A SIMPLE PROOF OF THE FUNDAMENTAL THEOREM OF ALGEBRA

RICARDO PÉREZ-MARCO

Abstract

We present a simple short proof of the Fundamental Theorem of Algebra, without complex analysis and with a minimal use of topology.

1. Statement.

Theorem 1.1. A non constant polynomial $P(z) \in \mathbb{C}[z]$ with complex coefficients has a root.
The proof is based only on the following elementary facts:

- A polynomial has at most a finite number of roots.
- The Implicit Function Theorem.
- Removing from \mathbb{C} a finite number of points leaves an open connected space.

2. The proof.

It is enough to consider a monic polynomial P. We denote by $\mathcal{C}=\left(P^{\prime}\right)^{-1}(0)$ the finite set of critical points of P, and by $\mathcal{D}=P(\mathcal{C})$ the finite set of critical values of P.

- Let $R=\{c \in \mathbb{C}$; the polynomial $P(z)-c$ has at least a simple root and no double roots $\}$.
- $R \subset \mathbb{C}-\mathcal{D}$. This is because if $c \in \mathcal{D}$, then $c=P\left(z_{0}\right)$ for some critical point $z_{0} \in \mathcal{C}$, hence $P^{\prime}\left(z_{0}\right)=0$ and $P(z)-c=0$ has a double root at z_{0}. Note that $\mathbb{C}-\mathcal{D}$ is open and connected $(\mathcal{D}$ being finite).
- R is open. This is an application of the Implicit Function Theorem. Let $c_{0} \in R \subset \mathbb{C}-\mathcal{D}$, and $z_{0} \in \mathbb{C}$ be a root of $P(z)-c_{0}$. We apply the Implicit Function Theorem to the equation $F(z, c)=P(z)-c=0$. Since $\frac{\partial F}{\partial z}\left(z_{0}, c_{0}\right)=P^{\prime}\left(z_{0}\right) \neq 0$, there is a neighborhood U of c_{0} such that for $c \in U$ we have a root $z(c)$ of $P(z)-c$. Taking U small enough, by continuity of P^{\prime} and $c \mapsto z(c)$, we have $P^{\prime}(z(c)) \neq 0$ and the root $z(c)$ is simple. Since $\mathbb{C}-\mathcal{D}$ is open we can take $U \subset \mathbb{C}-\mathcal{D}$ and $P(z)-c$ does not have any double root, thus $U \subset R$.
- R is closed in $\mathbb{C}-\mathcal{D}$. Because P is monic, if c is uniformly bounded then any root of $P(z)-c$ is uniformly bounded (since $P(z) / z^{n} \rightarrow 1$ uniformly when $z \rightarrow \infty$, if n is the degree). We can take a subsequence of $c_{n} \rightarrow c_{\infty} \in \mathbb{C}-\mathcal{D}$ and a converging subsequence of roots of $P(z)-c_{n}$. By continuity, the limit is a root of $P(z)-c_{\infty}$, so this polynomial has roots. Moreover, all roots of $P(z)-c_{\infty}$ are simple since $c_{\infty} \in \mathbb{C}-\mathcal{D}$.

[^0]- R is non-empty. For any $a \in \mathbb{C}$ we have that for $c=P(a), P(z)-c$ has at least $z=a$ as root. If we choose $a \in \mathbb{C}-P^{-1}(\mathcal{D})$, then for any root z_{0} of $P(z)-c$ with $c=P(a)$, we have $P\left(z_{0}\right)=P(a) \notin \mathcal{D}$, so $z_{0} \notin P^{-1}(\mathcal{D})$, but $\mathcal{C} \subset P^{-1}(\mathcal{D})$, and $z_{0} \notin \mathcal{C}$, and the root z_{0} is simple.

The above proves that $R=\mathbb{C}-\mathcal{D}$. Now, if $0 \in \mathcal{D}$, then $0=P\left(z_{0}\right)$ for a critical point z_{0} of P that is also a root of P. If $0 \notin \mathcal{D}$, then $0 \in R=\mathbb{C}-\mathcal{D}$ and the equation $P(z)-0=0$ has a simple root. In all cases P has a root. \diamond

3. Comment.

The above proof is inspired from a beautiful proof by Daniel Litt [1]. He works in the global space of monic polynomials of degree $n \geq 1$ (biholomorphic to \mathbb{C}^{n}), and removes the algebraic locus \mathcal{D}_{n}, defined by the discriminant, of polynomials with a double root. He uses that the complement of an algebraic variety in \mathbb{C}^{n} is connected. Essentially the proof above achieves the same goal in a more elementary way working with $n=1$. In particular, we only need the simpler fact that the complement of a finite set in the plane is connected (which for $n=1$ is the same as the connectedness of the complement of an algebraic variety in \mathbb{C}^{n}). We also avoid the use of discriminants.

Acknowledgment. I am grateful to my friends Marie-Claude Arnaud, Kingshook Biswas, Alain Chenciner and Yann Levagnini for their comments and suggestions to improve the presentation. In particular, to Kingshook that proposed a simplification of a first draft.

References

[1] LITT, D.; Yet another proof of the Fundamental Theorem of Algebra, Manuscript, 2011.
(www.daniellitt.com/blog/2016/10/6/a-minimal-proof-of-the-fundamental-theorem-of-algebra)

CNRS, IMJ-PRG, Unversité de Paris, Boîte courrier 7012, 75005 Paris Cedex 13, France
Email address: ricardo.perez.marco@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30C15, 12D10.
 Key words and phrases. Roots, complex polynomials, fundamental theorem of algebra.

