2 = 0, we get that p2 is constant along the integral curves of ~Hp2 . Thus, the

characteristic set C(p2) = {p2 = 0} is preserved under the flow of ~Hp2 . Null-bicharacteristics

are then defined as the maximal integral curves of ~Hp2 which live in C(p2). In other words, the

null-bicharacteristics are the maximal solutions of

(2.3)



ṫ(s) = −2τ(s) ,

ẋ(s) = ∇ξg
∗(x(s), ξ(s)) ,

τ̇(s) = 0 ,

ξ̇(s) = −∇xg
∗(x(s), ξ(s)) ,

τ 2(0) = g∗(x(0), ξ(0)).

This definition needs to be adapted when the null-bicharacteristic meets the boundary ∂M , but

in the sequel, we only consider solutions of (2.3) on time intervals where x(t) does not reach

∂M .

In the sequel, we take τ = −1/2, which gives g∗(x(s), ξ(s)) = 1/4. This also implies that

t(s) = s+ t0 and, taking t as a time parameter, we are led to solve

(2.4)


ẋ(t) = ∇ξg

∗(x(t), ξ(t)) ,

ξ̇(t) = −∇xg
∗(x(t), ξ(t)) ,

g∗(x(0), ξ(0)) = 1
4
.
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In other words, the t-variable parametrizes null-bicharacteristics in a way that they are traveled

at speed 1.

Definition 2.3. A normal geodesic is the projection t 7→ x(t) of a null-bicharacteristic, (i.e.,

a solution of (2.4)).

Normal geodesics live in the “elliptic part” of g∗, i.e., where g∗ 6= 0; this is the key point in

the proof of Proposition 2.2. Indeed, this result is well-known in the elliptic context, it is due

to Ralston [Ral82], and already Hörmander noted that his argument extended to non-elliptic

operators, as long as we were working in the elliptic part of the symbol (see [Hör07, Chapter

24.2]).

Let us start the proof of Proposition 2.2. Taking charts of M , we can assume M ⊂ Rn. In the

sequel, we change a bit the notations: we use x = (x0, x1, . . . , xn) where x0 = t in the earlier

notations, and we set x′ = (x1, . . . , xn). Similarly, we take the notation ξ = (ξ0, ξ1, . . . , ξn)

where ξ0 = τ previously, and ξ′ = (ξ1, . . . , ξn). The bicharacteristics are parametrized by s

as in (2.3), and without loss of generality, we only consider bicharacteristics with x(0) = 0 at

s = 0, which implies in particular x0(s) = s because of our choice τ 2(s) = g∗(x(s), ξ(s)) = 1/4.

In the sequel, a null-bicharacteristic s 7→ (x(s), ξ(s)) is fixed, with x(0) = 0.

We take

(2.5) vk(x) = k
n
4
−1a0(x)eikψ(x).

where the phase ψ(x) is quadratic,

ψ(x) = ξ′(s) · (x′ − x′(s)) +
1

2
(x′ − x′(s)) ·M(s)(x′ − x′(s)),

for x = (t, x′) ∈ R×Rn and s such that t = t(s). This choice of vk is the so-called WKB ansatz,

and it only yields approximate solutions of the wave equation (1.3). Indeed, there holds

(2.6) ∂2
ttvk −∆vk = (k

n
4

+1A1 + k
n
4A2 + k

n
4
−1A3)eikψ

with

A1(x) = p2 (x,∇ψ(x)) a0(x)

A2(x) = La0(x) (L is a linear transport operator)

A3(x) = ∂2
tta0(x)−∆a0(x).

If we take ψ to be complex-valued (by choosing a complex-valued matrix M(s)), then eikψ looks

like a Gaussian centered at x′(s), for any s. Hence, for large k, we see on (2.6) is naturally

small outside the geodesic s 7→ x′(s), and the only place where it may be large is precisely on

the geodesic. In order for vk to be an approximate solution of the wave equation, it is thus

sufficient to have A1, A2, A3 vanish at sufficiently high order on the geodesic curve, and this is

achieved by choosing adequately M(s) (which is a complex-valued matrix varying continuously

with s) and a0(x).
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More precisely, in order to achieve the quantitative bound ‖∂2
ttvk−∆vk‖L1((0,T );L2(M)) ≤ Ck−

1
2 ,

one has to

• take M as a solution of the Riccati equation

dM

ds
+MCM +BTM +MB + A = 0

where A,B,C are explicit functions of s which can be expressed in terms of the second

derivatives of p2 along s 7→ (x(s), ξ(s));

• take a0 so that a0(x(0)) 6= 0 and La0 vanishes along s 7→ x(s), i.e., La0(x(s)) = 0. This

is possible since L is a linear transport operator.

The first point yields that A1 together with its first and second derivatives vanish along the

geodesic curve s 7→ x(s), and the second point implies that A2 vanishes along this same curve.

Beside implying that vk is an approximate solution of the wave equation, these choices guarantee

that the energy of vk concentrates (uniformly in s) along the geodesic:

sup
t∈[0,T ]

∫
M\Vt

(
|∂tvk(t, x)|2 +

m∑
j=1

(Xjvk(t, x))2

)
dµ(x) →

k→+∞
0

where Vt is defined in Proposition 2.2. Note also that the bound

∃A > 0,∀t ∈ [0, T0], lim inf
k→+∞

E(vk(t, ·)) ≥ A

is satisfied thanks to the normalizing constant k
n
4
−1 in the definition of vk (2.5).

In order to pass from approximate to exact solutions of the wave equation, one chooses uk to

have the same initial data as vk and to be an exact solution of the wave equation (1.3). Then,

the Gronwall lemma ensures that (2.1) and (2.2) are satisfied, and Proposition 2.2 is proved.

Let us end this section with two other possible points of view on Proposition 2.2 and its above

proof. First, it can be reformulated in terms of propagation of Lagrangian spaces, as written

in [Let20b]. This point of view was developed for example by Hörmander in [Hör07, Chapter

24]. Another reformulation is that microlocal defect measures propagate in the elliptic part of

the symbol as for the usual elliptic wave equation: in other words, one could take a sequence

of initial data concentrating microlocally on the starting point (x(0), ξ(0)) of the geodesic and

prove that the microlocal defect measure associated to the solutions propagates following the

geodesic flow (see [Gér91]). But the Gaussian beam construction is interesting in its own and

particularly simple, this is why we presented this point of view here.

2.2. Spiraling geodesics. Proposition 2.1 can be easily seen to hold in the Heisenberg group,

as shown in Section 2.2.1; the proof then consists in extending its validity to larger classes of

sub-Laplacians, until reaching the level of generality of Theorem 8.
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2.2.1. Spiraling geodesics in the 3D flat Heisenberg case. We consider the three-dimensional

manifold with boundary M1 = (−1, 1)x1 × Tx2 × Tx3 , where T = R/Z ≈ (−1, 1) is the 1D

torus. We endow M1 with the vector fields X1 = ∂x1 and X2 = ∂x2 − x1∂x3 and we consider

the associated sub-Laplacian ∆ = X2
1 + X2

2 . This sub-Riemannian structure is called the

“Heisenberg manifold with boundary”, it is a variant of Example 1.8 which has no boundary.

We endow M with an arbitrary smooth volume µ and we denote by

(2.7) g∗Heis = ξ2
1 + (ξ2 − x1ξ3)2

the 3D flat Heisenberg Hamiltonian.

The geodesics we consider are given by

x1(t) = ε sin(t/ε)

x2(t) = ε cos(t/ε)− ε
x3(t) = ε(t/2− ε sin(2t/ε)/4).

They spiral around the x3 axis x1 = x2 = 0.

Here, one should think of ε as a small parameter. In the sequel, we denote by xε the geodesic

with parameter ε. The associated momenta are

(2.8) ξ1 =
1

2
cos(t/ε), ξ2 = 0 and ξ3 =

1

2ε
,

and we can check that that g∗Heis ≡ 1/4. The constant ξ3 is a kind of rounding number reflecting

the fact that the geodesic spirals at a certain speed around the x3 axis. To obtain a geodesic

which makes smaller spirals, we choose a larger covector very close to D⊥.

To prove Proposition 2.1 in the case of the Heisenberg manifold, we can assume without

loss of generality that V contains 0. Then, given any T0 > 0, for ε sufficiently small, we have

xε(t) ∈ V for every t ∈ (0, T0). This proves Proposition 2.1 in this case.

2.2.2. Spiraling when length ≥ 3 brackets vanish. We now explain how to prove Proposition 2.1

in a slightly more general case: in this paragraph, we assume that [Xi, [Xj, Xk]] = 0 for any

1 ≤ i, j, k ≤ m.

More precisely, we assume that M ⊂ Rn (with coordinates x1, . . . , xn), and that for any

1 ≤ j ≤ m,

(2.9) Xj =
n∑
j=1

aij∂xi

where aij is a constant when i ≤ m, and aij = cx` + d when i ≥ m + 1, for some ` ≤ m that

may depend on i and j. One can verify that [Xi, [Xj, Xk]] = 0 for any 1 ≤ i, j, k ≤ m.

Our goal is to isolate a direction which will play the role of the direction ξ3 of large covectors

in (2.8). A similar spiraling as in the above Heisenberg case happens when we take covectors

in an invariant plane of the Goh matrix (thus the associated control describes circles in this

invariant plane). Let us explain this phenomenon in detail.
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In its “control” form, the equation of normal geodesics can be written as follows (we refer

the reader to [ABB19, Chapter 4]):

(2.10) ẋ(t) =
m∑
i=1

ui(t)Xi(x(t)),

where the ui are the controls, explicitly given by

(2.11) ui(t) = 2hXi(x(t), ξ(t)).

Thanks to (2.9), we rewrite (2.10) as

(2.12) ẋ(t) = F (x(t))u(t),

where F = (aij), which has size n×m, and u = t(u1, . . . , um). Differentiating (2.11), we have

the complementary equation

u̇(t) = G(x(t), ξ(t))u(t)

where G is the Goh matrix

G = (2{hXj , hXi})1≤i,j≤m

(it differs from the usual Gox matrix by a factor −2 due to the absence of factor 1
2

in the

Hamiltonian g∗ in our notations). One can check thanks to (2.9) that G(t) is constant in t.

We know that G 6= 0 and that G is antisymmetric. The whole control space Rm is the direct

sum of the image of G and the kernel of G, and G is nondegenerate on its image. We take

u0 in an invariant plane of G; in other words its projection on the kernel of G vanishes (see

Remark 2.4). We denote by G̃ the restriction of G to this invariant plane. We also assume that

u0, decomposed as u0 = (u01, . . . , u0m) ∈ Rm, satisfies
∑m

i=1 u
2
0i = 1/4. Then u(t) = etG̃u0 and

since etG̃ is an orthogonal matrix, we have ‖etG̃u0‖ = ‖u0‖. We have by integration by parts

x(t) =

∫ t

0

F (x(s))esG̃u0 ds

= F (x(t))G̃−1(etG̃ − I)u0 −
∫ t

0

d

ds
(F (x(s))G̃−1(esG̃ − I)u0 ds.(2.13)

Let us now choose the initial data of our family of normal geodesics (indexed by ε). The

starting point xε(0) = 0 is the same for any ε, we only have to specify the initial covectors

ξε = ξε(0) ∈ T ∗0 Rn. For any i = 1, . . . ,m, we impose that

(2.14) 〈ξε, Xi〉 = u0i.

It follows that g∗(x(0), ξε(0)) =
∑m

i=1 u
2
0i = 1/4 for any ε > 0. Now, we notice that Span(X1, . . . , Xm)

is in direct sum with the Span of the [Xi, Xj] for i, j running over 1, . . . ,m (this follows from

(2.9)). Fixing G0 6= 0 an antisymmetric matrix and G̃0 its restriction to an invariant plane, we

can specify, simultaneously to (2.14), that

〈ξε, 2[Xj, Xi]〉 = ε−1G0
ij.
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Then xε(t) is given by (2.13) applied with G̃ = ε−1G̃0, which brings a factor ε in front of (2.13).

Recall finally that the coefficients aij which compose F are degree 1 (or constant) homoge-

neous polynomials in x1, . . . , xm. Thus d
ds

(F (x(s)) is a linear combination of ẋi(s) which we can

rewrite thanks to (2.12) as a combination with bounded coefficients (since
∑m

i=1 u
2
i = 1/4) of

the xi(s). Hence, applying the Gronwall lemma in (2.13), we get ‖xε(t)‖ ≤ Cε, which concludes

the proof of Proposition 2.1 in this case.

Remark 2.4. Let us explain why we choose u0 to be in an invariant plane of G. If the projection

of u0 to the kernel of G is nonzero then the primitive of the exponential of e
t
ε
G0u0 contains a

linear term that does not depend on ε. Then the corresponding trajectory follows a singular

curve (see [ABB19, Chapter 4] for a definition). This means, we find normal geodesics which

spiral around a singular curve and do not remain close to their initial point over (0, T0), although

their initial covector is “high in the cylinder bundle U∗M”. For example, for the Hamiltonian

ξ2
1 + (ξ2 + x2

1ξ3)2 associated to the “Martinet” vector fields X1 = ∂x1, X2 = ∂x2 + x2
1∂x3 in R3,

there exist normal geodesics which spiral around the singular curve (t, 0, 0).

2.2.3. Spiraling in the general case. The reduction of the general case to the case of Section

2.2.2 where all length ≥ 3 brackets vanish is done through the nilpotentization procedure which

dates back to [RS76]. The reader can refer to [ABB19, Chapter 10] and [Jea14, Chapter 2] for

recent introductions to the subject.

Essentially, the nilpotentization procedure consists in a truncation in the Taylor series of the

vector fields X1, . . . , Xm which define the sub-Laplacian. We will not describe the nilpotenti-

zation procedure in details here, but just give an example.

Example 2.5. We reproduce here the example [Jea14, Example 2.8]. We consider the vector

fields on R2×T given by X1 = cos(θ)∂x+sin(θ)∂y and X2 = ∂θ. We have [X1, X2] = sin(θ)∂x−
cos(θ)∂y. At q = 0, we have X1(0) = ∂x, X2(0) = ∂θ and [X1, X2](0) = −∂y. Thus, we say that

x and θ have “weight 1”, while y has “weight 2”, because the coordinate y “needs a bracket

to be generated”. And we also attribute weights to vector fields: ∂x and ∂θ have weight −1

while ∂y has weight −2. The rule is that the weight of a product is the sum of the weights: for

example, x∂θ has weight 1 + (−1) = 0.

Now we write the Taylor expansion of X1 and X2 in the coordinates (x, θ, y) in the form

X1 = X
(−1)
1 + X

(0)
1 + X

(1)
1 + . . . where each X

(k)
1 has weight k (and similarly for X2). This

Taylor expansion of X1 and X2 at q = 0 yields the homogeneous components

X
(−1)
1 = ∂x + θ∂y, X

(0)
1 = 0, X

(1)
1 = −θ

2

2
∂x −

θ3

6
∂y, . . .

and X
(−1)
2 = X2 = ∂θ. We define the nilpotent approximation of (X1, X2) at q = 0 in coordi-

nates (x, θ, y) to be the vector fields X̂1 and X̂2 given by the “main order terms”, namely

X̂1 = X
(−1)
1 = ∂x + θ∂y, X̂2 = X

(−1)
2 = ∂θ.
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These vector fields generate a nilpotent Lie algebra of step 2 since all brackets of length ≥ 3

between X̂1 and X̂2 vanish.

Let us explain how finish the proof of Proposition 2.1 in the general case. We fix q ∈ M .

Thanks to Section 2.2.2 we can find a normal geodesic associated to the nilpotentized (at q)

Hamiltonian

(2.15) ĝ∗ =
m∑
i=1

h2
X̂i

which stays very close to q. Then, the key argument is that since we work locally near q

and since the vector field X̂i is a very good approximation of Xi near q for any i, the normal

geodesics associated to the initial Hamiltonian g∗ cannot be far from those of ĝ∗ when working

near q. In other words, there exists a normal geodesic associated to the initial Hamiltonian g∗

which stays very close to q.

One should however take care that the situation is not always as favorable as in Example

2.5, for two reasons:

• To obtain good properties of the “truncated” vector fields, one needs to do the Taylor

expansion in a good system of coordinates. In the above example, it was quite “natural”

to take (x, θ, y) coordinates, but in general one should work in so-called “privileged

coordinates” to guarantee that the geodesics of the nilpotentized Hamiltonian are not

too far from those of the initial Hamiltonian.

• The nilpotentized vector fields always form a nilpotent system, meaning that there exists

k ∈ N such that all length ≥ k brackets between X̂1, . . . , X̂m vanish. But in general, k

is not necessarily equal to 3 (as was assumed in Section 2.2.2). To reduce to the case

k = 3, one has again to “compare” the geodesics of the nilpotentized Hamiltonian with

a simpler Hamiltonian, defined with a system of vector fields such that all their length

≥ 3 brackets vanish.

To sum up, the proof of Proposition 2.1 goes by successive simplifications of the vector fields,

until we arrive at the situation of Section 2.2.2 which can be handled “by hand” (i.e., we can

find explicitly the initial covectors of the geodesics).

3. Subellipticity and strength of propagation: Baouendi-Grushin

Schrödinger equations

3.1. Motivation. It is well-known that the Riemannian wave equation propagates at finite

speed and that the Riemannian Schrödinger equation propagates at infinite speed. For subel-

liptic equations, the propagation “at null speed” of the wave equation (shown to be a general

phenomenon in Section 2), and the existence of travelling waves solutions of the Heisenberg

Schrödinger equation (see [BGX00]) motivated us to undertake a general study of the propaga-

tion speed of subelliptic equations depending on two parameters: the step k and the strength
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of propagation s. This last parameter, which will be defined below, is equal to 1/2 for the wave

equation and to 1 for the Schrödinger equation.

As a first step in this study, we took the model family of operators given by Example 1.7, i.e.,

we consider for γ ≥ 0 (not necessarily an integer) the sub-Laplacian ∆γ = ∂2
x + |x|2γ∂2

y on the

manifold M = (−1, 1)x×Ty. In case γ ∈ N, the step is given by k = γ+1. Then, for s ∈ N, we

consider the equation (1.14). The strength of propagation is the parameter s appearing in this

equation; this terminology seemed natural to us since equations with large s tend to propagate

more quickly. The domain of observation is a strip ω = (−1, 1)×I where I ⊂ T as mentioned in

the introduction. Depending on γ and s, Theorem 9 says if the observability inequality (1.15)

holds or not: in particular, it makes appear a threshold s = γ+1
2

at which subellipticity effects

and propagation effects balance each other.

The proof of Theorem 9 splits into two parts:

(1) To disprove observability when s < 1
2
(γ+1) or when s = 1

2
(γ+1) and time is small (i.e.,

for Point (3) and part of Point (2)), we construct solutions of (1.14) which propagate

along the vertical line {x = 0}. This is different from what was done in Section 2:

in Section 2, we were working in the elliptic part of the symbol of the sub-Laplacian,

whereas here the constructed solutions propagate in the characteristic manifold (where

the sub-Laplacian is not elliptic). Thus, the present construction is more involved and

less general than that of Section 2, but these difficulties are unavoidable since we are

dealing with Schrödinger equations whose speed of propagation in the elliptic part of

the symbol is infinite. This Gaussian beam construction is described in Section 3.2

(2) To prove observability when s > 1
2
(γ + 1) or when s = 1

2
(γ + 1) and time is large

(i.e., for Point (1) and part of Point (2)), we establish a sharp resolvent estimate, i.e.,

a time-independent inequality which describes the maximal concentration outside ω of

an approximate eigenfunction of ∆γ. By a classical argument due to Nicolas Burq and

Maciej Zworski (see [BZ04]), this implies observability. Indeed, this method of proof

gives as corollaries an observability result for the heat equation and a decay estimate

for the damped wave equation, both driven by the sub-Laplacian ∆γ. The resolvent

estimate is presented and commented in Section 3.3, and (sketchly) proved in Section

3.4.

3.2. Vertical Gaussian beams for contradicting observability. For proving Point (3) and

Point (2) for small times, it is indeed sufficient to deal with the “critical” case s = 1
2
(γ + 1).

Point (3) then follows immediately from the abstract result [Mil12, Corollary 3.9]: if (1.14)

was observable for some T > 0 and some s < γ+1
2

, then it would be observable in any time for

s = 1
2
(γ + 1), which would be a contradiction. Hence, in the sequel, we assume s = 1

2
(γ + 1).

Moreover, we also assume that γ > 1; for the case s = γ = 1, the argument is slightly different,

see [BS19].

The non-observability part of Point (2) immediately follows from the following proposition:
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Proposition 3.1. There exist T0 > 0 and a sequence of solutions (vn)n∈N of (1.14) with initial

data (v0
n)n∈N such that ‖v0

n‖L2(M) = 1 and

(3.1)

∫ T0

0

∫
ω

|vn(t, x, y)|2dxdydt −→
n→+∞

0.

Let us explain the intuition behind this result on the simpler example of the Grushin-

Schrödinger equation

(3.2) i∂tu+ ∆Gu = 0

where ∆G = ∂2
x + x2∂2

y has been introduced in Example 1.6. We consider this equation in

Rt × Rx × Ry instead of Rt × (−1, 1)x × Ty since computations become simpler in this (non-

compact) setting. Making a Fourier expansion in the y variable, we see that we obtain from

−∆G a family of harmonic oscillators −∂2
x +x2η2 whose associated eigenvalues are (2m+ 1)|η|,

m ∈ N. In other words,

(3.3) L2(R2) = ⊕
±
⊕
m∈N

V ±m , ∆G|V ±m = ±i(2m+ 1)∂y,

and thus the solution of (3.2) is obtained by solving an infinite number of transport equations

along the y-axis, traveling at speed 2m+ 1 for m ∈ N. More explicitly, the solution of (3.2) in

Rt × Rx × Ry is

u(t, x, y) =
1√
2π

∞∑
m=0

∫
R
e−it(2m+1)|η|+iyηû0,m(η)hm(

√
|η|x)dη

where hm is the m-th eigenfunction of the harmonic oscillator −∂2
x+x2 on R (Hermite function).

Our goal is to find solutions whose energy is concentrated in M \ω during a long time, therefore

these solutions should travel slowly along the y-axis. It will be the case if we manage to construct

solutions corresponding to low values of m; indeed Burq and Sun [BS19, Section 9] showed how

to construct such solutions whose only non-vanishing component is the “mode” m = 0 (but η

takes different values).

The case of the equation i∂tu − (−∆γ)
su = 0 (or, more precisely, (1.14)) is more involved

but it is based on the same idea. The computations are less explicit since the eigenfunctions

of ∆γ are less explicit than those of ∆G, but the knowledge of the behaviour at infinity of the

first eigenfunction of the harmonic oscillator is indeed sufficient to do the computations. This

(positive) normalized ground state of the operator Qγ = −∂2
z + |z|2γ on Rz is denoted by φγ

and it satisfies

Qγφγ = µ0φγ.

The normalized ground state of the operator Pγ,w = −∂2
x + |x|2γw2 on Rx is then

pγ(w, x) = |w|
1

2(γ+1)φγ(|w|
1

γ+1x).

and the associated eigenvalue is λγ(w) = µ0|w|
2

γ+1 . The relation between the different variables

is z = |w|
1

γ+1x, and w will be taken to equal to η, the Fourier dual variable of y.
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We assume without loss of generality that ω = Rx × Iy, where I = (a, b), with 0 < a < b ≤
+∞. Let us fix T0 < a/µs0.

We take ψ ∈ C∞c (1
2
≤ |η| ≤ 1), a sequence hn → 0, and we consider

vn(t, x, y) = h
1
2
n

∫
R
ψ(hnη) eiyη−itµ

s
0|η|pγ(η, x) dη,

which is a solution of (1.14) (recall that s = (γ+ 1)/2). It has only high η-modes thanks to the

cutoff ψ(hnη), and each of these modes travels at speed µs0 along the y-axis since 2s/(γ+1) = 1.

By the Plancherel theorem, we can see that ‖vn,0‖L2 & 1, so that we just have to prove (3.1).

The key intuition is that, for any t ∈ R+, the mass of vn(t, ·, ·) is concentrated near (x, y) =

(0, µs0t), and thus outside ω for t ≤ T0. To prove it, one uses the Poisson formula, which yields

vn(t, x, y) =
∑
m∈Z

K̂
(n)
t,x,y(2πm)

where Φm(t, y, w) = yw − 2πmw − tµs0w and

K̂
(n)
t,x,y(2πm) = h

1
2
n

∫
R
ψ(hnw)pγ(w, x)eiΦm(t,y,w)dw.

Then, (3.1) follows from the fact that for |y| ≥ a and t ≤ T0, each K̂
(n)
t,x,y(2πm) is small.

3.3. Resolvent estimate. This subsection is devoted to explaining how time-independent

estimates can be relevant for proving observability inequalities (which inherently involve a time

variable), and to apply it to our particular goal of proving Point (1) and part of Point (2) of

Theorem 9. The starting point of the analysis is the following theorem due to Nicolas Burq

and Maciej Zworski, which will be commented after its statement:

Theorem 11 ([BZ04]). Let P (h) be self-adjoint on some Hilbert space H with densely defined

domain D and A(h) : D → H be bounded. Assume that uniformly for τ ∈ I = [−b,−a] ⊂ R,

we have the following resolvent inequality

(3.4) ‖u‖H ≤
G(h)

h
‖(P (h) + τ)u‖H + g(h)‖A(h)u‖H

for some 1 ≤ G(h) ≤ O(h−N0). Then there exist constants C0, c0, h0 > 0, such that for every

T (h) satisfying
G(h)

T (h)
< c0,

we have, for all 0 < h < h0

‖ψ(P (h))u‖2
H ≤ C0

g(h)2

T (h)

∫ T (h)

0

‖A(h)e−
itP (h)
h ψ(P (h))u‖2

Hdt,

where ψ ∈ C∞c ((a, b)).

This statement, proved in [BZ04, Section 3], calls for several comments:
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• Typically, P (h) = −h2∆, or, in our case P (h) = −h2∆γ with domain

D(∆γ) = {u ∈ D′(M) : ∂2
xu, |x|2γ∂2

yu ∈ L2(M) and u|∂M = 0}.

Therefore, the term (P (h) + τ)u gives an estimate on how far from a true eigenfunction

u is. The small parameter h is called semi-classical parameter, and it naturally shows

up when studying Schrödinger equations.

• The operator A(h) is the observation operator, and in our case it does not depend on

h: it is equal to the characteristic function 1ω of ω.

• The expression ψ(P (h)) is defined thanks to functional calculus, and T (h) has to be

understood as the time-scale at which the observability inequality is valid. The param-

eter τ shows up naturally when taking the Fourier transform in time of the equation: it

is the dual variable of t.

In our case, the resolvent estimate (or quasimode estimate) (3.4) takes the following form:

Theorem 12. Let γ ≥ 1 and let ω contain a horizontal strip (−1, 1)× I. There exist C, h0 > 0

such that for any v ∈ D(∆γ) and any 0 < h ≤ h0, there holds

‖v‖L2(M) ≤ C(h−(γ+1)‖(h2∆γ + 1)v‖L2(M) + ‖v‖L2(ω)).

The exponent h−(γ+1) is optimal. It may seem strange that the parameter s does not appear

in the above resolvent inequality. However, we can deduce directly from Theorem 12 another

resolvent inequality where s appears:

‖u‖L2(M) ≤ C(h−(γ+1)‖((−h2∆γ)
s − 1)u‖L2(M) + ‖u‖L2(ω)).

From this and Theorem 11, one obtains the following spectrally localized observability inequality :

(3.5) ‖uh‖2
L2(M) ≤ C

∫ T

0

‖e−it′(−∆γ)suh‖2
L2(ω)dt

′

where uh = ψ((−h2∆γ)
s)u with ψ ∈ C∞c ((1/2, 2)). This is not totally immediate, the precise

argument is written in [LS20, Section 3.1]. From (3.5), we can conclude thanks to a standard

unique continuation argument the proof of Theorem 9, that is, we transform this inequality for

uh (which is spectrally localized) to the inequality (1.15) which holds for any initial datum u0.

This unique continuation argument is based on the fact that if u∗ is an eigenfunction of (−∆γ)
s

which vanishes on ω, then it vanishes on the whole manifold M . We refer to [LS20, Section

3.2] for full details.

3.4. Proof of Theorem 12. The proof of Theorem 12 is quite long, and we will only describe

here its main lines. It consists in decomposing solutions according to the joint eigenspaces of

|Dy| and −∆γ (it has already been done in Section 3.2); then we distinguish between several

“regimes” depending on the value of |Dy| compared to the value of −∆γ, and this corresponds

to different geometric propagations of solutions. This strategy is inspired by that of [BS19], but

here we work in a time-independent setting since we seek to prove a resolvent estimate. This
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fine analysis of the different microlocal regimes should be compared with the non-commutative

approach of Section 4, see Remark 4.4.

The proof is by contradiction. Assume that there exists a sequence (vh)h>0 such that

(3.6) ‖vh‖L2(M) = 1, ‖vh‖L2(ω) = o(1), ‖fh‖L2(M) = o(hγ+1)

where fh = (h2∆γ + 1)vh, and we seek for a contradiction, which would prove Theorem 12.

A short argument shows that we can furthermore assume that vh = ψ(h2∆γ)vh where ψ ∈
C∞c ((−∞, 0)) verifies: ψ ≡ 1 near −1 and ψ = 0 outside (−2,−1

2
). Here and in all the sequel,

we use functional calculus to define expressions such as ψ(h2∆γ). The equality vh = ψ(h2∆γ)vh
means that all frequencies (computed with respect to ∆γ) of vh are comparable to −h−2.

We use a decomposition of vh as vh = v1
h + v2

h + v3
h + v4

h where

v1
h = (1− χ0(b0hDy))vh, v2

h = (χ0(b0hDy)− χ0(b−1
0 hDy))vh

v3
h = (χ0(b−1

0 hDy)− χ0(hεDy))vh, v4
h = χ0(hεDy)vh,

that is, a decomposition according to the dual Fourier variable of y. Here, b0 � 1 and ε

will be fixed later. Choosing a good cut-off χ0 ∈ C∞c (R), the proof consists in showing that

‖vjh‖L2(M) = o(1) for j = 1, 2, 3, 4, which contradicts (3.6). The methods used for each j are

quite different, and roughly correspond to the different behaviours of geodesics according to

their momentum η ∼ Dy. More precisely:

• v1
h corresponds to large |Dy| (i.e., large η-momenta). For example, the initial data

of the vertical Gaussian beams constructed in Section 3.2 satisfy vh = v1
h. To prove

that ‖v1
h‖L2(M) = o(1), we use the positive commutator method. This method dates

back at least to [Hör71, Section 3.5] and has been widely used, for example for proving

propagation of singularities for the wave equation. Here, it is based on the relation

[∆γ, x∂x + (γ + 1)y∂y] = 2∆γ.

Using this relation and computed in two different ways the expression

([h2∆γ + 1, χε(x)φ(y)(x∂x + (γ + 1)y∂y)]v
1
h, v

1
h)L2(M)

for some well-chosen cut-offs χε and φ, it is possible to deduce that ‖v1
h‖L2(M) = o(1).

• v2
h, v

3
h and v4

h are “microlocalized” in the elliptic part of the symbol of −∆γ. In some

sense, this implies that if we restrict to functions vh such that v1
h = 0, a better resolvent

estimate should hold, showing observability of the Schrödinger equation in any time, as

in the Riemannian case.

• To prove that ‖v2
h‖L2(M) = o(1), we consider a defect measure associated to (vh2 )h>0.

The key point is that it is invariant along geodesics of the sub-Riemannian metric

which reach ω in finite time (it gives no mass to other geodesics), thus it is null since

‖v2
h‖L2(ω) = o(1). This argument is similar in spirit to the construction done in [Leb92b]

for the Riemannian Schrödinger equation: vh2 corresponds to the truly elliptic (or semi-

classical) regime.
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• The defect measures associated to v3
h and v4

h are more complicated to handle since they

are invariant along the horizontal geodesics y = const (which do not enter ω). In some

sense, being an approximate solution of (h2∆γ + 1)v = 0 excludes the possibility of

“scarring” along a single horizontal geodesic; equivalently, for such quasimodes, the

mass of v3
h and v4

h in M is controlled by their mass in ω. To establish such properties,

several tools are available: for example, the papers [BZ12] and [AM14] deal with similar

issues for the elliptic Schrödinger equation in tori, using either normal form arguments

or 2-microlocal techniques. The argument we present in [LS20] relies on the positive

commutator method and a similar normal form argument as in [BZ12].

3.5. Further comments and open questions. Together with Corollary 2 in [DM12], the

resolvent estimate proved in Theorem 12 implies an observability result for heat-type equations:

Corollary 3.2. Assume that γ ≥ 1 and that ω contains a horizontal strip (−1, 1)x × I. For

any s > 1
2
(γ + 1) and any T0 > 0, observability for the heat equation with Dirichlet boundary

conditions

(3.7)


∂tu+ (−∆γ)

su = 0

u|t=0 = u0 ∈ L2(M)

u|x=±1 = 0

holds in time T0. In other words, there exists C > 0 such that for any u0 ∈ L2(M), there holds

‖e−T0(−∆γ)su0‖2
L2(M) ≤

∫ T0

0

‖e−t(−∆γ)su0‖2
L2(ω)dt.

Let us finally mention a few open questions raised by our study:

• What happens if 0 < γ < 1, a case which is not covered by Theorem 9? Indeed, the

sub-Laplacian ∆γ on R × T is not essentially self-adjoint (see [BP16]), which means

that the Schrödinger evolution is not well defined if we do not impose any additional

boundary condition on {x = 0}.
• Is it possible to generalize Theorem 9 to other sub-Laplacians? It seems so that Point

(3) might be the easiest one to generalize: very roughly, as seen in Sections 2 and 3.2,

some kind of “normal form” or “approximation” argument for the sub-Laplacian could

be relevant since s < 1
2
(γ + 1) leaves some space for perturbative arguments.

• Is it possible to construct in a more robust way solutions of subelliptic Schrödinger-type

equations which are microlocally concentrated in the cone where the principal symbol

of the sub-Laplacian vanishes?

4. Subelliptic Schrödinger equation via non-commutative harmonic analysis

The last result we present in this survey, namely Theorem 10, may seem difficult to approach

because of the massive use of noncommutative Fourier analysis all along the statement and
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proofs. Our goal here is to give some keys which could facilitate reading, and to explain why

this theory is adapted to analyze subelliptic PDEs.

The plan of this section is as follows: according to the theory of non-commutative harmonic

analysis, we define in Section 4.1 the (operator-valued) Fourier transform (4.1), based on the

unitary irreducible representations of the group, recalled in (4.4), which form an analog to the

usual frequency space. Then, in Section 4.2, we follow the same path as for the usual Fourier

transform: we use the Fourier inversion formula (4.5) to define in (4.6) a class of symbols and

the associated semi-classical pseudo-differential operators in (4.7). From this, we deduce the

existence of semi-classical measures, which have additional invariance properties when they

are associated to solutions of the Schrödinger equation. This allows to prove the first part

of Theorem 10. The second part of this theorem is proved using solutions of the Schrödinger

equation which propagate along the vertical direction: although this is very close in spirit

to the vertical Gaussian beam construction of Section 3.2, we have developed in [FKL21] a

more robust framework for these “wave-packet solutions”, based on the same non-commutative

harmonic analysis tools as before.

The material of Sections 4.1 and 4.2 borrows many ideas from [FKF20] (and of course from

[FKL21]). In the sequel we use the notations of Section 1.5.3.

Additionally, note that the element (p, q, z) = (p1, . . . , pd, q1, . . . , qd, z) of Hd can be written

(p, q, z) = expHd(p1X1 + . . .+ pdXd + q1Y1 + . . .+ qdYd + zZ)

and with the Baker-Campbell-Hausdorff formula we recover the group law given in Example

1.8.

4.1. Noncommutative Fourier analysis. We aim at defining a Fourier transform adapted

to M , and at proving the associated Fourier inversion formula. This is standard, and the main

references are [CG04] and [Tay86] (see also Appendix A of [FKL21]).

The usual Fourier transform f̂(λ) =
∫
Rd f(x)e−ixλdx is replaced in this non-commutative

setting by the formula

(4.1) Ff(λ) :=

∫
Hd

f(x)
(
πλx
)∗
dx.

To give it a sense, we need to explain how to define dx and to give a sense to λ and
(
πλx
)∗

.

To define dx, we recall that in Section 1.5.3, we defined a scalar product on z, for which ∂z
has norm 1. We also need a scalar product on v, which is obtained by saying that the 2d vector

fields

Xj = ∂xj +
yj
2
∂z, Yj = ∂yj −

xj
2
∂z, j = 1, . . . , d

form an orthonormal basis. This allows to consider the Lebesgue measure dv dz on g = v⊕ z.

Via the identification of Hd with g by the exponential map, this induces a Haar measure dx on
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Hd and on its quotient M . Thus, we can integrate functions on Hd, define Lebesgue spaces,

etc as usual.

Finally, in formula (4.1),
(
πλx
)∗

is an operator. In particular, Ff(λ) is operator-valued. The

operator
(
πλx
)∗

is the adjoint of the irreducible representations πλx of Hd.

Definition 4.1. The (strongly continuous) unitary representations of a locally compact topo-

logical group G are the homomorphisms π : G → U(Hπ) where U(Hπ) is the group of unitary

operators on a Hilbert space Hπ, which satisfy that g 7→ π(g)ξ is a norm continuous function

for every ξ ∈ Hπ.

A unitary representation is called irreducible if the only closed linear subspaces of Hπ invari-

ant under π(g) for all g ∈ G are 0 and Hπ. The set of all unitary irreducible representations

(modulo unitary equivalence) is denoted by Ĝ.

A specificity of Heisenberg groups, and more generally of H-type groups, is that their irre-

ducible representations can be explicitly computed, thanks to Kirillov’s theory. We will neither

enter the details of Kirillov’s theory nor show the computations specific to H-type groups (see

Appendix A of [FKL21]), but only give the explicit expression of irreducible representations:

• For λ ∈ z∗ \ {0} ∼ R \ {0} and x = (p, q, z) ∈ Hd, we consider the operator πλx defined

by

(4.2) πλxΦ(ξ) = ei(λ(z)+ 1
2
|λ|p·q+sgn(λ)

√
|λ|ξ·q) Φ

(
ξ +

√
|λ|p

)
,

which acts on functions Φ ∈ L2(Rd) (in (4.2), sgn is the sign function). Then, πλ(·) = πλ·
defines a unitary representation of Hd which is infinite dimensional (since the Hilbert

space L2(Rd) has infinite dimension) and which can be proved to be irreducible.

• For ω ∈ v∗ and x = Exp(V + Z) ∈ Hd with V ∈ v and Z ∈ z, we set

(4.3) π0,ω
x = eiω(V )

and π0,ω(·) = π0,ω
· can thus be seen as a 1-dimensional representation over the Hilbert

space H(0,ω) = C.

Then, the set Ĥd of all unitary irreducible representations modulo unitary equivalence is

parametrized by (z∗ \ {0})t v∗ (see Proposition 2.4 and Theorem 2.5 in Chapter 1 of [Tay86]):

(4.4) Ĥd = {class of πλ : λ ∈ z∗ \ {0}} t {class of π0,ω : ω ∈ v∗}.

The formula (4.1) defines the Fourier transform for λ ∈ z∗ \ {0}, but we need to complete it

with a formula for ω ∈ v∗:

f̂(0, ω) = Ff(0, ω) :=

∫
Hd

f(x)(π(0,ω)
x )∗dx.
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With these definitions at hand, one can prove an inversion formula for f ∈ S(Hd) and x ∈ Hd:

(4.5) f(x) = c0

∫
z∗\{0}

Tr
(
πλxFf(λ)

)
|λ|d dλ ,

where Tr denotes the trace of operators of L(L2(Rd)) (see [Tay86, Theorem 2.7 in Chapter 1]).

Note that in this inversion formula, the finite dimensional irreducible representations given by

(4.3) are absent.

4.2. Symbols and semi-classical measures. Starting from the Fourier inversion formula

(4.5), we define symbols (of pseudo-differential operators) on M as a class of functions on

M × Ĥd. The set M × Ĥd is interpreted as the phase space of M , in analogy with the fact that

Td × Rd is the phase space of the torus Td.
To start, we note that the set of functions on the quotient M = Γ̃\Hd is in one-to-one relation

with the set of Γ̃-left periodic functions on Hd, i.e., functions on Hd such that

∀x ∈ Hd, ∀γ ∈ Γ̃, f(γx) = f(x).

We consider the class of symbols A0 of fields of operators defined on M × Ĥd by

σ(x, λ) ∈ L(L2(Rd)), (x, λ) ∈M × Ĥd,

that are smooth in the variable x and Fourier transforms of functions of the set S(Hd) of

Schwartz functions on Hd in the variable λ: for all (x, λ) ∈M × Ĥd,

(4.6) σ(x, λ) = Fκx(λ)

where κ·(·) ∈ C∞(M,S(Hd)). One can easily check that these symbols form an algebra (which

is a motivation for introducing them as Fourier transforms of functions κx).

There is a natural family of dilations on Hd defined as

δε(x, y, z) = (εx, εy, ε2z), (x, y, z) ∈ Hd, ε > 0.

If ε > 0, we associate with κx (and thus with σ(x, λ)) the function κεx defined on Hd by

κεx(·) = ε−Qκx(δε−1(·)),

We then define the semi-classical pseudo-differential operator Opε(σ) via the identification of

functions f on M with Γ̃-left periodic functions on Hd recalled above:

(4.7) Opε(σ)f(x) =

∫
Hd

κεx(y
−1x)f(y)dy.

The operator Opε(σ) is well-defined as an operator on M . Indeed,

Opε(σ)f(γx) = Opε(σ)f(x).

It is not difficult to check that these definitions yield a “good symbolic calculus”: for ex-

ample, the family of operators (Opε(σ))ε>0 is uniformly bounded in L(L2(M)). This allows to
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define semi-classical measures (see [Gér91] and [Bur97] for similar propositions in the Euclidean

framework):

Proposition 4.2. Let (uε)ε>0 be a bounded family in L∞(R, L2(M)). There exist a sequence

(εk) ∈ (R∗+)N with εk −→
k→+∞

0 and a map t 7→ Γtdγt in L∞(R,M̃+
ov(M × Ĥd)) such that we have

for all θ ∈ L1(R) and σ ∈ A,

(4.8)

∫
R
θ(t)(Opεk(σ)uεk(t), uεk(t))L2(M)dt −→

k→+∞

∫
R×M×Ĥd

θ(t)Tr(σ(x, λ)Γt(x, λ))dγt(x, λ)dt.

Here A is the “closure” of A0 in some sense made precise in [FKF20].

Here are a few comments on this statement:

• We denote by M̃ov(M × Ĥd) the set of pairs (γ,Γ) where γ is a positive Radon measure

on M × Ĥd and Γ = {Γ(x, λ) ∈ L(L2(Rd)) : λ ∈ Ĥd} is a measurable field of trace-class

operators such that

‖Γdγ‖M :=

∫
M×Ĥd

Tr(|Γ(x, λ)|)dγ(x, λ) <∞.

Here, as usual, |Γ| :=
√

ΓΓ∗. Finally, we say that a pair (γ,Γ) in M̃ov(M × Ĥd) is

positive when Γ(x, λ) ≥ 0 for γ-almost all (x, λ) ∈ M × Ĥd. In this case, we write

(γ,Γ) ∈ M̃+
ov(M × Ĥd).

• This set M̃ov(M×Ĥd) can be identified to the topological dual of the algebra of symbols

A (to be rigorous, it requires to take the quotient by a relation of equivalence on the

pairs (γ,Γ)). This is why it naturally appears as a limit of the left-hand side of (4.8).

• Hence, the semi-classical measures that we consider here are operator-valued, whereas

semi-classical measures are mostly scalar in the literature, see for example [Leb92b].

This operator-valued feature is fundamental since it is due to non-commutativity of

nilmanifolds, and it is a consequence of the original features of Fourier analysis on

nilpotent groups seen in Section 4.1.

• The integral in the time variable in (4.8) may seem weird at first sight, and indeed it is

possible to define semi-classical measures of functions on M (thus, time-independent).

However, our goal here is to study semi-classical measures associated to solutions of the

non-semi-classical Schrödinger equation (1.16) (a semi-classical Schrödinger equation

would have the form iε∂tu + ε2∆u = 0). For such equations, it is difficult to derive

results for the semi-classical measures at each time t (see also [AM14]). However, one

can prove results for the time-averaged semi-classical measures, and this is why we define

these time-averaged measures in Proposition 4.2.

• Sections 4.1 and 4.2 up to Proposition 4.2 could be generalized to all graded Lie groups

through the generalization of the tools we use (see Remarks 3.3 and 4.4 in [FKF19]).

However, the next proposition, namely Proposition 4.3, is specific to H-type groups (in
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particular, Heisenberg groups) since its proof uses the explicit expressions of irreducible

representations seen in Section 4.1.

The semi-classical measures associated (by Proposition 4.2) to families of solutions to the

Schrödinger equation (1.16) have special features, which are the subject of Proposition 4.3

below. To state it properly, we need some definitions.

In the (non compact) group Hd, the operator

H(λ) = |λ|
d∑
j=1

(
−∂2

ξj
+ ξ2

j

)
is the Fourier resolution of the sub-Laplacian −∆Hd above λ ∈ z∗ \ {0}, meaning that

∀f ∈ S(Hd), F(−∆Hdf)(λ) = H(λ)F(f)(λ).

Up to a constant, this is a quantum harmonic oscillator with discrete spectrum {|λ|(2n+d), n ∈
N} and finite dimensional eigenspaces. For each eigenvalue |λ|(2n+ d), we denote by Π

(λ)
n and

V(λ)
n the corresponding spectral orthogonal projection and eigenspace.

Proposition 4.3. Assume Γtdγt is associated with a family of solutions to (1.16).

(1) For (x, λ) ∈M × z∗

(4.9) Γt(x, λ) =
∑
n∈N

Γn,t(x, λ) with Γn,t(x, λ) := Π(λ)
n Γt(x, λ)Π(λ)

n .

Moreover, the map (t, x, λ) 7→ Γn,t(x, λ)dγt(x, λ) defines a continuous function from R
into the set of distributions on M × (z∗ \ {0}) valued in the finite dimensional space

L(V(λ)
n ) which satisfies

(4.10)

(
∂t − (n+

d

2
)Z(λ)

)
(Γn,t(x, λ)dγt(x, λ)) = 0

(2) For (x, (0, ω)) ∈M × v∗, the scalar measure Γtdγt is invariant under the flow

Ξs : (x, ω) 7→ (xExp(sω · V ), ω).

Here, ω · V =
∑2d

j=1 ωjVj where ωj denote the coordinates of ω in the dual basis of V .

The relations (4.9) and (4.10) describe the same phenomenon as (3.3): the Schrödinger

equation behaves as a superposition of waves traveling at different speeds along the vertical

axis.

4.3. Proof of Theorem 10. We finally explain how Theorem 10 follows from Proposition 4.3.
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4.3.1. Proof of Point (1) of Theorem 10. As in Section 3.3, to prove Point (1) of Theorem

10, it is sufficient to prove a spectrally localized observability inequality. Let h > 0 and ψ ∈
C∞c ((1/2, 2), [0, 1]). Using functional calculus, we set

(4.11) Phf = ψ

(
−h2

(
1

2
∆M + V

))
f, f ∈ L2(M).

We seek to prove

(4.12) ‖Phu0‖2
L2(M) ≤ C0

∫ T

0

∥∥∥eit(
1
2

∆M+V)Phu0

∥∥∥2

L2(U)
dt.

We argue by contradiction. If (4.12) is false, then there exist (uk0)k∈N and (hk)k∈N such that

uk0 = Phkuk0,

(4.13) ‖uk0‖L2(M) = 1 and

∫ T

0

‖uk(t)‖2
L2(U) dt −→

k→+∞
0.

where

uk(t) = eit(
1
2

∆M+V)Phkuk0.
We consider (after extraction of a subsequence if necessary), the semi-classical measure Γtdγt
of uk(t) given by Proposition 4.2 and satisfying the properties listed in Proposition 4.3. The

goal is to prove that γt ≡ 0.

Using the second part of (4.13), one obtains∫ T

0

∫
U×Ĥd

Tr(Γt(x, λ))dγt(x, λ)dt = 0

i.e., γt ≡ 0 above U . Setting γn,t(x, λ) = Tr (Γn,t(x, λ)) γt(x, λ), and using the positivity of Γt,

one can deduce that

(4.14)

∫
U×z∗

dγn,t(x, λ) = 0, for almost every t ∈ [0, T ], ∀n ∈ N.

The transport equation (4.10) tells us that γn,t travels at speed n + d
2

along the z-axis, hence

not slower than γ0,t. Using (H-GCC) together with (4.14), we get that γn,t ≡ 0 for any n ∈ N,

hence γt ≡ 0. This contradicts the conservation of energy (i.e., the first part of (4.13)). Thus,

(4.12) is proved.

Remark 4.4. It is tempting to compare the approaches developed in Sections 3 and 4, which

share the common goal of proving observability inequalities for subelliptic Schrödinger equations.

On one side, the semi-classical measures of Section 4 seem particularly adapted: once defined

the operator-valued Fourier transform, the definitions of symbols and semi-classical measures

are natural since they are modeled on the Euclidean case. But this approach has the drawback

to require the knowledge of global objects on the manifold (the representations), and for the

moment their local and geometric aspects are not sufficiently well understood to handle more
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general geometric situations. On the contrary, the proof of Section 3, which uses usual pseudo-

differential tools (i.e., Euclidean or Riemannian ones), is directly linked with the underlying

geometry (see Section 3.4) but we see the limits of these tools in the fact that already for the

simple Baouendi-Grushin models, the computations are sophisticated and sometimes heavy.

4.3.2. Proof of Point (2) of Theorem 10. As for Point (3) of Theorem 9, to disprove the ob-

servability inequality (1.17), we construct a particular family of solutions of the Schrödinger

equation (1.16), called wave packets (and which are somehow related to the vertical Gaussian

beams of Section 3.2).

In the Euclidean context, given (x0, ξ0) ∈ Rd×Rd and a ∈ S(Rd), the associated wave packet

is the family (indexed by ε) of functions

(4.15) uεeucl(x) = ε−d/4a

(
x− x0√

ε

)
e
i
ε
ξ0·(x−x0), x ∈ Rd.

The oscillation along ξ0 is forced by the term e
i
ε
ξ0·(x−x0) and the concentration on x0 is per-

formed via a(·/
√
ε) at the scale

√
ε for symmetry reasons: the ε-Fourier transform of uεeucl,

ε−d/2ûεeucl(ξ/ε) presents a concentration on ξ0 at the scale
√
ε. Taking a compactly supported

in the interior of a unit cell for the torus, one can generalize their definition to the case of the

torus by extending them by periodicity.

To perform a similar construction in the non-commutative setting, more precisely in Hd, we

replace a(·/
√
ε) by

aε(x) = a (δε−1/2(x))

for some a ∈ C∞c (G), and the oscillations e
i
ε
ξ0·(x−x0) by

eε(x) =
(
πλεx Φ1,Φ2

)
, λε =

λ0

ε2

where λ0 ∈ z∗ and Φ1, Φ2 ∈ S(Rd).

Using the multiplication on the left by elements of Γ̃, one can define a periodization operator

P which associates to functions on Hd whose support is contained in a unit cell of M the Γ̃-left

periodic function obtained by periodization. We restrict to ε ∈ (0, 1) We consider a unit cell of

M , i.e., a subset B of Hd which is a neighborhood of 1Hd and such that ∪γ∈Γ̃(γB) = Hd and

we choose functions a that are in C∞c (B).

Proposition 4.5. Let Φ1,Φ2 ∈ S(Rd), a ∈ C∞c (B), x0 ∈ M , λ0 ∈ z∗ \ {0}. Then, there exists

ε0 > 0 such that the family (vε)ε∈(0,ε0) defined by

vε(x) = |λε|d/2 ε−p/2 P(eεaε)(x
−1
0 x),

has only one semi-classical measure Γdγ where

(4.16) γ = ca δ(x− x0)⊗ δ(λ− λ0), ca = ‖Φ2‖2

∫
Gz

|a(xz)|2dxz,
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and Γ is the operator defined by

ΓΦ =
(Φ,Φ1)

‖Φ1‖2
Φ1, ∀Φ ∈ L2(Rd).

What is really important in the above proposition is that γ is concentrated on a single point

of the phase space.

In the rest of the proof, we say that the family vε is a wave packet on M with cores (x0, λ0),

profile a and harmonics (Φ1,Φ2), and we write

vε = WP ε
x0,λ0

(a,Φ1,Φ2) = |λε|d/2 ε−p/2 P(eεaε)(x
−1
0 x).

Remark 4.6. In [FKL21] (see Section 4 and Appendix C), we develop a more general theory of

wave packets, notably showing that the structure of wave packets is preserved by the evolution

under the Schrödinger flow.

We take as initial data in (1.16) a wave packet uε0 in M with harmonics given by the first

Hermite function h0:

uε0 = WP ε
x0,λ0

(a, h0, h0).

We denote by uε(t) the associated solution, uε(t) = eit(
1
2

∆M+V)uε0. Our choice of harmonics for uε0
guarantees that the semi-classical measure Γtdγt associated to these solutions, when decomposed

according to Proposition 4.3, has only one non-vanishing component, which corresponds to

n = 0. In other words,

(4.17) γt(x, λ) = c δ

(
x− Exp

(
t
d

2
Z(λ)

)
x0

)
⊗ δ(λ− λ0)

and Γ0,t is the orthogonal projector on h0.

Now, using the assumptions made in Point (2) of Theorem 10, there exists a continuous

function φ : M → [0, 1] such that φ(Φs
0(x0, λ0)) = 0 for any s ∈ [0, T ] and φ = 1 on U × z∗.

From this, we deduce

0 ≤
∫ T

0

∫
U

|uε(t, x)|2dxdt ≤
∫ T

0

∫
M

φ(x)|uε(t, x)|2dxdt −→
ε→0

∫ T

0

∫
M×z∗

φ(x)dγt(x, λ)dt = 0.

Therefore, the observability inequality (1.17) cannot hold.

5. Perspectives and open problems

In the field of subelliptic PDEs, and notably concerning controllability/observability, several

interesting questions remain unanswered, and this concluding section lists a few of them.
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5.1. Observability of the heat equation for other sub-Laplacians. As explained in Sec-

tion 1.4.1, the observability properties of subelliptic heat equations are known only in particular

geometries. More general results would require a deeper understanding of the geometric mean-

ing of the solutions constructed in [BCG14] or [Koe17]. Let us formulate two conjectures:

(1) For any sub-Laplacian of step 2, if M \ ω has non-empty interior, observability of the

associated heat equation fails for sufficiently small times T > 0;

(2) For any sub-Laplacian of step ≥ 3, if M \ω has non-empty interior, observability of the

associated heat equation fails for any time T > 0.

These conjectures are inspired by the results mentioned in Section 1.4.1 and by the paper [LL20]

(see notably Section 1.4).

5.2. Observability of Schrödinger for other sub-Laplacians. Even in the Riemannian

case, the observability properties of the Schrödinger equation remain mysterious: although

(GCC) is known to be a sufficient condition for observability, it is not a necessary condition

(see Section 1.2.2). In the sub-Riemannian case, the problem is even “more open”, since no

general sufficient condition is known for the moment, except trivial ones: only very particular

geometries have been explored (see Theorems 7, 9 and 10), and they rely on tools which are

not robust enough to cover general (in particular non-flat) sub-Riemannian geometries.

5.3. Propagation of singularities for subelliptic PDEs. Observability properties of the

wave and Schrödinger equations are related to propagation of singularities of their solutions (see

for example [BLR92]). The propagation of singularities for sub-Riemannian wave equations has

been addressed in a series of papers by Melrose, R. Lascar and B. Lascar, culminating with the

general result of [Mel84], which we revisited in [Let21] and [CdVL21].

Besides, the understanding of propagation of singularities for sub-Riemannian Schrödinger

equations surely requires the introduction of a notion of singularity “adapted to the sub-

Riemannian geometry”, i.e., taking into account the number of brackets needed to generate

each direction.

5.4. Trace formulas. For most (sub-)Laplacians ∆, we do not have access to the knowledge

of the full spectrum, i.e., to all eigenvalues. But it is sometimes possible to compute quantities

of the form ∑
n∈N

f(λn)

where f is a (possibly complex-valued) function and λn describes the spectrum (with multi-

plicities) of −∆, i.e., −∆ϕn = λnϕn for smooth functions ϕn. Classical choices for f are the

following: f(x) = e−tx (heat equation), f(x) = |x|−s (zeta functions), f(x) = cos(t
√
x) (wave

equation), f(x) = e−itx/h (semi-classical Schrödinger equation).
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The literature on trace formulas in Riemannian manifolds is vast. But in the sub-Rzhak

iemannian case, only few trace formulas have been established, and most of them are formulated

with the heat kernel. It would be of interest to prove trace formulas for other kernels.

5.5. Eigenfunctions and quasimodes of sub-Laplacians. The properties of eigenfunctions

and quasimodes of sub-Laplacians remain widely unknown. Beside the concentration results

given by observability properties (see for example Corollary 1.2), one could expect to character-

ize the weak limits of high-frequency eigenfunctions (or of the square of their modulus) in the

limit where the eigenvalue tends to +∞: these weak limits are known as Quantum Limits and

they were widely studied in the Riemannian case. In [CdVHT18], the authors undertook their

study in the sub-Riemannian case, proving that they concentrate (except for a null-density

subsequence) on the characteristic cone Σ, and also showing a Quantum Ergodicity result valid

for 3D contact sub-Laplacians with ergodic Reeb flow. Their study was pursued in [Let20a], in

the case where a commutativity assumption on the vector fields involved in the definition of the

sub-Laplacian is satisfied: then, techniques coming from joint spectral calculus can be applied.

In particular, we characterized all Quantum Limits of a family of sub-Laplacians obtained as

a product of flat 3D Heisenberg sub-Laplacians. But, for example, the higher-dimensional

(non-flat) contact case remains open.
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for the Schrödinger equation on the disk. Inventiones mathematicae, 206(2):485–599, 2016.
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[LRLTT17] Jérôme Le Rousseau, Gilles Lebeau, Peppino Terpolilli, and Emmanuel Trélat. Geometric control
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2020.

[Mel84] Richard Melrose. Propagation for the wave group of a positive subelliptic second-order differential

operator. Taniguchi Symp. HERT Katata, pages 181–192, 1984.

[Mil12] Luc Miller. Resolvent conditions for the control of unitary groups and their approximations. Journal

of Spectral Theory, 2(1):1–55, 2012.

[Mon94] Richard Montgomery. Abnormal minimizers. SIAM Journal on Control and Optimization,

32(6):1605–1620, 1994.

[Mon95] Richard Montgomery. Hearing the zero locus of a magnetic field. Communications in Mathematical

Physics, 168(3):651–675, 1995.

[Mon02] Richard Montgomery. A tour of subriemannian geometries, their geodesics and applications. Num-

ber 91. American Mathematical Soc., 2002.

[Mor78] Yoshinori Morimoto. On the hypoellipticity for infinitely degenerate semi-elliptic operators. Journal

of the Mathematical Society of Japan, 30(2):327–358, 1978.
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