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ABSTRACT

As the internet and connected objects gain more and more in popularity, serving the ever-increasing
data traffic becomes a challenge for the mobile operators. The traditional cellular radio access network
(RAN), where each base station is co-located with its own processing unit and is responsible for a spe-
cific geographic area, has evolved first with the so-called Cloud RAN (C-RAN), and is currently un-
dergoing further architectural evolution under the virtualized RAN (VRAN), Software-Defined RAN
(SD-RAN), and Open RAN (O-RAN) architectures. In all these versions, the data processing units
can be dynamically centralized into a pool and shared between several base stations, enlarging the
geographical view for scheduling and resource allocation algorithms. For instance, resource utilisa-
tion is improved by avoiding resource idling during off-peak hours. C-RAN and vRAN gains depend
strongly on the clustering scheme of radio units (RRHs and RUs). In this paper, we propose a novel
radio clustering algorithm that takes into account both the traffic demand and the position of stations,
by using the hyperbolic distance in 3-dimensions. We introduce a modified K-means clustering algo-
rithm, called Hyperbolic K-means, and show that this generates geographically compact RU clusters
with traffic charge equally shared among them. Application of our algorithm on real-world mobile data
traffic, collected from the cities of Nantes and Lille in France, shows an increase in resource utilisation
by 25%, and a reduction in deployment cost by 15%, compared to the standard RAN. Furthermore,
the performance of our Hyperbolic K-means algorithm is compared extensively against alternative C-
RAN clustering proposals from the literature and is shown to outperform them, in resource utilisation

as well as in cost reduction.

1. Introduction

With the rapid growth in consumer electronics, boosted by
the Internet-of-Things, more and more wireless products are
entering the market adding to the total number of devices
accessing mobile networks. According to Cisco 2017 [10],
the share of smart devices and connections from the total of
connected objects will increase from 53% in 2017 to 73% by
2022. Furthermore, new services emerge related to Internet-
of-Vehicles, remote control, and video monitoring [9], which
are expected to generate intensive demand for network edge-
computing resources. Satisfying such increase in traffic is a
big challenge for mobile operators; a naive installation of
more base stations or addition of more data processing units
to existing sites, has high deployment and energy expenses,
without guaranteed service improvement or revenue increase
for the mobile operators.

As an alternative solution for low cost, and low energy-
consumption, around 2010 the Cloud Radio Access Network
(C-RAN) architecture was conceived by IBM [20] and de-
veloped by the China Mobile Research Institute [8], later
adopted also by other operators. This concept is currently
enlarged to accommodate various other possible configura-
tions with the so-called virtualized RAN (VRAN) and open
RAN (O-RAN), which offers flexibility in functional split-
ting for 5G architectures. [13], [22], [11].

While in the traditional RAN, illustrated in Fig. 1a, each
site has its own Remote Radio Head (RRH) and Base-Band
Unit (BBU), in the C-RAN architecture base stations (BS)

*Equal contributions from both authors.

host only RRHs whereas the BBUs are centralized in a pool
allowing resources to be dynamically allocated to the RRH
cluster [5], [16] see Fig. 1b. By removing BBUs from cell
sites, operating expenses as well as energy consumption can
be reduced, while providing the same coverage and a better
quality of service [28], [3].

To allow for more flexibility in the resource allocation
of the BBUs, the virtualised-RAN (VRAN) was introduced
[26], [29]. Inspired by Network Function Virtualisation (NFV)
it allows to run the baseband unit controls as software on
generic hardware platforms. This way resource allocation
and load balancing can be adapted on demand by software
updates, without having to replace hardware throughout the
entire infrastructure. C-RAN and VRAN architectures are
not alternative ones. Even if C-RAN was deployed earlier, a
VvRAN infrastructure is broader in scope in the sense that it
encompasses the softwarization of a number of RAN func-
tions, and not only the BBU function. In this scope, C-RAN
is viewed as one application running on top of a vVRAN/SD-
RAN infrastructure.

Current VRAN systems are split into three parts [26],
[27], [29]: the Radio Units (RU) are geographically scat-
tered to achieve coverage; these are connected to Distributed
Units (DU), where some layer-1 and layer-2 functions can
be performed; the latter are in turn connected to Centralized
Units (CU) where base-band operations can be run, along
with other RAN orchestration and Mobile-Edge Computing
subsystems [4], [13], see Fig. 1c. The C-RAN system can
be seen as a special case or just an application of a VRAN,
where vBBUs are hosted at CUs, and RRH correspond to the
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Figure 1: lllustration of the traditional RAN architecture and comparison with C-RAN and vRAN.

RU and DU combined. Generally, RU and DU are expected
to be collocated or geographically be very close to each other
in practice, and transport links provide connections between
the DUs and the CU hosting the BBU assigned to the RU-DU
subsystem. In 5G and beyond 5G systems, it is envisioned
that CU, BBU and MEC servers can be co-located at differ-
ent edge network sites, typically the so-called Central Office
(CO), legacy network points-of-presence being rearchitected
nowadays as mini-datacenters [4]. Usually, the distance be-
tween an RRH and its BBU-pool (resp. DU and CU) can
reach several kilometers and fiber lines are used for reliable
high bandwidth data transfer.

In the following, we will mostly focus on the C-RAN
application but the algorithm we propose can be adapted to
vRAN/MEC as well, where base stations are clustered at the
CU level. We will use the abbreviation RU to refer to both
RRH (for C-RAN) and RUs (for vVRAN).

Aggregating resources to a pool level allows them to be
managed more efficiently and optimize their utilisation. Each
BBU pool is in charge of several RUs, hence the installed
capacity of the pool should be enough to serve the maximal
ensemble traffic generated/received by these RUs, and the
total capacity can be further shared among them according
to their real-time demand. Performance is optimal when the
BBU-pool utilisation is as flat as possible through the day,
with a peak-to-average ratio close to one. To achieve this,
clustering based on the traffic pattern of the stations (RUs)
can be exploited. In fact, grouping RUs with complemen-
tary traffic patterns to the same BBU-pool can reduce the to-
tal capacity necessary to support the aggregate traffic of the

cluster and maximize its utilisation over different periods of
the day [7].

A meaningful clustering scheme should then (i) reduce
the overall processing (BBU) capacity necessary and maxi-
mize its utilisation. (ii) The load should be fairly balanced
among clusters. The scheme should also (iii) keep a limit
on the optical fiber distance between the BBU-pool and its
assigned RUs in order to respect delay and propagation con-
straints. Furthermore, (iv) the clusters should be geograph-
ically as compact as possible, with neighbouring RUs as-
signed to the same cluster, in order to avoid frequent hand-
overs between clusters when users are mobile.

In this paper, we propose a BBU-RUs clustering solu-
tion that offers improved capacity utilization and reduced
deployment cost, while respecting geographic requirements
and load fairness among clusters. Our starting point is the
standard K-means algorithm, but we introduce a non-trivial
modification of the distance metric. The proposed modifica-
tion involves the distance of the Poincaré half-plane model
in 3-dimensions (“hyperbolic H3”’), which allows us to ap-
propriately combine the different natures of traffic and po-
sitional features. This approach was motivated by recent
advances in complex networks [23] and data science [19],
which show that embedding complex data into hyperbolic
spaces is very advantageous for problems of clustering and
community detection [14]. Our method, being center-based,
groups RUs around a fictional center (so-called “centroid’)
which determines the average charge of the cluster. The goal
is to end up with a fair clustering scheme, which satisfies the
above design requirements (i)-(iv). The solution is done per
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Figure 2: (a) Data traffic patterns of two RUs in Lille from 2019-03-19 (09:00) to 2019-03-19 (15:40) showing their traffic peak

hour and volume. (b) Their aggregated traffic.

time-slot (e.g. hour), and is extended by proposing a robust
clustering over multiple consecutive time-slots.

The paper is structured as follows: We first state the gen-
eral BBU-RU clustering problem for the C-RAN architec-
ture, and discuss standard C-RAN clustering performance
metrics, in Section 2. We then present existing clustering
methods from the literature in Section 3. In Section 4 we in-
troduce our clustering solution based on the hyperbolic H3
distance and explain how it leads to the desired properties
for the formed clusters; we also include its robust extension
over multiple time-slots. In Section 5 we evaluate our al-
gorithm using real data from Orange mobile France for two
cities (Nantes, Lille) and compare its performance with ex-
isting approaches. Finally, Section 6 concludes our work.

2. Problem statement

In traditional RANS, each base station should be equipped
with enough processing capacity in order to meet traffic de-
mand at all times for the coverage area it is assigned to. How-
ever, since the traffic demand varies over different periods
of the day, the processing capacity of base stations is not al-
ways used to its fullest [7]. Moreover, different areas have
different traffic patterns, for example business districts can
have maximal charge during morning and afternoon hours in
week days, while residential areas witness their rush hours
during evenings and weekends. This means a certain BS can
be overcharged during its peak hour while another BS in a
different area can have minimal traffic at the same time, as
shown in the example of Fig. 2a. In such scenarios, which
occur very often in practice, the capacity of the low-charged
BS is idling, whereas it could support traffic service for the
overcharged one [7].

C-RAN and vRAN architectures group BSs together and
allow them to cooperate by sharing common resources. In
the example of Fig. 2a if the two BSs are mapped to the same
BBU pool, their traffic is aggregated as shown in Fig. 2b,
hence the capacity needed to serve both BSs simultaneously
should at most cover the peak of their aggregated traffic (equal
to 5.56 GB), which is smaller than the sum of their indi-

vidual peak traffic (equal to 3.754+2.67= 642 GB). As a
consequence, less processing units are necessary to be in-
stalled for the service of the group of these two BSs. What
is more, during off-peak hours the pool resources are more
intensively utilised, and do not idle.

The objective in this paper is to propose clustering (BS
grouping) schemes that minimize the BBU resources neces-
sary to meet the traffic demand, under some distance limita-
tions. These limitations have to do with the propagation time
between RU and BBU, so that clustering very distant RUs to
the same BBU-pool is not recommended due to unaccept-
able delays. Hence, the solution of a fully centralised cloud
architecture with all RUs in a city served by the same BBU-
pool need not be optimal or eaven feasible, and we need to
search for a semi-centralised solution that determines how
many clusters should be optimally introduced per area (city),
and which are their RU members.

To further elaborate on the appropriate number of clus-
ters in a city, note here that the C-RAN (resp. VRAN) im-
plementation is very flexible and can vary depending on the
needs: there is the option to consider each macro-cell as
a cluster center and include several add-on cells, or aggre-
gate pairs of macro-cells together for smooth handover and
load balancing [18]; the authors in [25] suggest that a typical
macro-cell can support up to 15 RUs; an extreme solution is
to aggregate all RUs to a unique BBU pool, most suitable for
small towns [13]; other authors [29] try to find the optimal
number of DUs or CUs from the solution of an optimisation
problem. In any case, the total Round-Trip-Time (RTT) from
RU to BBU limits the size and diameter of clusters. The typ-
ical RTT budget is 3msec due to Hybrid-ARQ delay require-
ments [2], [29]. This delay budget includes the processing
time as well as fronthaul transmission delay between RU and
BBU. In an optical fiber network, it corresponds to approxi-
mately 20km fronthaul length. But for time-critical ultra Re-
liable Low Latency Communication (uRLLC) applications,
which are expected to be supported in 5G and future cellular
networks, the end-to-end delay requiremfgent is limited to
Imsec, [29], [24]. Such tight delays can only be guaranteed
by shortening the distance between RUs and the BBU pool
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Table 1
Table of Notations and Variables

Variable  Description [ [ Variable  Description

P Partition m Centroid

C Cluster (x,y,w) Coordinates of a centroid

K Number of clusters with index k (%,7,10)  normalised coordinates

T Number of time-slots with index ¢ c Threshold for DCCA (km)

N Number of BSs with index n T, Number of iterations in Algo. 2
E2 Euclidean 2D distance (m or km) Tyt Number of repetitions of Algo. 2
E3 Euclidean 3D distance y Scaling parameter in H3

H3 Hyperbolic distance U Average-to-Peak Traffic Ratio

@ A set of centroids Diam Cluster Diameter (m)

(x,) Geographical coordinates of a BS Var Within-cluster variance

z Traffic dimension of a BS (Bytes) Util Utilization for a partition P

w Available resources of a BS (Bytes) || Cost Cost for a partition P

VA Aggregated traffic per cluster w Aggregated resources per cluster

considerably. Hence, the appropriate number of clusters is a
function of delay limitations and the city size; it further de-
pends on the mix of supported services, as well as the fron-
thaul and midhaul link capacity. It is also worth mentioning
that, in a forthcoming SD-RAN framework, the availability
of virtualization facilities at central-offices independently of
the C-RAN needs is expected to favor decentralization of
BBUs. Our work here presents a general method to cluster
RUs together, for any given number of clusters K > 1, but
we do not explicitly provide a rule on how to choose this
number. We rather show how metrics such as utilisation,
cost, aggregated traffic per cluster and cluster diameter vary
as a function of selected K.

To evaluate the quality of our proposed clustering solu-
tion, and compare it with existing ones, we will mainly use
two performance metrics, already introduced in [7]. We use
these because they elegantly quantify C-RAN clustering per-
formance, and also in order to have coherence and a common
vocabulary for the performance comparisons between vari-
ous schemes. We will show that the clustering scheme pro-
posed in this paper outperforms existing schemes, as evalu-
ated from the metrics that follow. The main notation used
throughout the paper is summarised in Table 1.

2.1. Notation and Evaluation Metrics

Let z(n,t) be the traffic of station »n at time-slot ¢ for
n=1,.,Nandt = 1,.., T, where N is the total number
of stations in an area (city) and T is the number of time-
slots. Here, we will use as time-slot duration 1 hour, but
other choice is possible depending on the available data. Re-
quested traffic per station is normalised to 1, so that the re-
quest per slot refers to the percentage of installed processing
capacity utilised to satisfy traffic demand. We assume that
all individual stations have the same amount of pre-installed
processing capacity, so that z(n)’s are comparable. After
normalisation, we introduce a transformation of the traffic
demand, called the remaining (or available) resources per
station n and time-slot ¢. This is equal to

wn,t) = 1-2z(n,1). (1)

It quantifies the percentage of resources remaining idle per
station per time-slot, and will be used in the proposed clus-
tering algorithm.

Consider a partition P = {Cl, ey CK} of the set of N
stations into K € Z, clusters. Denote by Z(C,1) the ag-
gregated traffic at time ¢ of the stations grouped in cluster C,
ie.,

zC.n = ) zmni. )
neC

In the degenerate case of a cluster with a single station it
holds, Z({n},t) = z(n,t). Similarly, the aggregate remain-
ing resources are defined as W (C, 1) = card(C) — Z(C, 1),

where card(C) is the number of RUs forming the cluster.

Average-to-Peak Traffic Ratio (AtPTR) for cluster C. This
is a measure of capacity utilisation per cluster. Itis defined as
the ratio of the average aggregate traffic request (i.e. average
capacity used) at the BSs of the cluster for several time-slots,
over the peak aggregate traffic,

2 XL, Z(C.1)
_. 3)
max, Z(C,t)

Obviously, U(C) € (0,1]. When U(C) is close to 1 the
cluster makes good use of the pool resources over time, and
resource idling is low. The AtPTR measure can be defined
for just one station, i.e. C = {n}, in which case U(n) =

% ZL z(n, 1)/ max, z(n, t).

Uui)=

Metric I: Utilization for partition P. It is a measure of
the improvement of the average AtPTR (i.e. capacity uti-
lization per cluster) due to the partition P, compared to the
average AtPTR over all single base stations in a traditional
simple RAN,

1 vK

K Ekzl U(Ck)
N Zit U
It holds Util(P) > 1. The equality holds when K = N, i.e.

one cluster per BS. When traffic from several BSs in a clus-
ter is aggregated, the pool resources are better utilized and

Util(P) = )
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the metric increases. The Util(P) is maximum for K = 1.

Metric II: Cost for partition P. Itis a measure of the de-
crease in total installed BBU-pool resources in the clustered
C-RAN, compared to the total BBU resources installed in
individual base stations (simple RAN).

YK max, Z(Cy,1)

N b
Yo, max, z(n,1)

Cost(P) = 5)

where the maximum is taken over all time-slotst =1, ..., T.
It holds Cost(P) < 1. The equality holds again here when
K = N. The Cost(P) is minimum when K = 1.

The two performance metrics for a clustering P quantify
two different things. Metric I measures how much the util-
isation of installed resources is improved by clustering P,
whereas metric II measures the economies in installed re-
sources due to clustering P, compared to the simple RAN
standard scenario. Both are optimal for K = 1. However,
due to distance limitations, the solution to create a single
global pool per city is not feasible.

3. Clustering methods in the literature

3.1. Linear Programming

Many research works in the literature try to formulate and
solve the clustering problem as a Mixed Integer Linear Pro-
gram (MILP), see [13], [26], [11], [29]. Although this ap-
proach is definitely valid, these problems are NP-hard, so
high complexity issues arise when the number of stations
is city-wide large, and especially when considering multi-
period scheduling. Since it is computationally expensive to
solve them to optimality, certain authors propose heuristic
solutions without giving implementation details, or optimal-
ity guarantees. Another issue is that most of these algo-
rithms make arbitrary assumptions about the input parameter
values and costs that will determine the clustering solution.
The later can strongly be affected by small imprecisions or
change over time in the measurement (sensitivity of the so-
lution). Finally, an important weak point is that the objective
is maximised with binary (0-1) association and routing vari-
ables, that decide on which BBU-pool (or CU) to associate
each RU with, without taking into account the relative geo-
graphic positions of the stations, and the potential interfer-
ence these may introduce (or avoid) because of the specific
partition as solution.

More specifically, the work in [26] formulates a vari-
ation of the 1D bin-packing problem with numerous addi-
tional realistic restrictions, in order to find the optimal num-
ber of DU and the appropriate associations. This is an NP-
hard problem and the authors resort to heuristic methods for
its solution without any optimality guarantees. Their prob-
lem is formed based on several given input parameters re-
lated to capacity, bandwidth and traffic load, so the solution
will vary considerably depending on how these parameters
change over time. In [13] the authors consider a single-CU
architecture and form an MILP with MEC/network function

placement and routing variables. This is also an NP-hard
problem as shown by reduction from the multi-dimensional
multiple-choice Knapsack problem. To solve it efficiently
the authors propose a decomposition using Benders’ decom-
position. The solution is computationally very demanding
(NP-hard), especially for large instances with reasonable re-
quired precision. The work in [11] is an MILP network slice
design and function placement problem, which is also NP-
hard. The authors solve an instance using a commercial inte-
ger solver. Similarly, the authors in [29] minimise the active
number of central offices (COs) housing DUs and CUs. They
form an MILP with bandwidth, latency and processing re-
quirements that are included in the constraints. The NP-hard
problem in the evaluation is solved by a commercial integer
solver for some given set of values for the parameters.

3.2. K-means clustering

An appropriate method that involves the 2D-geometry and
relative positions is by using data analysis. K-means is one of
the most standard clustering algorithms, which can be used
to partition the set of BSs of the city into K disjoint clus-
ters. Each BS is associated to a unique cluster, resulting in a
partition P that respects the following properties [17]:

1. Uszl C, = {I,..,N}, ie. the union of clusters in-

cludes all present BSs, where C;,C,, ..., Cg are the
K clusters.

2. C,NCy =@ forall k # k', i.e. clusters are disjoint
sets.

K-means clustering is designed to minimize the within-cluster
variance by regrouping the most similar BSs in the same
cluster. In this case similarity is relevant to the 2D-distance

K
min Var(Cy), 6)
C,.Cy...Cx /; k

with Var(C,) the within-cluster variance of the cluster k,

— 3 dimy). ™

Var(C,)

k card(Cy) &

The m, is the centroid of the cluster k, and in euclidean space

it is the point having as coordinates the average values of all
RUs in the cluster. In 2D it is defined as m; = (X, y)-

The d?(i, j) is the square of the distance between sta-

tion i and the cluster centroid my. If we assume that the

RUs are embedded on the 2D euclidean space, the distance

dpa (X i X, y)) = \/(xj - x;)? + (¥; — y;)* can be used,
which makes a lot of sense in the C-RAN and VRAN prob-
lem, where base stations are positioned on the 2D plane; it
can be favorable to group stations together that are closer
to each other, thus avoiding inter-clustering hand-overs and
bringing all RUs closer to the BBU-pool, positioned at the
cluster centroid. Note, however, that this approach makes
use only of the two geographical coordinates (x,, y,) per BS
n=1,...,N, and does not include the traffic demand fea-
ture.
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A naive extension to the 3D, is to include all dimensions
(x, y, z), (or (x, y, w) for the resources), where the variables
z and w refer to a specific time-slot . As we will show later,
the euclidean 3D distance (E3) is not the best choice, be-
cause the clusters formed do not exhibit the desired prop-
erties. The pseudo-algorithm for 2D euclidean K-means is
described as follows (it extends to 3D or higher dimensions
in a straightforward way):

Algorithm 1: Euclidean K-means Clustering in 2D

1. Initialise: Fix a number K of clusters and randomly
assign each RU to one of the K clusters.
2. Iterate until the cluster assignments stop changing:
(a) Compute the centroid of each cluster. The kth
cluster centroid is the m; = (X, y) average po-
sition of the RUs in the kth cluster.
(b) Assign each BS to the cluster whose centroid is
closest according to the 2D-Euclidean distance.

3.3. Distance-Constrained Clustering Algorithm

The authors in [6] and [7] propose the Distance-Constrained
Clustering Algorithm (DCCA) for RU clustering. This algo-
rithm takes into consideration not only the position, but also
the traffic-demand and its temporal evolution through the
day, while respecting some distance constraint. The method
introduces an entropy-based weight to evaluate the comple-
mentarity of traffic between pairs of RUs over a determined
time-interval. RUs are placed as nodes of a weighted-graph,
whose edges can exist or not and allow clusters to form. Each
link has a binary activation variable controlled by the algo-
rithm; when this becomes 1, an edge appears between the
two RUs, which can now share their resources and belong
to the same cluster. The authors further introduce a distance
constraint, so that only RUs within some distance from each
other are allowed to collaborate.

Although this approach sets the problem in a correct frame-

work, it is sub-optimal because the complementarity of a
large group of RUs is calculated as the sum of complemen-
tarities between pairs of these RUs. This is of course not
correct: in a scenario of three stations, both RU, and RU;
may have large traffic demand, which renders them comple-
mentary in traffic with RU, which has low charge; but plac-
ing them all three in the same cluster should normally be
avoided, because RU, and RUj; are not mutually comple-
mentary. The pairwise comparison is thus suboptimal, and
other approaches which consider the joint-complementarity
for the whole set of RUs in a cluster should be investigated.

4. Hyperbolic K-means

In this section our novel suggestion for RAN clustering
is introduced.

4.1. Traffic-aware RU clusters

The main challenge is how to incorporate the traffic de-
mand inside the clustering algorithm, additionally to the po-
sitional features. To achieve this, we first present three Qual-
itative criteria that should be satisfied by any traffic-aware
clustering:

Q.1 When two RUs have complementary traffic (or remain-
ing resources), i.e, one has high traffic load (resp. low
resources) and the other low traffic load (resp. high
resources), they should be grouped together, in order
to cooperate, within certain geographical limitation of
distance.

Q.2 When two base stations both have low traffic volume
(resp. high resources), it is irrelevant whether they co-
operate or not, because of low benefit.

Q.3 When two base stations both have high traffic volume
(resp. low resources), their cooperation leads to no ben-
efit and they should not be clustered together. Ideally,
highly loaded stations should be distributed evenly among
several clusters.

We saw in Section 3.2 that the K-means approach for 2D
has the advantage to summarise well the information from
all members of the cluster at its centroid. Furthermore, the
method generates clusters that are compact, thus avoiding to
include RUs that spread over large distances from the cen-
troid of each cluster. It has two drawbacks, however: the
vanilla K-means in 2D does not include the traffic dimen-
sion; it also generates one partition per time-slot, hence does
not easily generalise to longer time-intervals.

A naive way to incorporate the resource dimension w
(or the traffic dimension z) in the K-means, as additional
feature to the position (x, y) of the RU, is to consider the
3D euclidean metric space and its corresponding euclidean
distance. From now on we will use w as the third feature.
The 3D euclidean distance between RU; = (x;, y;, w;) and
RU; = (x;,y;,w;) is

dp3(x;s yis Wi X}, Y, Wj) =
VO = X2+ 0=y = wp? (®)

The above expression can be re-written as

Ay = \J 2 (e vy )+ (0 — )2, ©)

which relates the 3D with the 2D euclidean distance, and the
difference of the remaining resources. This specific choice,
although natural, does not achieve the desired effect, since
it treats the traffic and position in a homogeneous way, al-
though the units and range of geography and traffic are com-
pletely different. The (x, y) is positioned in the real 2D-space
(=00, +00) X (—00, +00)) and the features x, y are measured
in meters, or kilometers, whereas the resource dimension
is in BBU units, so that w € [0, 1] (the BBU capacity is
normalised to 1). Another issue with the choice of 3D eu-
clidean distance, is that two RUs have minimum distance
when w; = w;, i.e. when both stations have the same re-
maining resources, irrespective of whether this quantity is
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high or low. Moreover, given a fixed difference (w; — w d )2,
the square of the 3D-distance is proportional to the square
of the 2D-distance; as a result, RUs in a small geographical
distance from each other are favored to collaborate, whereas
large 2D-distance prohibits any collaboration.

Given the above observations, the 3D euclidean distance
is not the best candidate to apply K-means, when aiming to
achieve a clustering with balanced load (i.e. inter-cluster
complementarity), and we need to look for other candidates,
that treat the traffic dimension in a way different than the RU
position.

4.2. Hyperbolic Distance

An interesting idea is to embed the 3D features of each
RU (x,,, y,, w,) into a hyperbolic space instead, and use the
distance induced by the Poincaré metric. The idea of em-
bedding complex data into hyperbolic space is recent, but
is gaining momentum. It has already been successfully ap-
plied for the analysis of complex networks in [19], as well for
developping new methods to learn symbolic data which ex-
hibit hierarchy and similarity from Facebook’s research team
in [23]. These highly cited works show that for problems of
clustering and community detection, the hyperbolic space is
more appropriate than the Euclidean. Very recently, the au-
thors in [15] have formulated the K-means clustering algo-
rithm in the hyperbolic setting, where they use the Poincaré
ball model [21, Chapter 8.1]. Further contributions include
the introduction of hyperbolic space algorithms for commu-
nity detection [14].

In the majority of the aforementioned methods data is
embedded into the Poincaré ball model, which in 3D is the
manifold B3 = {(x,y,w) € R? : ||(x,y, w)|| < 1}. In our
case, the positional features (x,y) € R? are real numbers,
but the feature of remaining resources is in fact real positive
w € R,. So, we choose to embed the data on the Poincaré
half-plane model instead [21, Chapter 8.2], which in 3D is
the manifold B? = {(x,y) € R%, w € R, . |[x,y,w)|| <
1}, with induced distance between RU; = (x;,y;, w;) and
RU; = (x;,y;, w;)

dH3(xl~,yi, wi7xj7yj7wj) =

d2 (X5, i Wy X, ¥, W)) 10,
2w;w;

arccosh ( 1+

In the above arccosh(s) = In(s + V2 — 1), an increasing
function of the argument s, with domain s € [1, o). Note
that the expression in (10) satisfies the formal properties of
a distance: Take any three points A, B, E € B3. Then the
following properties can be shown to hold,

(a) dy3(A, B) > 0 for A # B (Positivity),

(b) dg3(A, B) =0 & A = B (Identity of indiscernibles),
(c) dys(A, B) = dy3(B, A) (Symmetry), and

(d) dy3(A, B) £ dy3(A, E) + dy;(E, B) (Subadditivity).

Itis clear from (10) that the hyperbolic distance (we refer
to it from now on in short as H 3) is monotone increasing in

d ;. However, the third resource dimension w plays a spe-
cial role as it divides the dg3. As a consequence, when the
absolute available resources w;, w ; are small, their product
is small, and the distance between RU; and RU; is large [12],
[1]. This is important because it generates the tendency to
place RUs with low resources (high load) in separate clusters
(following requirement Q.3 from Section 4.1). Furthermore,
RUs that are distant in the 2D-euclidean sense are perceived
closer through the hyperbolic lens. To understand the prop-
erties of H3, how these compare to E3 and E2, and how they
are more appropriate for our traffic-aware clustering prob-
lem, we refer the reader to Appendix A.

With a bit of calculus, the new distance takes another
interesting form

d[-[g(x,',yi’ Wi, X, Y, W; ;7) =

d2 (X, yi, X, ¥;) w,  Ww; 11
amosh<yu+l<_z+_f> ~ab

2w;w; 2\w;  w;

Now, it is more clear how H 3 incorporates in its expression
both the Euclidean 2D distance (involving the positional pair
(x,y)), as well as the impact of resource imbalance from w;
and w;. The argument of arccosh has two summands. The
firstis described by the 2D-euclidean distance with (x, y) and
the product of the resource feature w, whereas the second de-
pends only on the resource feature w. The second summand
quantifies the resource imbalance between w; and w;. Itis
1 when w; = w; and larger than 1 when ||w; — w;|| > 0.
In fact, it is symmetric regarding an imbalance towards w;
or w;. The hyperbolic distance depends on these two sum-
mands, and trades-off between geographical distance and re-
source imbalance. The issue is however, that 2D-distance
and resources do not have the same units! If the d, is mea-
sured in meters, the geographical distance between two RUs
can be of the order of thousands, and can dominate the sum-
mation. If we use dp, measured in kilometers instead, the
resource balance summand will dominate, thus giving more
emphasis on whether two RUs have the same amount of re-
sources or not. There are a lot of other options, including
yards, feet, centimeters, etc. Although the units depend on
the convention we make, each choice will lead to a different
value of the distance and consequently a different clustering
result.

This is why we introduce a new parameter y > 0 inserted
above. This parameter simply scales the units of distance in
2D, e.g. in meters, centimeters, kilometers, or other. For
y = 1, the expression in (11) is equal to (10). If y = 1
calibrates d, in m?, then we can shift to km* by setting
y = 1075, More generally, y can be left as a tunable param-
eter, because it can impact the value of distance and the final
clustering solution. We investigate its influence in the eval-
uation Section 5. Since there are so many options, we can
eventually choose an appropriate y value that maximises our
metrics.
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4.3. Hyperbolic K-means algorithm for RU
clustering

We are now ready to incorporate the H 3 distance for K-
means clustering in C-RAN. As observed in Fig. 15, the 3D-
hyperbolic distance (and also the euclidean) between two
points (x;, y;, w;) and (x;, y;, w;) is minimal when the re-
source ratio p = 1, meaning that the resources are balanced
w; = w;. This property can be exploited for clustering, by
introducing the centroid of each cluster C,. Let us define
the centroid m; = (X, ., ;) coordinates, again as the av-
erages

- - - 1
(Xpe» Vi W) MZ(xj’yj’wj)' (12)

J€C,

In every update loop, each RU,, n = 1,..., N will be as-
sociated to the cluster with minimum hyperbolic distance
dg;3(n, my) between the specific RU,, and the centroid. Ig-
noring for a moment the effect of the positional pair dimen-
sions (x, y) (the 2D-euclidean distance), such rule will try
to associate stations to clusters in a way that changes as lit-
tle as possible the average available resources w, . A further
consequence is that the resulting clusters will have balanced
average traffic in a fair way (see Example below).

In this case, the within-cluster variance of a given cluster
C, having as centroid m; (X, ¥, ;) is defined as follows

1 2 .
fouss + e T

and the global distortion is the sum of variances over all clus-
ters

K
Vis(P) = Y Varys(Cp). (14)
k=1

Algorithm 2: Hyperbolic K-means Clustering in 3D

1. Initialise: Fix anumber K of clusters. Set the iteration
counter 7;, = 0 and chose randomly the initial cluster
centroids (X, (0), ¥,(0), w,(0)). Also, fix the tolerated
distortion error € > 0.

2. Assign each RU to the cluster whose centroid is the
closest according to the hyperbolic distance H3. The

resulting initial partition is P(0) = {Cl ©,..., CK(O)}.

3. Calculate the initial global distortion V5(P(0)).
4. Repeat:
(a) Update 7;, « 7;, + 1.

(b) Calculate the new centroid of each cluster by (12).

(c) Assigneach observation to the cluster whose cen-
troid is closest according to the distance H 3, to
derive the new partition P(z;,).

(d) Calculate the new global distortion Vi5(P(7;,)).

Until the difference between the global distortions of
two consecutive iterations is less than € :

Vi3 (P(zi,) = Vis(P(z;, — D) <€

Implementation: In Step 1 (initialisation), it is practi-
cally better to place the K initial centroids at the positions
of K RUs randomly among the present N RUs. This choice
aims to guarantee that no cluster will start empty, and in
practice leads to K non-empty clusters after convergence.
Since the centroids are initialised randomly, and since the
K-means algorithm is known not to converge to a global op-
timum, we repeat the above Algorithm several times (use a
counter 7,,,) and then we pick the solution with maximum

out
performance, among the 7, available ones.

Example: To see how the hyperbolic K-means works, with
the resulting fairness among clusters, we make a thought ex-
periment. Suppose RU; = (=6,0,aw), RU, = (0,0, w)
and RU; = (+6, 0, w/a) are co-linear on the x-axis, as their
coordinates indicate. Let @ > 0 in general. The RU, has
the same 2D-euclidean distance 6 from both RU| and RU;.
Suppose we want to find K = 2 clusters. Will RU, be clus-
tered with RU; or with RU3?

The cluster centroids are initialised as m; = RU; and
my = RU;. The association of RU, is with RU| if
d3(RU,, RU)) < dg;(RU,, RU;). Using the expression
from (11) with y = 1, we see that this inequality is valid
whena > 1. So, whena > 1, the clustering C; = {RU], RUZ}
and C, = {RU3} will update the centroid coordinates as
m’1 = (-6/2,0,w(l + a)/2) and m’2 = (46,0, w/a). As
a result, the difference of average resources between cluster
C, and C, equals to Aw = ||w(l + a)/2 — w/a|| is smaller
(more fair) compared to the situation when the RU, would
be clustered with RUj3, in which case Aw = ||wa — w(l +
1/a)/2|] > Aw.

The association will not change after the update of cen-
troids, because for @ > 1 it can be verified that it still holds
dy3(RUy, m)) < dp3(RU,, m).

4.4. Robustness

Up to this point, we have considered a single traffic value
per station per time-slot ¢. As explained at the beginning, the
traffic varies over time, and suppose we have several mea-
surements per station through the day. We thus need to ob-
tain a robust clustering over multiple consecutive time-slots.

As a first naive idea, we can consider averaging the traf-
fic per RU over all the T > 1 time-slots, and then perform
our Hyperbolic K-means using average data as 3rd dimen-
sion. This idea however simple, is not appropriate, because
it flattens the trace and loses all information over RU comple-
mentarity in different time-slots. Imagine for example that
in a certain slot two stations i and j are complementary with
w; > w;, whereas a couple of slots later the situation is
inverted with w; < w;; the two stations still are comple-
mentary as pair. If we average over these two time slots, the
complementarity is lost, because the two RUs have similar
values of average traffic. To avoid such loss of information,
we introduce Algorithm 3, which extends our Hyperbolic K-
means over multiple time-slots. Let T be the number of con-
secutive time-slots to consider. For each time slot 7, we apply
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Algorithm 3 using the resource values w(n, t) measured per
RU 7 and for the specific time slot ¢. Obviously the RU 2D-
euclidean positions (x,,, y,,) do not change over time, but the
cluster centroids can change because of the third dimension.
Let P(t) = {C, (1), k =1, ..., K} be the obtained clustering
per time slot ¢, and let (t) = {m,(¥),k = 1,..., K} be the
set of cluster centroids of P(¢). Itis important to note that ev-
ery partition has exactly K centroids (in the degenerate case
two or more centroids may be ovelapping).

The robust algorithm works as follows: The centroids of
the first time-slot ¢(1) are considered as reference. For each
centroid m, (1) in the set, find the (T'—1) centroids E2 closest
to it from the centroid sets of the next T — 1 partitions @(t).
Then calculate their average on each of the three dimen-
sions (x, y, w). In the special case with T' = 2, for m; (1) =
(% (D), y (1), w; (1)) the k-th centroid obtained at time-slot
t = 1, we search for my, (2) = (X3 (2), 1 (2), Wy (2)), the E2
closest centroid to m;,(2) from an execution at t = 1. The
resulting robust centroid is the average of each dimension of
these two centroids m; (1) and m;,(2). We finally remap the
RRHs according to the new centroids using the H 3 distance.

Algorithm 3: Robust Hyperbolic K-means for RU cluster-
ing

1. Foreachtimeslottr=1,...,T:
(a) Execute Algorithm 2 forall? = 1,...,T and ob-
tain the set of centroids @(t) = [m;(?), ..., mg (1)].
2. Given the first set of centroids ¢(1), for each m, (1) €
o), k=1,....K:
(a) Get the closest centroid (E2) to m, (1) from each
partition @(¢),t =1,...,T.
(b) Compute the average k-th centroid over all time
realisations.
3. Assign each RU to the clusters according to their H3
distance to the new average (robust) centroids.

5. Evaluation

In this section, we use real-world mobile data provided by
Orange, France for two cities (Lille and Nantes). First, we
study the effect of parameters on the performance of the Hy-
perbolic K-means (we consider the robust extension of the
algorithm for the rest of this section, and so we use the no-
tation Hyperbolic K-means and Robust Hyperbolic K-means
interchangeably). Then, we apply the metrics mentioned in
Section 2.1 to compare the utilization and cost of our algo-
rithm (Algorithm 3) against other existing solutions: (i) the
K-means clustering using the 2D-euclidean distance (con-
sidering just the RU position without the traffic / resources),
(ii) the 3D-euclidean distance (with remaining resources as
third feature), (iii) the DCCA clustering.

5.1. Datasets description
We use for our evaluation mobile data provided by Or-
ange, France that contains four months of traffic data from

Figure 3: Voronoi partitions of Lille (up) and Nantes (down)

2019-03-19 to 2019-06-16 for Lille and from 2019-03-16 to
2019-06-16 for Nantes. In addition, we use a dataset of the
RUs positions for each city. The details of these datasets are
listed in Table 2.

Lille and Nantes contain respectively N = 88 and N =
97 RUs. An RU position consists of its geographical coor-
dinates (x,, y,) in the Lambert II Carto projection system.
Fig. 3 shows how the areas of the two cities are partitioned
in a Voronoi diagram.

The traffic dataset contains per antenna, its traffic in Bytes-
Up and Bytes-Down considered in 10-minute-long time-slots.
Fig. 4 shows an example of a traffic volume of two anten-
nas, we observe that the Bytes-Down traffic volume is more
important than Bytes-Up, and thus is more representative.
Therefore, we will only consider the Bytes-Down traffic for
evaluation.

5.2. Evaluation Plan

In order to evaluate the algorithms, we construct a typi-
cal week traffic profile according to the Base Stations Traffic
Profile Generation method proposed in [6].

Given our traffic dataset, for each RU, we aggregate and
average the traffic of each timeslot of each day of the week
over the four months of traffic data to construct the typical
traffic of the week, as shown in Fig. 5.

The traffic and positions are normalized for evaluation by
the following method: for each (x,, y,, z,) from the dataset,
where x,, is the first geographical coordinate, y,, is the second
geographical coordinate and z,, is the traffic, the correspond-
ing normalized values are :

. = X, —min X _ y,—minY
x”_maxX—minX’y”_maxy—miny’ 15)
. z, —minZ

" max Z —min Z

In the above (X, V) is the dataset over the positions, and
Z is the dataset of traffic for the considered period of clus-
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Table 2
Data Description

Dataset Lille Nantes

Number of antennas 1394 1413

Number of RU positions 88 97

Data collection period 2019-03-19 to 2019-06-16 2019-03-16 to 2019-06-16
Time-slot duration 10-minute 10-minute

Maximal traffic Bytes-Up 7.25 10° 3.04 10°

Minimal traffic Bytes-Up 0.0 0.0

Maximal traffic Bytes-down 15.82 10° 18.15 10°

Minimal traffic Bytes-down 0.0 0.0
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Figure 4: Example of Bytes-Up and Bytes-Down patterns of
two RUs

R F

Figure 5: An example of the traffic pattern from a chosen RU.

tering. The normalised values (X,,, 7, Z,,) will be used in the
evaluation metrics of utilisation (4) and cost (5). Further-
more, we define the normalised resources i, = 1 — £, for
all stations and time-slots, which will be used in the Robust
Hyperbolic K-means algorithm.

We set the duration T' of consecutive time slots to T =
24 h for all of our evaluations. The specific choice of T" is mo-
tivated by the observations in 5, which shows that traffic pat-
tern is different on a daily basis. In fact the most pronounced

difference is observed between weekdays and weekend, so
we could have taken a more conservative choice. We would
like to comment here, that selection of shorter periods, e.g.
cluster per 1 hour or per 6 hours results in frequent changes
in partitions, without significant global improvement in per-
formance compared to our current selection T = 24h.

For our experiments, we repeat each algorithm 7, = 50
times for each value of the parameter being studied and com-
pute the performance metrics for each execution, we then use
the average value of the metrics of interest from the 50 exe-
cutions to plot our figures.

5.3. Parameter Effect Study

We start by evaluating the effect of certain design param-
eters in the Robust Hyperbolic K-means: the y scaling pa-
rameter and the number K of clusters . We evaluate the cost
and utilization for different values of these parameters and
determine an optimal set that we use later for comparison
against the existing clustering algorithms.

5.3.1. The scaling parameter y

The Hyperbolic H 3 distance used in the K-means has been
defined in (11). In this expression, the scaling parameter y
was introduced to determine through scaling, whether the fo-
cus should be on the RU positions (y large) or their traffic (y
small). For very large values of y, only the first summand in
the argument is important, putting the focus almost entirely
on the RUs positions. In this case the behaviour of Hyper-
bolic K-means should be similar to that of 2D-Euclidean K-
means.

We run the Robust Hyperbolic K-means (Algorithm 3)
on the normalized traffic data for a number of clusters K = 6
and various values of y € (0, 20) to evaluate its impact on the
utilization and cost of the obtained partitions. We also run
for comparison the two Euclidean K-means algorithms (2D-
and 3D-), which do not depend on y, for the same number of
clusters K = 6.

Take-away 1: We observe in Fig. 6a and Fig. 6b that
the Robust Hyperbolic K-means shows significant improve-
ment in utilization performance compared to the euclidean
K-means algorithms for values of y < 7, for values around
y = 1, we notice a 5.1% improvement for Lille (resp. 5.88%
for Nantes) in utilization compared to E3 and a 4.2% im-
provement for Lille (resp. 3.27% for Nantes) compared to
E2. For higher values of y all three algorithms tend to con-
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Figure 6: Utilization and Cost of the k-means clustering using Hyperbolic, Euclidean 2D and Euclidean 3D distances according

toy.

verge to equal utilization performance. Fig. 6¢c and Fig. 6¢
show that for, small values of y we get less cost. Small y
leads to clusters with wide geographical spread (diameter)
as Fig. 7 indicates. In this figure we evaluate the diameter of
a partition, I defined here as the max distance between two
RUs in the same cluster (for all clusters in the partition)

Diam(P) = max max d2, (i, j). (16)

In the above, dfn(i , J) applies the 2D-euclidean distance
between the positions of RU; and RU;. The figure shows
that for y < 0.2 the cluster diameter increases considerably.

Since the main role of y is to appropriately scale the 2D-
distance and the resource dimension to achieve homogeneity
in the H 3 expression, we choose for the rest of the evaluation
tests y=1 since our data-sets are normalized in [0, 1] for both
the traffic and the RU positions.

5.3.2. The number of clusters K

We run all three K-means algorithms (with H3, E2 and
E3) for various values of K (y=1) according to the evalu-
ation protocol mentioned previously : for each value of K,
we repeat the algorithms 50 times and compute the perfor-
mance metrics for each execution. We plot the mean of the
50 execution per value of K in Fig. 8 . We observe, in Fig.
8a and Fig. 8b that the utilization decreases as K increases,
whereas, in Fig. 8c and Fig. 8d, the cost increases with K.
Both metrics tend to 1 for large K. This is explained by the
fact that the higher the number of clusters, the more the clus-
tering performance resembles that of the traditional RAN

'We plot the diameter in meters by de-normalizing the values according
to the reverse process of equation (15).
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Figure 7: Variation of the clusters diameters according to pa-
rameter y.

architecture. On the other hand, smaller numbers of clus-
ters K have better performance, but their diameter explodes
(non-feasible in practice). For values around K = 7 the ben-
efits are still considerable: for Lille city, the utilization is
improved by 4.31% (resp. 2.28% for Nantes) compared to
E3 and by 2.41% (resp. 2.59% for Nantes) compared to E2.
The cost is also 2.07% less than E?2 (resp. 0.60% for Nantes)
and 0.54% less than E3 (resp. 0.39% for Nantes)

Fig. 9 plots the maximal cluster diameter per partition
for each of the three clustering schemes, obtained for differ-
ent values of K. We notice that for K > 5, the maximal
cluster diameter (Lille) is less than 3km. We choose, for the
rest of the evaluations, K € [5, 10] which is a good compro-
mise between the distance threshold and the traffic Utiliza-
tion/deployment Cost metrics.

Take-away 2: The Robust Hyperbolic K-means outper-
forms both euclidean schemes in the metrics of utilization
and cost in the whole range of K values, i.e., for any num-
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ber of clusters, as Fig. 8 shows (For Nantes city, the 2D-
euclidean scheme has closer results to the Robust Hyperbolic
K-means in utilization metric but in the cost metric, they are
less so). This improvement in performance is achieved by
forming clusters having a diameter comparable to that of 3D-
euclidean, and a bit higher than 2D-euclidean, as Fig. 9a and
Fig. 9b illustrate. The difference with 2D-euclidean in diam-
eter is of the order of 500m for the city of Lille and 1km for
the city of Nantes. Hence, the Robust Hyperbolic K-means
spreads a bit more the cluster sizes to achieve higher perfor-
mance, while keeping them as compact as possible. Another
interesting observation from Fig. 9 is that the diameter for
H3 and E3 K-means becomes comparable for larger num-
ber K. This is because for small 2D-euclidean distance, the
hyperbolic and E3 distance tend to behave more similarly, as
Fig. 13 shows in the Appendix.

Note, here, that our aim is not to determine the optimal
number K or the appropriate cluster size. As explained in

Section 2, this is a complex architectural question, that also
depends on the services that need to be supported. For this
reason, the above plots show clustering performance for a
large range of values K. We observe that our method is prof-
itable for the whole range of values K.

5.4. Comparison with DCCA

Having studied the choice parameters for the multiple
variations of K-means, we now compare the clustering schemes
with the selected set of parameters. We evaluate the Robust
Hyperbolic (H3) K-means (Algorithm 3) against the 2D-
Euclidean (E2) K-means that considers only RU positions,
and especially the DCCA algorithm from [7]. We further
provide a detailed comparison with DCCA over the number
of clusters and the maximal diameter.

We choose K = 9 clusters and Table 3 summarises the
results for both cities of Lille and Nantes. We remind that
the utlization and cost metrics for the traditional RAN archi-
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Table 3
Comparative Results

Method Lille City Nantes City
Inputs Util. | Cost Inputs Util. | Cost
Hyperbolic H3 | K=9,y=1,T=24h | 123 | 085 | K=9,y=1,T=24h | 125 | 0.83
DCCA Threshold ¢ =3.5km | 1.17 | 0.86 | Threshold ¢ =4.7km | 1.19 | 0.84
Euclidean E2 K=9 1.13 | 0.86 K = 1.17 | 0.88

(a) 2D Euclidean K-means.
Utilization: 1.13, Cost: 0.86

(b) 3D Hyperbolic K-means.
Utilization: 1.23, Cost: 0.85

(c) DCCA clustering.
Utilization: 1.17, Cost: 0.86

Figure 10: Clusters for Lille City with: 2D-Euclidean K-means, 3D-Hyperbolic K-means, and DCCA.

tecture are both equal to 1. We observe that the Robust Hy-
perbolic K-means effectively improves the utilization metric
by 23% for Lille and by 25% for Nantes compared to stan-
dard RAN, while DCCA improves it by 17% and 19%, re-
spectively. Both methods reduce the cost by around 15%.
The 2D Euclidean K-means achieves an improvement in uti-
lization of 13% for Lille and 17% for Nantes compared to
standard RAN, lower than the other two.

We need to explain here that, contrary to the K-means
variations, the DCCA method uses as input a threshold o that
limits the acceptable diameter and it outputs the DCCA par-
tition with some number of clusters K. Each threshold leads
to a different K. We selected a DCCA diameter threshold
which led to a partition with 9 clusters. We then set K = 9 as
input for the hyperbolic and euclidean K-means variations,
to guarantee a fair comparison between the methods.

To better understand the differences between schemes,
we visualize in Fig. 10 the clusters that each method gener-
ates for the city of Lille.

Take-away 3: The Robust Hyperbolic K-means produces
clusters that are geographically compact, in a similar fashion
to the 2D-Euclidean K-means. To better balance the clusters
over traffic, the method spreads geographically these clusters
while trying to keep them in a compact form, in contrast to
the DCCA algorithm.

We now vary the number of clusters K for the K-means
and compare the performance between DCCA and the Ro-
bust Hyperbolic K-means. More precisely, we run DCCA
using various values of the maximum acceptable diameter.
Each value generates the number K of formed clusters as
output. We use the resulting number K of clusters per reali-
sation as entry to the Hyperbolic K-means. The performance
results of the two methods for the two cities and in a time-
window of 24 hours are illustrated in Fig. 11.

Take-away 4: We observe that in the entire range of K

(and thus for any equivalent input threshold of the DCCA),
the Robust Hyperbolic K-means offers much higher utiliza-
tion over time, with a cost similar to the DCCA. The im-
provement is more pronounced for a smaller number of clus-
ters (as expected): Using K = 3, for Lille city, the improve-
ment in utilization can go up to 10.56% (resp. 6.42% for
Nantes). For moderate number of clusters K = 7 the utili-
sation gain is 6.11% (resp. 5.50% for Nantes).

We have discussed throughout the work, that each cluster
needs to respect a distance constraint related to the length of
the optical fibre. This was used as hard constraint in the input
of DCCA. The Robust Hyperbolic K-means achieves to pro-
duce the same number of clusters with a geographic spread -
measured by the diameter Diam - much smaller compared to
the DCCA. The comparison of the two methods over Diam
is illustrated in Fig. 12. We can read the figure as follows:

Take-away 5: Given some distance constraint (y-axis)
the number of clusters K that respect this is considerably
smaller in the (robust) Hyperbolic K-means, than in the DCCA.
Hence, the H3 method can produce a small number of com-
pact clusters with balanced traffic (high utilization), using

the same number of BBU resources (cost) as the DCCA method.

6. Conclusion

In this work, we have addressed one of the challenges
in the C-RAN and vRAN architecture, the RU clustering
into locally centralised BBU-pools (or RU-CU in the VRAN
case). Our objective was to propose a clustering scheme
that maximises the resource utilization, that uses reduced
number of resources, and respects some distance limitations
related to the cluster diameter. To achieve this, we have
been based on the vanilla K-means algorithm and proposed
a variation that considers the traffic (or available resources)
as third dimension. Instead of embedding the features in eu-
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clidean space, we used the hyperbolic space, because the in-
duced distance has a behaviour that can facilitate the forma-
tion of clusters with the desired properties. The resulting
clusters from this novel approach further exhibit fairness in
the aggregate load. We further made the algorithm robust
over multiple time-slots.

To evaluate performance, we have made use of real mo-
bile data from Orange Mobile France, for the cities of Lille
and Nantes. Our method effectively reduces deployment cost
by 15% and improves resources utilization by 23 — 25%. It
outperforms both euclidean K-means as well as state-of-the
art methods from the literature (DCCA).

Rather noteworthy is the fact that the hyperbolic K-means
algorithm proposed in this work has generality. It need not
be restricted to problems of RU-BBU association, but could
be applied to any clustering problem that deals with vari-
ous features which need not necessarily be treated homo-
geneously. It is very useful for all clustering problems that
require to group together nodes with complementarity over

some feature. The design parameters y (related to units) and
the temporal window of clustering are flexible tuning param-
eters that allow for performance improvement. The hyper-
bolic embedding has been proven very useful in this setting,
adding further to the arguments in favor of this novel view-
point.
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A. Appendix: H 3 distance properties

To get a better understanding on the properties of the hy-
perbolic distance H 3 how this compares to the 3D-euclidean
E3, and how it can be useful for our specific clustering prob-
lem, we introduce here a transformation of the pair of re-
source variables (w;, w j). The imbalance of the two vari-
ables will be described by their ratio p > 0. Furthermore,
let us fix their sum to 4 > 0 resource units. Then, the tuple
(w;, w;) can be uniquely expressed as a function of (p, 4) and
vice versa,

/lzw,+wj
S
p=w;/w;

w;=p- 3/(1+p)
w; = 4/(1+ p) } a7

Let us also denote the 2D euclidean distance of the RU posi-
tions by 6 = dg5(x;, y;, x;, ;). The hyperbolic distance H3
in (11) can be expressed as a function of (8, p, A) (we assume
y =1wlo.g)

52 1 1
dy5(6, p, A) = arccosh — +=|p+ ; . (18)

2
20 Ty

In a similar way, the 3D euclidean distance (E3) can also be
expressed by the same arguments

dp3(6,p,4) = (19)

We already observe a difference in the expressions (19) and
(18). The 3D-euclidean distance is increasing in the sum
of resources A, whereas the hyperbolic distance is decreas-
ing (remember arccosh(s) is an increasing function of s).
Hence, the 3D-euclidean distance will perceive two RUs hav-
ing low remaining resources as being close to each other,
something which leads to inefficient clustering for C-RANs.
To further understand why the hyperbolic distance is more
appropriate in our scenario, we will keep two parameters fix
in the above expressions and plot its response when increas-
ing the third parameter.

e Fix A and p, vary the 2D-euclidean distance 6. The
plot is in Fig. 13 for both distances. We observe that
the 3D-euclidean increases proportionally to the 2D-
euclidean with unit slope. The hyperbolic distance,
on the other hand, deforms the influence of the 2D-
distance. The hyperbolic is a concave function of the
2D-euclidean and increases with a slope less than 1.
As a result, RUs that are distant in the 2D-sense are
perceived closer through the hyperbolic lens.

e Fix 6 and p, vary the sum of resources A. The plot
is in Fig. 14 for both distances and we can see the
difference in their behaviour. In contrast to the 3D-
euclidean, the hyperbolic is monotone decreasing in
4, hence two RUs with small remaining resource sum
are perceived far from each other and should not be
placed in the same cluster. What is also striking is that
the downward slope of H3 is very large in the whole

3D distance vs. 2D distance
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Figure 13: Hyperbolic and euclidean 3D-distance when varying
the 2D-euclidean distance 6, for fixed A =1 and p =2.
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Figure 14: Hyperbolic and euclidean 3D-distance when varying
the resource sum 4, for fixed § =2 and p = 2.

range of A values (diminishing for very large ), which
indicates that this distance is very sensitive to a small
change in the resource sum. This comes in striking
contrast with E3 which is increasing in A with a very
small slope, hence quite insensitive.

e Fix 6 and 4, vary the imbalance ratio p = w;/w;.
The plot is in Fig. 15 for both distances. The range
of values is chosen in [0.001, 1000], so for p < 1 the
resources are imbalanced in favor of w; and for p > 1
it is the other way round. We see that both the hyper-
bolic and the 3D-euclidean are symmetric, with axis
of symmetry p = 1. But the H3 is much more sensi-
tive to resource imbalance than E3. As the plot illus-
trates, H 3 increases fast due to imbalance, in a sym-
metric fashion around p = 1, with a minimum when
the two RUs are completely balanced, i.e. have the
same number of remaining resources.
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