A simple proof of the Fundamental Theorem of Algebra
 Ricardo Pérez-Marco

To cite this version:

Ricardo Pérez-Marco. A simple proof of the Fundamental Theorem of Algebra. Revista de la Fcultad de Ciencias de la Universidad NAcional de Colombia, 2021. hal-03109761v2

HAL Id: hal-03109761 https://hal.science/hal-03109761v2

Submitted on 15 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A SIMPLE PROOF OF THE FUNDAMENTAL THEOREM OF ALGEBRA

RICARDO PÉREZ-MARCO

Abstract

We present a simple short proof of the Fundamental Theorem of Algebra, without complex analysis and with a minimal use of topology.

1. Statement.

Theorem 1.1. A non constant polynomial $P(z) \in \mathbb{C}[z]$ with complex coefficients has a root.
The proof is based only on the following elementary facts:

- A polynomial has at most a finite number of roots.
- The Implicit Function Theorem.
- Removing from \mathbb{C} a finite number of points leaves an open connected space.

2. The proof.

It is enough to consider a monic polynomial P. We denote by $\mathcal{C}=\left(P^{\prime}\right)^{-1}(0)$ the finite set of critical points of P, and by $\mathcal{D}=P(\mathcal{C})$ the finite set of critical values of P.

- Let $R=\{c \in \mathbb{C}$; the polynomial $P(z)-c$ has at least a simple root and no double roots $\}$.
- $R \subset \mathbb{C}-\mathcal{D}$. This is because if $c \in \mathcal{D}$, then $c=P\left(z_{0}\right)$ for some critical point $z_{0} \in \mathcal{C}$, hence $P^{\prime}\left(z_{0}\right)=0$ and $P(z)-c=0$ has a double root at z_{0}. Note that $\mathbb{C}-\mathcal{D}$ is open and connected $(\mathcal{D}$ being finite).
- R is open. This is an application of the Implicit Function Theorem. Let $c_{0} \in R \subset \mathbb{C}-\mathcal{D}$, and $z_{0} \in \mathbb{C}$ be a root of $P(z)-c_{0}$. We apply the Implicit Function Theorem to the equation $F(z, c)=P(z)-c=0$. Since $\frac{\partial F}{\partial z}\left(z_{0}, c_{0}\right)=P^{\prime}\left(z_{0}\right) \neq 0$, there is a neighborhood U of c_{0} such that for $c \in U$ we have a root $z(c)$ of $P(z)-c$. Taking U small enough, by continuity of P^{\prime} and $c \mapsto z(c)$, we have $P^{\prime}(z(c)) \neq 0$ and the root $z(c)$ is simple. Since $\mathbb{C}-\mathcal{D}$ is open we can take $U \subset \mathbb{C}-\mathcal{D}$ and $P(z)-c$ does not have any double root, thus $U \subset R$.
- R is closed in $\mathbb{C}-\mathcal{D}$. Because P is monic, if c is uniformly bounded then any root of $P(z)-c$ is uniformly bounded (since $P(z) / z^{n} \rightarrow 1$ uniformly when $z \rightarrow \infty$, if n is the degree). We can take a subsequence of $c_{n} \rightarrow c_{\infty} \in \mathbb{C}-\mathcal{D}$ and a converging subsequence of roots of $P(z)-c_{n}$. By continuity, the limit is a root of $P(z)-c_{\infty}$, so this polynomial has roots. Moreover, all roots of $P(z)-c_{\infty}$ are simple since $c_{\infty} \in \mathbb{C}-\mathcal{D}$.

[^0]- R is non-empty. For any $a \in \mathbb{C}$ we have that for $c=P(a), P(z)-c$ has at least $z=a$ as root. If we choose $a \in \mathbb{C}-P^{-1}(\mathcal{D})$, then for any root z_{0} of $P(z)-c$ with $c=P(a)$, we have $P\left(z_{0}\right)=P(a) \notin \mathcal{D}$, so $z_{0} \notin P^{-1}(\mathcal{D})$, but $\mathcal{C} \subset P^{-1}(\mathcal{D})$, and $z_{0} \notin \mathcal{C}$, and the root z_{0} is simple.

The above proves that $R=\mathbb{C}-\mathcal{D}$. Now, if $0 \in \mathcal{D}$, then $0=P\left(z_{0}\right)$ for a critical point z_{0} of P that is also a root of P. If $0 \notin \mathcal{D}$, then $0 \in R=\mathbb{C}-\mathcal{D}$ and the equation $P(z)-0=0$ has a simple root. In all cases P has a root. \diamond

3. Comment.

The above proof is inspired from a beautiful proof by Daniel Litt [1]. He works in the global space of monic polynomials of degree $n \geq 1$ (biholomorphic to \mathbb{C}^{n}), and removes the algebraic locus \mathcal{D}_{n}, defined by the discriminant, of polynomials with a double root. He uses that the complement of an algebraic variety in \mathbb{C}^{n} is connected. Essentially the proof above achieves the same goal in a more elementary way working with $n=1$. In particular, we only need the simpler fact that the complement of a finite set in the plane is connected (which for $n=1$ is the same as the connectedness of the complement of an algebraic variety in \mathbb{C}^{n}). We also avoid the use of discriminants.

Acknowledgment. I am grateful to my friends Marie-Claude Arnaud, Kingshook Biswas, Alain Chenciner and Yann Levagnini for their comments and suggestions to improve the presentation. In particular, to Kingshook that proposed a simplification of a first draft.

References

[1] LITT, D.; Yet another proof of the Fundamental Theorem of Algebra, Manuscript, 2011.
(www.daniellitt.com/blog/2016/10/6/a-minimal-proof-of-the-fundamental-theorem-of-algebra)

CNRS, IMJ-PRG, Unversité de Paris, Boîte courrier 7012, 75005 Paris Cedex 13, France
Email address: ricardo.perez.marco@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30C15, 12D10.
 Key words and phrases. Roots, complex polynomials, fundamental theorem of algebra.

