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A SIMPLE PROOF OF THE FUNDAMENTAL THEOREM OF ALGEBRA

RICARDO PÉREZ-MARCO

Abstract. We present a simple short proof of the Fundamental Theorem of Algebra, without
complex analysis and with a minimal use of topology.

1. Statement.

Theorem 1.1. A non constant polynomial P (z) ∈ C[z] with complex coefficients has a root.

The proof is based only on the following elementary facts:

• A polynomial has at most a finite number of roots.

• The Implicit Function Theorem.

• Removing from C a finite number of points leaves an open connected space.

2. The proof.

It is enough to consider a monic polynomial P . We denote by C = (P ′)−1(0) the finite set of
critical points of P , and by D = P (C) the finite set of critical values of P .

• Let R = {c ∈ C; the polynomial P (z)− c has at least a simple root and no double roots}.

• R ⊂ C − D. This is because if c ∈ D, then c = P (z0) for some critical point z0 ∈ C, hence
P ′(z0) = 0 and P (z) − c = 0 has a double root at z0. Note that C − D is open and connected (D
being finite).

• R is open. This is an application of the Implicit Function Theorem. Let c0 ∈ R ⊂ C − D,
and z0 ∈ C be a root of P (z) − c0. We apply the Implicit Function Theorem to the equation
F (z, c) = P (z)− c = 0. Since ∂F

∂z
(z0, c0) = P ′(z0) 6= 0, there is a neighborhood U of c0 such that for

c ∈ U we have a root z(c) of P (z) − c. Taking U small enough, by continuity of P ′ and c 7→ z(c),
we have P ′(z(c)) 6= 0 and the root z(c) is simple. Since C−D is open we can take U ⊂ C−D and
P (z)− c does not have any double root, thus U ⊂ R.

• R is closed in C−D. Because P is monic, if c is uniformly bounded then any root of P (z)− c is
uniformly bounded (since P (z)/zn → 1 uniformly when z → ∞, if n is the degree). We can take a
subsequence of cn → c∞ ∈ C−D and a converging subsequence of roots of P (z)−cn. By continuity,
the limit is a root of P (z)− c∞, so this polynomial has roots. Moreover, all roots of P (z)− c∞ are
simple since c∞ ∈ C−D.
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• R is non-empty. For any a ∈ C we have that for c = P (a), P (z) − c has at least z = a as
root. If we choose a ∈ C − P−1(D), then for any root z0 of P (z) − c with c = P (a), we have
P (z0) = P (a) /∈ D, so z0 /∈ P−1(D), but C ⊂ P−1(D), and z0 /∈ C, and the root z0 is simple.

The above proves that R = C − D. Now, if 0 ∈ D, then 0 = P (z0) for a critical point z0 of P
that is also a root of P . If 0 /∈ D, then 0 ∈ R = C− D and the equation P (z)− 0 = 0 has a simple
root. In all cases P has a root. ⋄

3. Comment.

The above proof is inspired from a beautiful proof by Daniel Litt [1]. He works in the global
space of monic polynomials of degree n ≥ 1 (biholomorphic to Cn), and removes the algebraic locus
Dn, defined by the discriminant, of polynomials with a double root. He uses that the complement
of an algebraic variety in Cn is connected. Essentially the proof above achieves the same goal in
a more elementary way working with n = 1. In particular, we only need the simpler fact that the
complement of a finite set in the plane is connected (which for n = 1 is the same as the connectedness
of the complement of an algebraic variety in C

n). We also avoid the use of discriminants.
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