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Abstract. As the internet and connected objects gain more and more in popularity, serving the ever-increasing data
traffic becomes a challenge for the mobile operators. The traditional cellular radio access network (RAN), where
each base station is co-located with its own processing unit and is responsible for a specific geographic area, has
evolved first with the so-called Cloud RAN (C-RAN), and is currently undergoing further architectural evolution
under the virtualized RAN (vRAN), Open RAN (O-RAN) and Software-Defined RAN (SD-RAN) architectures. In all
these versions, the data processing units can be dynamically centralized into a pool and shared between several base
stations, enlarging the geographical view for scheduling and resource allocation algorithms. For instance, resource
utilisation is improved by avoiding resource idling during off-peak hours. C-RAN and vRAN gains depend strongly
on the clustering scheme of radio units (RRHs and RUs). In this paper, we propose a novel radio clustering algorithm
that takes into account both the traffic demand and the position of stations, by using the hyperbolic distance in 3-
dimensions. We introduce a modified K-means clustering algorithm, called Hyperbolic K-means, and show that
this generates geographically compact RU clusters with traffic charge equally shared among them. Application of our
algorithm on real-world mobile data traffic, collected from the cities of Nantes and Lille in France, shows an increase in
resource utilisation by 25%, and a reduction in deployment cost by 15%, compared to the standard RAN. Furthermore,
the performance of our Hyperbolic K-means algorithm is compared extensively against alternative C-RAN clustering
proposals from the literature and is shown to outperform them, in resource utilisation as well as in cost reduction.

Keywords: C-RAN, vRAN, O-RAN, SD-RAN, K-means, Clustering, Hyperbolic geometry, Poincaré half-plane.

1 Introduction

With the rapid growth in consumer electronics, boosted by the Internet-of-Things, more and
more wireless products are entering the market adding to the total number of devices accessing
mobile networks. According to Cisco 2017,Cisco, 2017the share of smart devices and connections
from the total of connected objects will increase from 53% in 2017 to 73% by 2022. Further-
more, new services emerge related to Internet-of-Vehicles, remote control, and video monitor-
ing,China-Unicom, 2017 which are expected to generate intensive demand for network edge-computing
resources. Satisfying such increase in traffic presents a big challenge for mobile operators; a naive
installation of more base stations or addition of more data processing units to existing sites, has
high deployment and energy expenses, without guaranteed service improvement or revenue in-
crease for the mobile operators.

As an alternative solution for low cost, and low energy-consumption, around 2010 the Cloud
Radio Access Network (C-RAN) architecture was conceived by IBMLin et al., 2010 and developed by
the China Mobile Research Institute,China-Mobile, 2011 later adopted also by other operators. This
concept is currently enlarged to accommodate various other possible configurations with the so-
called virtualized RAN (vRAN), which offers flexibility in functional splitting for 5G architec-
tures,,Garcia-Saavedra et al., 2018,Maeder et al., 2014.da Silva Coelho et al., 2020
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While in the traditional RAN, illustrated in Fig. 1a, each site has its own Remote Radio Head
(RRH) and Base-Band Unit (BBU), in the C-RAN architecture base stations (BS) host only RRHs
whereas the BBUs are centralized in a pool allowing resources to be dynamically allocated to
the RRH cluster,Checko et al., 2015I et al., 2014 see Fig. 1b. By removing BBUs from cell sites, operating
expenses as well as energy consumption can be reduced, while providing the same coverage and a
better quality of service,Wu et al., 2015.Boulos et al., 2015

Current vRAN systems are split into three parts:,Wang et al., 2016,Wang et al., 2017Yu et al., 2020 the Radio
Units (RU) are geographically scattered to achieve coverage; these are connected to Distributed
Units (DU), where some layer-1 and layer-2 functions can be performed; the latter are in turn con-
nected to Centralized Units (CU) where base-band operations can be run, along with other RAN or-
chestration and Mobile-Edge Computing subsystems,Ceselli et al., 2018a,Garcia-Saavedra et al., 2018 see Fig. 1c.
The C-RAN system can be seen as a special case or just an application of a vRAN, where vBBUs
are hosted at CUs, and RRH correspond to the RU and DU combined. Generally, RU and DU are
expected to be collocated or geographically be very close to each other in practice, and transport
links provide connections between the DUs and the CU hosting the BBU assigned to the RU-DU
subsystem. In 5G and beyond 5G systems, it is envisioned that CU, BBU and MEC servers can be
co-located at different edge network sites, typically the so-called Central Office (CO), legacy net-
work points-of-presence being rearchitected nowadays as mini-datacenters.Ceselli et al., 2018b Usually,
the distance between an RRH and its BBU-pool (resp. DU and CU) can reach several kilometers
and fiber lines are used for reliable high bandwidth data transfer.

In the following, we will mostly focus on the C-RAN application but the algorithm we propose
can be adapted to vRAN/MEC as well, where base stations are clustered at the CU level. We will
use the abbreviation RU to refer to both RRH (for C-RAN) and RUs (for vRAN).

(a) Traditional RAN architecture (b) C-RAN architecture

(c) vRAN architecture
Fig 1: Illustration of the traditional RAN architecture and comparison with C-RAN and vRAN.
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Aggregating resources to a pool level allows them to be managed more efficiently and optimize
their utilisation. Each BBU pool is in charge of several RUs, hence the installed capacity of the
pool should be enough to serve the maximal ensemble traffic generated/received by these RUs,
and the total capacity can be further shared among them according to their real-time demand.
Performance is optimal when the BBU-pool utilisation is as flat as possible through the day, with
a peak-to-average ratio close to one. To achieve this, clustering based on the traffic pattern of
the stations (RUs) can be exploited. In fact, grouping RUs with complementary traffic patterns to
the same BBU-pool can reduce the total capacity necessary to support the aggregate traffic of the
cluster and maximize its utilisation over different periods of the day.Chen et al., 2018

A meaningful clustering scheme should then, (i) reduce the overall processing (BBU) capacity
necessary and maximize its utilisation. (ii) The load should be fairly balanced among clusters. The
scheme should also (iii) keep a limit on the optical fiber distance between the BBU-pool and its
assigned RUs in order to respect delay and propagation constraints. Furthermore, (iv) the clusters
should be geographically as compact as possible, with neighbouring RUs assigned to the same
cluster, in order to avoid frequent hand-overs between clusters when users are mobile.

In this paper, we propose a BBU-RUs clustering solution that offers improved capacity utiliza-
tion and reduced deployment cost, while respecting geographic requirements and load fairness
among clusters. Our starting point is the standard K-means algorithm, but we introduce a non-
trivial modification of the distance metric. The proposed modification involves the distance of the
Poincare half-plane model in 3-dimensions (“hyperbolic H3”), which allows us to appropriately
combine the different natures of traffic and positional features. This approach was motivated by
recent advances in complex networksNickel and Kiela, 2017 and data science,Krioukov et al., 2010 which show
that embedding complex data into hyperbolic spaces is very advantageous for problems of cluster-
ing and community detection.Gerald et al., 2020 Our method, being center-based, groups RUs around a
fictional center (so-called “centroid”) which determines the average charge of the cluster. The goal
is to end up with a fair clustering scheme, which satisfies the above design requirements (i)-(iv).
The solution is done per time-slot (e.g. hour), and is extended by proposing a robust clustering
over multiple consecutive time-slots.

The paper is structured as follows: We first state the general BBU-RU clustering problem for the
C-RAN architecture, and discuss standard C-RAN clustering performance metrics, in Section 2.
We then present existing clustering methods from the literature in Section 3. In Section 4, we
introduce our clustering solution based on the hyperbolic H3 distance and explain how it leads to
the desired properties for the formed clusters; we also include its robust extension over multiple
time-slots. In Section 5 we evaluate our algorithm using real data from Orange mobile France for
two cities (Nantes, Lille) and compare its performance with existing approaches. Finally, Section 6
concludes our work.

2 Problem statement

In traditional RANs, each base station should be equipped with enough processing capacity in
order to meet traffic demand at all times for the coverage area it is assigned to. However, since the
traffic demand varies over different periods of the day, the processing capacity of base stations is
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not always used to its fullest.Chen et al., 2018 Moreover, different areas have different traffic patterns,
for example business districts can have maximal charge during morning and afternoon hours in
week days, while residential areas witness their rush hours during evenings and weekends. This
means a certain BS can be overcharged during its peak hour while another BS in a different area
can have minimal traffic at the same time, as shown in the example of Fig. 2a. In such scenarios,
which occur very often in practice, the capacity of the low-charged BS is idling, whereas it could
support traffic service for the overcharged one.Chen et al., 2018

In the C-RAN and vRAN architectures, BSs can be grouped together and cooperate by sharing
common resources. In the example of Fig. 2a if the two BSs are mapped to the same BBU pool,
their traffic is aggregated as shown in Fig. 2b, hence the capacity needed to serve both BSs simul-
taneously should at most cover the peak of their aggregated traffic (equal to 2.74), which is smaller
than the sum of their individual peak traffic (equal to 1.75+1.61= 3.36). As a consequence, less
processing units are necessary to be installed for the service of the group of these two BSs. What
is more, during off-peak hours the pool resources are more intensively utilised (and do not idle).

(a) (b)

Fig 2: (a) Data traffic patterns of two RUs in Lille from 2019-06-10 16:10 to 2019-06-10 23:20
showing their traffic peak hour and volume (b) Their aggregated traffic.

The objective in this paper is to propose clustering (BS grouping) schemes that minimize the
BBU resources needed to meet the traffic demand, under some distance limitations. These limita-
tions have to do with the propagation time between RU and BBU, so that clustering very distant
RUs to the same BBU-pool is not recommended due to unacceptable delays. Hence, the solution
of a fully centralised cloud architecture with all RUs in a city served by the same BBU-pool is im-
possible, and we need to search for a semi-centralised solution that determines how many clusters
should be optimally introduced per area (city), and which are their RU members.

To evaluate the quality of our proposed clustering solution, and compare it with existing ones,
we will use two performance metrics, already introduced in.Chen et al., 2018 We use these because
they elegantly quantify C-RAN clustering performance, and also in order to have coherence and
a common vocabulary for the performance comparisons with other schemes. We will show that
the clustering scheme proposed in this paper outperforms existing schemes, as evaluated from the
metrics that follow.
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2.1 Notation and Evaluation Metrics

Let z(n, t) be the traffic of station n at time-slot t for n = 1, ..., N and t = 1, ..., T , where
N is the total number of stations in an area (city) and T is the number of time-slots. Here, we
will use as time-slot duration 1 hour, but other choice is possible depending on the available data.
Requested traffic per station is normalised to 1, so that the request per slot refers to the percentage
of installed processing capacity utilised to satisfy traffic demand. We assume that all individual
stations have the same amount of pre-installed processing capacity, so that z(n)’s are comparable.
After normalisation, we introduce a transformation of the traffic demand, called the remaining
resources per station n and time-slot t. This is equal to

w(n, t) = 1− z(n, t). (1)

It quantifies the percentage of resources remaining idle per station per time-slot, and will be used
in the proposed clustering algorithm.

Consider a partition P of the set of N stations into K clusters, i.e P = [C1, ...CK ]. Also,
denote by Z(C, t) the aggregated traffic at time t of the stations grouped in cluster C i.e.,

Z(C, t) =
∑
n∈C

z(n, t). (2)

In the degenerate case of a cluster with a single station it holds, Z({n}, t) = z(n, t). Similarly, the
aggregate remaining resources are defined as W (C, t) = card(C)−Z(C, t), where card(C) is the
number of RUs forming the cluster.

Average-to-Peak Traffic Ratio (AtPTR) for cluster C. This is a measure of capacity utilisation
per cluster. It is defined as the ratio of the average aggregate traffic request (i.e. average capacity
used) at the BSs of the cluster for several time-slots, over the peak aggregate traffic.

U(C) =
1
T

∑T
t=1 Z(C, t)

maxt Z(C, t)
. (3)

Obviously, U(C) ∈ (0, 1]. When U(C) is close to 1 the cluster makes good use of the pool re-
sources over time, and resource idling is low. The AtPTR measure can be defined for just one
station, i.e. C = {n}, in which case U(n) = 1

T

∑T
t=1 z(n, t)/maxt z(n, t).

Metric I: Utilization for partition P . It is a measure of the improvement of the average AtPTR
(i.e. capacity utilization per cluster) due to the partition P , compared to the average AtPTR over
all single base stations in a traditional simple RAN,

Util(P ) =
1
K

∑K
k=1 U(Ck)

1
N

∑N
n=1 U(n)

. (4)

It holds Util(P ) ≥ 1. The equality holds when K = N , i.e. one cluster per BS. When traffic
from several BSs in a cluster is aggregated, the pool resources are better utilized and the metric
increases. The Util(P ) is maximum for K = 1.
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Metric II: Cost for partition P . It is a measure of the decrease in total installed BBU-pool
resources in the clustered C-RAN, compared to the total BBU resources installed in individual
base stations (simple RAN).

Cost(P ) =

∑K
k=1 maxt Z(Ck, t)∑N
i=1 maxt z(n, t)

, (5)

where the maximum is taken over all time-slots t = 1, . . . , T . It holds Cost(P ) ≤ 1. The equality
holds again here when K = N . The Cost(P ) is minimum when K = 1.

The two performance metrics for a clustering P quantify two different things. Metric I mea-
sures how much the utilisation of installed resources is improved by clustering P , whereas metric
II measures the economies in installed resources due to clustering P , compared to the simple RAN
standard scenario. Both are optimal for K = 1. However, due to distance limitations, the solution
to create a single global pool per city is not feasible.

3 Clustering methods in the literature

3.1 Linear Programming

Many research works in the literature try to formulate and solve the clustering problem as a
Linear Program, see,Garcia-Saavedra et al., 2018,Wang et al., 2016,da Silva Coelho et al., 2020.Yu et al., 2020 Although this
approach is definitely valid, high complexity issues may arise when the number of stations is city-
wide large, and especially when considering multi-period scheduling. Another issue is that most
of these algorithms make arbitrary assumptions about the costs that will determine the clustering
solution. The later can be strongly affected by small imprecisions in the measured costs (sensitivity
of the solution). Finally, an important weak point is that the objective is maximised with binary (0-
1) association and routing variables, that decide on which BBU-pool (or CU) to associate each RU
with, without taking into account the relative geographic positions of the stations, and the potential
interference these may introduce (or avoid) because of the specific partition as solution.

3.2 K-means clustering

An appropriate method that involves the 2D-geometry and relative positions is by using data
analysis. K-means is one of the most standard clustering algorithms, which can be used to partition
the set of BSs of the city intoK disjoint clusters. Each BS is associated to a unique cluster, resulting
in a partition P that respects the following properties:James et al., 2013

1.
⋃K
k=1Ck = {1, ..., n}, i.e. the union of clusters includes all present BSs, whereC1, C2, . . . , CK

are the K clusters.

2. Ck ∩ Ck′ = ∅ for all k 6= k′, i.e. clusters are disjoint sets.

K-means clustering is designed to minimize the within-cluster variance i.e regrouping the most
similar BSs in the same cluster. This measure is defined as:

min
C1,C2,...CK

K∑
k=1

V ar(Ck), (6)
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with V ar(Ck) the within-cluster variance of the cluster k,

V ar(Ck) =
1

card(Ck)

∑
i∈Ck

d2(i,mk). (7)

The mk is the centroid of the cluster k, and in euclidean space it is the point having as coordinates
the average values of all RUs in the cluster. In 2D it is defined as mk = (x̄k, ȳk).

The d2(i, j) is the square of the distance between station i and the cluster centroid mk. If we
assume that the RUs are embedded on the 2D euclidean space, the distance dE2(xi, yi, xj, yj) =√

(xj − xi)2 + (yj − yi)2 can be used, which makes a lot of sense in the C-RAN and vRAN prob-
lem, where base stations are positioned on the 2D plane; it can be favorable to group stations
together that are closer to each other, thus avoiding inter-clustering hand-overs and bringing all
RUs closer to the BBU-pool, positioned at the cluster centroid. Note, however, that this approach
makes use only of the two geographical coordinates (xn, yn) per BS n = 1, . . . , N , and does not
include the traffic demand feature.

A naive extension to the 3D, is to include all dimensions (x, y, z), (or (x, y, w) for the re-
sources), where the variables z and w refer to a specific time-slot t. As we will show later, the
euclidean 3D distance (E3) is not the best choice, because the clusters formed do not exhibit the
desired properties. The pseudo-algorithm for 2D euclidean K-means is described as follows (it
extends to 3D or higher dimensions in a straightforward way):

Algorithm: Euclidean K-means Clustering in 2D

1. Init: Fix a number K of clusters and randomly assign each RU to one of the K clusters.

2. Iterate until the cluster assignments stop changing:

(a) Compute the centroid of each cluster. The kth cluster centroid is the mk = (x̄k, ȳk)
average position of the RUs in the kth cluster.

(b) Assign each BS to the cluster whose centroid is closest according to the 2D-Euclidean
distance.

3.3 Distance-Constrained Clustering Algorithm

The authors inChen et al., 2018 andChen et al., 2017 propose the Distance-Constrained Clustering Algo-
rithm (DCCA) for RU clustering. This algorithm takes into consideration not only the position,
but also the traffic-demand and its temporal evolution through the day, while respecting some dis-
tance constraint. The method introduces an entropy-based weight to evaluate the complementarity
of traffic between pairs of RUs over a determined time-interval. RUs are placed as nodes of a
weighted-graph, whose edges can exist or not and allow clusters to form. Each link has a binary
activation variable controlled by the algorithm; when this becomes 1, an edge appears between the
two RUs, which can now share their resources and belong to the same cluster. The authors further
introduce a distance constraint, so that only RUs within some distance from each other are allowed
to collaborate.

7



Although this approach sets the problem in a correct framework, it is sub-optimal because the
complementarity of a large group of RUs is calculated as the sum of complementarities between
pairs of these RUs. This is of course not correct: in a scenario of three stations, both RU2 and RU3

may have large traffic demand, which renders them complementary in traffic with RU1 which has
low charge; but placing them all three in the same cluster should normally be avoided, because
RU2 and RU3 are not mutually complementary. The pairwise comparison is thus suboptimal, and
other approaches which consider the joint-complementarity for the whole set of RUs in a cluster
should be investigated.

4 Hyperbolic K-means

In this section our novel suggestion for RAN clustering is introduced.

4.1 Traffic-aware RU clusters

The main challenge is how to incorporate the traffic demand inside the clustering algorithm,
additionally to the positional features. To achieve this, we first present three qualitative criteria
that should be satisfied by any traffic-aware clustering:

1. When two RUs have complementary traffic (or remaining resources), i.e, one has high traffic
load (resp. low resources) and the other low traffic load (resp. high resources), they should
be grouped together, in order to cooperate, within certain geographical limitation of distance.

2. When two base stations both have low traffic volume (resp. high resources), it is irrelevant
whether they cooperate or not, because of low benefit.

3. When two base stations both have high traffic volume (resp. low resources), their cooperation
leads to no benefit and they should not be clustered together. Ideally, highly loaded stations
should be distributed evenly among several clusters.

We saw in Section 3.2 that the K-means approach for 2D has the advantage to summarise well the
information from all members of the cluster at its centroid, with coordinates being the averages of
the x and y coordinate of all RUs in the cluster. Hence, it is by construction a better approach than
the DCCA. Furthermore, the method generates clusters that are compact, thus avoiding to include
RUs that spread over large distances from the centroid of each cluster. It has two drawbacks,
however: the vanilla K-means in 2D does not include the traffic dimension; it also generates one
partition per time-slot, hence does not easily generalise to longer time-intervals.

A naive way to incorporate the resource dimension w (or the traffic dimension z) in the K-
means, as additional feature to the position (x, y) of the RU, is to consider the 3D euclidean metric
space and its corresponding euclidean distance. From now on we will use w as the third feature.
The 3D euclidean distance between RUi = (xi, yi, wi) and RUj = (xj, yj, wj) is

dE3(xi, yi, wi, xj, yj, wj) =
√

(xi − xj)2 + (yi − yj)2 + (wi − wj)2. (8)

The above expression can be re-written as
√
d2E2(xi, yi, xj, yj) + (wi − wj)2, which relates the 3D

with the 2D euclidean distance, and the difference of the remaining resources. This specific choice,
although natural, does not achieve the desired effect, since it treats the traffic and position in a
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homogeneous way, although the units and range of geography and traffic are completely different.
The (x, y) is positioned in the real 2D-space ((−∞,+∞) × (−∞,+∞)) and the features x, y
are measured in meters, or kilometers, whereas the resource dimension is in BBU units, so that
w ∈ [0, 1] (the BBU capacity is normalised to 1). Another issue with the choice of 3D euclidean
distance, is that two RUs have minimum distance when wi = wj , i.e. when both stations have
the same remaining resources, irrespective of whether this quantity is high or low. Moreover,
given a fixed difference (wi − wj)2, the square of the 3D-distance is proportional to the square of
the 2D-distance; as a result, RUs in a small geographical distance from each other are favored to
collaborate, whereas large 2D distance prohibits any collaboration.

Given the above observations, the 3D euclidean distance is not the best candidate to apply K-
means, when aiming to achieve a clustering with balanced load (i.e. inter-cluster complementarity),
and we need to look for other candidates, that treat the traffic dimension in a way different than the
RU position.

4.2 Hyperbolic Distance

An interesting idea is to embed the 3D features of each RU (xn, yn, wn) into a hyperbolic space
instead, and use the distance induced by the Poincaré metric. The idea of embedding complex
data into hyperbolic space is recent, but is gaining momentum. It has already been successfully
applied for the analysis of complex networks in,Krioukov et al., 2010 as well for developping new meth-
ods to learn symbolic data which exhibit hierarchy and similarity from Facebook’s research team
in.Nickel and Kiela, 2017 These highly cited works show that for problems of clustering and community
detection, the hyperbolic space is more appropriate than the Euclidean. Very recently, the authors
inHajri et al., 2019 have formulated the K-means clustering algorithm in the hyperbolic setting, where
they use the Poincaré ball model [Loustau, 2020, Chapter 8.1]. Further contributions include the
introduction of hyperbolic space algorithms for community detection.Gerald et al., 2020

In the majority of the aforementioned methods data is embedded into the Poincaré ball model,
which in 3D is the manifold B3 = {(x, y, w) ∈ R3 : ‖(x, y, w)‖ < 1}. In our case, the positional
features (x, y) ∈ R2 are real numbers, but the feature of remaining resources is in fact real positive
w ∈ R+. So, we choose to embed the data on the Poincaré half-plane model instead [Loustau,
2020, Chapter 8.2], which in 3D is the manifold B̂3 = {(x, y) ∈ R2, w ∈ R+ : ‖(x, y, w)‖ < 1},
with induced distance between RUi = (xi, yi, wi) and RUj = (xj, yj, wj)

dH3(xi, yi, wi, xj, yj, wj) = arccosh

(
1 +

d2E3(xi, yi, wi, xj, yj, wj)

2wiwj

)
(9)

where arccosh (s) = ln (s+
√
s2 + 1), an increasing function of the argument s. This specific

hyperbolic distance (we refer to it from now on in short as H3) incorporates both the Euclidean
2D distance (involving the positional pair (x, y)), as well as the impact of resource imbalance wi
and wj ,Decreusefond et al., 2012.Álvarez-Corrales et al., 2017 It is clear from (9) that the hyperbolic distance is
monotone increasing in dE3. However, the third resource dimension w plays a special role as it
divides the dE3. As a consequence, when the absolute available resources wi, wj are small, their
product is small, and the distance between RUi and RUj is large. This is important because it
generates the tendency to place RUs with low resources (high load) in separate clusters.
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With a bit of calculus, the new distance takes another interesting form

dH3(xi, yi, wi, xj, yj, wj) = arccosh

(
γ
d2E2(xi, yi, xj, yj)

2wiwj
+

1

2

(
wi
wj

+
wj
wi

))
. (10)

Note the new parameter γ > 0 inserted above. When γ = 1, the expression in (10) is equal to
(9). The reason why γ is introduced is very important. We see from above that the argument of
arccosh has two summands. The first is described by the 2D-euclidean distance with (x, y) and
the product of the resource feature w, whereas the second depends only on the resource feature w.
The second summand quantifies the resource imbalance between wi and wj . It is 0 when wi = wj
and positive when ||wi − wj|| > 0. In fact, it is symmetric regarding an imbalance towards wi or
wj . The hyperbolic distance depends on these two summands, and trades-off between geographical
distance and resource imbalance. The issue is however, that 2D-distance and resources do not have
the same units! If the dE2 is measured in meters, the geographical distance between two RUs can
be of the order of thousands, and can dominate the summation. If the dE2 is measured in kilometers
instead, the resource balance summand will dominate, thus giving more emphasis on whether two
RUs have the same amount of resources or not. Although the units depend on the convention we
make, each choice will lead to a different clustering result. This is why, we choose for now to leave
γ as a tunable parameter (or just γ = 1), and investigate its influence in the evaluation Section 5.
We can potentially choose an appropriate γ function that maximises our metrics.

4.3 H3 distance properties

To get a better understanding on the properties of the hyperbolic distance H3 and how this com-
pares to the 3D-euclidean E3, we introduce here a transformation of the pair of resource variables
(wi, wj). The imbalance of the two variables will be described by their ratio ρ > 0. Furthermore,
let us fix their sum to C > 0 resource units. Then, the tuple (wi, wj) can be uniquely expressed as
a function of (ρ, C) and vice versa,

C = wi + wj
ρ = wi/wj

}
⇔ wi = ρ · C/(1 + ρ)

wj = C/(1 + ρ)

}
. (11)

Let us also denote the 2D euclidean distance of the RU positions by δ = dE2(xi, yi, xj, yj). The
hyperbolic distance H3 in (10) can be expressed as a function of (δ, ρ, C) (we assume γ = 1
w.l.o.g.)

dH3(δ, ρ, C) = arccosh

(
δ2

2ρ C2

(1+ρ)2

+
1

2

(
ρ+

1

ρ

))
. (12)

In a similar way, the 3D euclidean distance (E3) can also be expressed by the same arguments

dE3(δ, ρ, C) =

√
δ2 + C2

(1− ρ)2

(1 + ρ)2
. (13)

We already observe a difference in the expressions (13) and (12). The 3D-euclidean distance
is increasing in the sum of resources C, whereas the hyperbolic distance is decreasing (remember
arccosh(s) is an increasing function of s). Hence, the 3D-euclidean distance will perceive two RUs
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having low remaining resources as being close to each other, something which leads to inefficient
clustering for C-RANs. To further understand why the hyperbolic distance is more appropriate in
our scenario, we will keep two parameters fix in the above expressions and plot its response when
increasing the third parameter.

• Fix C and ρ, vary the 2D-euclidean distance δ. The plot is in Fig. 3 for both distances. We
observe that the 3D-euclidean increases proportionally to the 2D-euclidean with unit slope.
The hyperbolic distance, on the other hand, deforms the influence of the 2D-distance. The
hyperbolic is a concave function of the 2D-euclidean and increases with a slope less than 1.
As a result, RUs that are distant in the 2D-sense are perceived closer through the hyperbolic
lens.

• Fix δ and ρ, vary the sum of resources C. The plot is in Fig. 4 for both distances and we
can see the difference in their behaviour. In contrast to the 3D-euclidean, the hyperbolic is
monotone decreasing in C, hence two RUs with small remaining resource sum are perceived
far from each other and should not be placed in the same cluster. What is also striking is
that the downward slope of H3 is very large in the whole range of C values (diminishing
for very large C), which indicates that this distance is very sensitive to a small change in the
resource sum. This comes in striking contrast with E3 which is increasing in C with a very
small slope, hence quite insensitive.

• Fix δ and C, vary the imbalance ratio ρ = wi/wj . The plot is in Fig. 4 for both distances.
The range of values is chosen in [0.001, 1000], so for ρ < 1 the resources are imbalanced
in favor of wj and for ρ > 1 it is the other way round. We see that both the hyperbolic and
the 3D-euclidean are symmetric, with axis of symmetry ρ = 1. But the H3 is much more
sensitive to resource imbalance than E3. As the plot illustrates, H3 increases fast due to
imbalance, in a symmetric fashion around ρ = 1, with a minimum when the two RUs are
completely balanced, i.e. have the same number of remaining resources.

Fig 3: Hyperbolic and euclidean 3D-distance
when varying the 2D-euclidean distance δ, for
fixed C = 1 and ρ = 2.

Fig 4: Hyperbolic and euclidean 3D-distance
when varying the resource sumC, for fixed δ =
2 and ρ = 2.
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Fig 5: Hyperbolic and euclidean 3D-distance
when varying the imbalance ratio ρ, for fixed
C = 1 and δ = 2.

4.4 Hyperbolic K-means algorithm for RU clustering

We are now ready to incorporate the H3 distance for K-means clustering in C-RAN. As observed
in Fig. 5, the 3D-hyperbolic distance (and also the euclidean) between two points (xi, yi, wi) and
(xj, yj, wj) is minimal when the resource ratio ρ = 1, meaning that the resources are balanced
wi = wj . This property can be exploited for clustering, by introducing the centroid of each cluster
Ck. Let us define the centroid mk = (xk, yk, wk) coordinates, again as the averages

(xk, yk, wk) =
1

card(Ck)

∑
j∈Ck

(xj, yj, wj) . (14)

In every update loop, each RUn, n = 1, . . . , N will be associated to the cluster with minimum
hyperbolic distance dH3(n,mk) between the specific RUn and the centroid. Forgetting for a mo-
ment the effect of the positional pair dimensions (x, y) (the 2D-euclidean distance), such rule will
try to associate stations to clusters in a way that changes as little as possible the average available
resources wk. A further consequence is that the resulting clusters will have balanced average traffic
in a fair way (see Example below).

In this case, the within-cluster variance of a given cluster Ck having as centroid mk(xk, yk, wk)
is defined as follows

V arH3(Ck) =
1

card(Ck)

∑
i∈Ck

d2H3(i,mk), (15)

and the global distortion is the sum of variances over all clusters

VH3(P ) =
K∑
k=1

V arH3(Ck). (16)

Algorithm 3: Hyperbolic K-means Clustering in 3D
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1. Init: Fix a numberK of clusters and chose randomly the initial cluster centroids (xk, yk, wk).
Also, fix the tolerated distortion error ε > 0.

2. Assign each RU to the cluster whose centroid is the closest according to the hyperbolic
distance H3.

3. Calculate the initial global distortion VH3(0).

4. Iterate while the difference between the global distortions of two consecutive iterations is
larger than ε : |VH3(τ)− VH3(τ − 1)| > ε

(a) Compute the centroid of each cluster by (14).

(b) Assign each observation to the cluster whose centroid is closest according to the dis-
tance H3.

(c) calculate the global distortion VH3.

Implementation: In Step 1 (initialisation), we place the K initial centroids at the positions of
K RUs randomly among the present N RUs. This choice aims to guarantee that no cluster will
start empty, and in practice leads to K non-empty clusters after convergence. Since the centroids
are initialised randomly, and since the K-means algorithm is known not to converge to a global
optimum, we repeat the algo. 3 several times (use a counter count) and then we pick the solution
with maximum performance, among the count available ones.

Example: To see how the hyperbolic K-means works, with the resulting fairness among clusters,
we make a thought experiment. Suppose RU1 = (−δ, 0, αw), RU2 = (0, 0, w) and RU3 =
(+δ, 0, w/α) are co-linear in the x-axis, as their coordinates indicate. For now, let α > 0. The RU2

has the same 2D-euclidean distance δ from both RU1 and RU3. Suppose we want to find K = 2
clusters. Will RU2 be clustered with RU1 or with RU3?

The cluster centroids are initialised as m1 = RU1 and m3 = RU3. The association of RU2 is
with RU1 if dH3(RU2, RU1) < dH3(RU2, RU3). Using the expression from (10) with γ = 1, we
see that this inequality is valid when α > 1. So, when α > 1, the clustering C1 = {RU1, RU2}
and C2 = {RU3} will update the centroid coordinates as m′

1 = (−δ/2, 0, w(1 + α)/2) and m′
2 =

(+δ, 0, w/α). As a result, the difference of average resources between cluster C1 and C2 equals to
∆w = ||w(1 +α)/2−w/α|| is smaller (more fair) compared to the situation when the RU2 would
be clustered with RU3, in which case ∆̃w = ||wα− w(1 + 1/α)/2|| > ∆w.

The association will not change after the update of centroids, because for α > 1 it can be
verified that it still holds dH3(RU2,m

′
1) < dH3(RU2,m

′
2).

4.5 Robustness

Up to this point, we have considered a single traffic value per station per time-slot t. As explained
at the beginning, the traffic varies over time, and suppose we have several measurements per station
through the day. We thus need to obtain a robust clustering over multiple consecutive time-slots.

As a first naive idea, we can consider averaging the traffic per RU over all the T > 1 time-
slots, and then perform our Hyperbolic K-means using average data as 3rd dimension. This idea
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however simple, is not appropriate, because it flattens the trace and loses all information over RU
complementarity in different time-slots. Imagine for example that in a certain slot two stations i
and j are complementary with wi > wj , whereas a couple of slots later the situation is inverted
with wi < wj; the two stations still are complementary as pair. If we average over these two time
slots, the complementarity is lost, because the two RUs have similar values of average traffic. To
avoid such loss of information, we introduce Algorithm 4, which extends our Hyperbolic K-means
over multiple time-slots.

Let T be the number of consecutive time-slots to consider. For each time slot t, we apply
Algorithm 3 using the resource values w(n, t) measured per RU n and for the specific time slot
t. Obviously the RU 2D-euclidean positions (xn, yn) do not change over time, but the cluster
centroids can change because of the third dimension. Let P (t) = {Ck(t), k = 1, . . . , K} be the
obtained clustering per time slot t, and let ϕ(t) = {mk(t), k = 1, . . . , K} be the set of cluster
centroids of P (t). It is important to note that every partition has exactly K centroids (in the
degenerate case two or more centroids may be ovelapping).

The robust algorithm works as follows: The centroids of the first time-slot ϕ(1) are considered
as reference. For each centroid mk(1) in the the set, find the (T − 1) centroids closest to it from
the centroid sets of the next T − 1 partitions ϕ(t). Then calculate their average on each of the
three dimensions (x, y, w). That is to say, if T = 2 and mk(1) = (xk(1), yk(1), wk(1)) is the
k-th centroid obtained at time-slot t = 1, then we search for mk′(2) = (xk′(2), yk′(2), wk′(2)), the
closest centroid to mk′(2) from an execution at t = 1. The resulting robust centroid is the average
of each dimension of these two centroidsmk(1) andmk′(2). We finally remap the RRHs according
to the new centroids using the H3 distance.

Algorithm 4: Robust Hyperbolic K-means for RU clustering

1. For each time slot t = 1, . . . , T :

(a) Execute algorithm 3 for all t = 1, . . . , T and obtain the set of centroids ϕ(t) =
[m1(t), ...,mK(t)].

2. Given the first set of centroids ϕ(1), for each mk(1) ∈ ϕ(1), k = 1, . . . , K:

(a) Get the closest centroid to mk(1) from each partition ϕ(t), t = 1, . . . , T .

(b) Compute the average k-th centroid over all time realisations.

3. Assign each RU to the clusters according to their H3 distance to the new average (robust)
centroids.
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5 Evaluation

In this section, we use real-world mobile data provided by Orange, France for two cities (Lille
and Nantes). First, we study the effect of parameters on the performance of the Hyperbolic K-
means. Then, we apply the metrics mentioned in Section 2.1 to compare the utilization and cost
of our hyperbolic algorithm 3 (and its robust version 4) against other existing solutions: (i) the
K-means clustering using the 2D-euclidean distance (considering just the RU position without the
traffic / resources), (ii) the 3D-euclidean distance (with remaining resources as third feature), (iii)
the DCCA clustering.

5.1 Datasets description

We use for our evaluation mobile data provided by Orange, France that contains four months
of traffic data from 2019-03-19 to 2019-06-16 for Lille and from 2019-03-16 to 2019-06-16 for
Nantes. In addition, we use a dataset of the RUs positions for each city.

Lille and Nantes contain respectively N = 88 and N = 97 RUs. An RU position consists of its
geographical coordinates (xn, yn) in the Lambert II Carto projection system. Fig. 6 shows how the
areas of the two cities are partitioned in a Voronoi diagram.

The traffic dataset contains per antenna, its traffic in Bytes-Up and Bytes-Down considered in
10-minute-long time-slots. The Bytes-Down traffic volume is more important than Bytes-Up, as
we can see in Fig. 7, and thus is more representative. Therefore, we will only use the Bytes-Down
traffic for evaluation.
Table 1 summarizes the dataset description.

Table 1: Data Description
Dataset Lille Nantes

Number of antennas 1394 1413
Number of RU positions 88 97
Data collection period 2019-03-19 to 2019-06-16 2019-03-16 to 2019-06-16

Time-slot duration 10-minute 10-minute
Maximal traffic Bytes-Up 7.25 109 3.04 109

Minimal traffic Bytes-Up 0.0 0.0
Maximal traffic Bytes-down 15.82 109 18.15 109

Minimal traffic Bytes-down 0.0 0.0
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Fig 6: Voronoi partitions of Lille (left) and Nantes (right)

Fig 7: Example of Bytes-Up and Bytes-Down patterns of two RUs

5.2 Evaluation Plan

In order to evaluate the algorithms, we construct a typical week traffic profile according to the
Base Stations Traffic Profile Generation method proposed in.Chen et al., 2017

Given our traffic dataset, for each RU, we aggregate and average the traffic of each timeslot of
each day of the week over the four months of traffic data to construct the typical traffic of the week,
as shown in Fig. 8.

Fig 8: An example of the traffic pattern from a chosen RU.
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The traffic and positions are normalized for evaluation by the following method: for each
(xn, yn, zn) from the dataset, where xn is the first geographical coordinate, yn is the second ge-
ographical coordinate and zn is the traffic, the corresponding normalized values are :

(x̃n =
xn −minX

maxX −minX
, ỹn =

yn −minY
maxY −minY

, z̃n =
zn −minZ

maxZ −minZ
) (17)

In the above (X ,Y) is the dataset over the positions, and Z is the dataset of traffic for the
considered period of clustering. The normalised values (x̃n, ỹn, z̃n) will be used in the evaluation
metrics of utilisation (4) and cost (5). Furthermore, we define the normalised resources w̃n = 1−z̃n
for all stations and time-slots, which will be used in the hyperbolic K-means algorithms.

5.3 Parameter Effect Study

We start by evaluating the effect of certain design parameters in the hyperbolic K-means: the γ
scaling parameter, the number K of clusters, and the duration T of consecutive time slots. (For
the first two parameters we cluster for a single time-slot t). We evaluate the cost and utilization for
different values of these parameters and determine an optimal set that we use later for comparison
against the existing clustering algorithms.

5.3.1 The scaling parameter γ

The Hyperbolic H3 distance used in the K-means has been defined in (10). In this expression,
the scaling parameter γ was introduced to determine through scaling, whether the focus should be
on the RU positions (γ large) or their traffic (γ small). For very large values of γ, only the first
summand in the argument is important, putting the focus almost entirely on the RUs positions. In
this case the behaviour of Hyperbolic K-means should be similar to that of 2D-Euclidean K-means.

We run the Hyperbolic K-means (algo. 3) on the normalized traffic data for a number of clusters
K = 6 and various values of γ ∈ (0, 20) to evaluate its impact on the utilization and cost of the
obtained partitions. We also run for comparison the two Euclidean K-means algorithms (2D- and
3D-), which do not depend on γ, for the same number of clusters K = 6.

Take-away 1: We observe in Fig. 9a and Fig. 9b that the hyperbolic K-means shows significant
improvement in utilization performance compared to the euclidean K-means algorithms for values
of γ ≤ 7. For higher values of γ all three algorithms tend to converge to equal utilization perfor-
mance. For small values of γ, we get better cost and utilisation by neglecting in practice the RU
positions. This allows for clusters to be formed that have wide geographical spread (diameter) but
might not respect some design distance constraints related to the fiber length, as Fig. 10 indicates.
In this figure we evaluate the diameter of a partition. This is defined here as the max distance
between two RUs in the same cluster (for all clusters in the partition)

Diam(P ) = max
k

max
i,j∈Ck

d2E2(i, j). (18)

In the above, d2E2(i, j) applies the 2D-euclidean distance between the positions of RUi and RUj .
The figure shows that for γ < 0.5 the cluster diameter increases considerably.
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(a) Lille (b) Nantes
Fig 9: Utilization and Cost of the k-means clustering using Hyperbolic, Euclidean 2D and Eu-
clidean 3D distances according to γ.

Since the main role of γ is to appropriately scale the 2D-distance and the resource dimension to
achieve homogeneity in the H3 expression, we choose for the rest of the evaluation tests γ=1 since
our data-sets are normalized in [0, 1] for both the traffic and the RU positions.

Fig 10: Variation of the clusters diameters according to parameter γ.

5.3.2 The number of clusters K

We run all three K-means algorithms (with H3, E2 and E3) for various values of K (γ=1), and
plot the performance metrics in Fig. 11. We observe that the utilization decreases as K increases,
whereas the cost increases with K. Both metrics tend to 1 for large K. This is explained by the
fact that the higher the number of clusters, the more the clustering performance resembles that of
the traditional RAN architecture. On the other hand, smaller numbers of clusters K have better
performance, but their diameter explodes (non-feasible in practice). For values around K = 6 the
benefits are still considerable.
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(a) Lille (b) Nantes
Fig 11: Utilization and Cost of the K-means clustering using 3D-Hyperbolic, 2D-Euclidean and
3D-Euclidean distances with varying K.

Fig. 12 plots the maximal cluster diameter per partition for each of the three clustering schemes,
obtained for different values of K. We notice that for K > 5, the maximal cluster diameter
(Lille) is less than 3km. We choose, for the rest of the evaluations, K ∈ [5, 10] which is a good
compromise between the distance threshold and the traffic Utilization/deployment Cost metrics.

(a) Lille (b) Nantes
Fig 12: Maximal cluster diameter for k-means clustering using Hyperbolic, Euclidean 2D and
Euclidean 3D distances according to K.

Take-away 2: The hyperbolic K-means outperforms both euclidean schemes in the metrics
of utilization and cost throughout the whole range of K values, i.e., for any number of clusters,
as Fig. 11a and Fig. 11b show. This improvement in performance is achieved by forming clusters
having a diameter comparable to that of 3D-euclidean, and a bit higher than 2D-euclidean, as
Fig. 12a and Fig. 12b illustrate. The difference with 2D-euclidean in diameter is of the order of
500m for the city of Lille and 1km for the city of Nantes. Hence, the hyperbolic K-means spreads
a bit more the cluster sizes to achieve higher performance, while keeping them as compact as
possible.

5.4 Comparison over multiple time-slots

We are now ready to compare the clustering schemes over multiple time-slots. Specifically,
for T = 24 hours, we apply the 3D hyperbolic K-means (H3) with all three features, the 2D-
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Euclidean (E2) K-means that considers only RRHs positions, and finally the DCCA algorithm
from.Chen et al., 2018 We choose K = 9 clusters and Table 2 summarises the results for both cities
of Lille and Nantes. We observe that the hyperbolic K-means effectively improves the utilization
metric by 23% for Lille and by 25% for Nantes, while DCCA improves it by 17% and 19%,
respectively. Both methods reduce the cost by around 15%. The 2D Euclidean K-means achieves
an improvement in utilization of 13% for Lille and 17% for Nantes, lower than the other two.

Table 2: Comparative Results
Method Lille City Nantes City

Inputs Util. Cost Inputs Util. Cost
Hyperbolic H3 K = 9, γ=1, T = 24h 1.23 0.85 K = 9, γ=1, T = 24h 1.25 0.83

DCCA Threshold = 3.5km 1.17 0.86 Threshold = 4.7km 1.19 0.84
Euclidean E2 K = 9 1.13 0.86 K = 9 1.17 0.88

To compare and better understand the differences between schemes, we illustrate in Fig. 13 the
clusters that each method generates for the city of Lille.

Take-away 3: The Hyperbolic K-means over multiple time-slots, produces clusters that are
geographically compact, in a similar fashion to the 2D-Euclidean K-means. To better balance the
clusters over traffic, the method spreads geographically these clusters while trying to keep them in
a compact form, in contrast to the DCCA algorithm.

(a) 2D Euclidean K-means.
Utilization: 1.13, Cost: 0.86

(b) 3D Hyperbolic K-means.
Utilization: 1.23, Cost: 0.85

(c) DCCA clustering.
Utilization: 1.17, Cost: 0.86

Fig 13: Clusters for Lille City with: 2D-Euclidean K-means, 3D-Hyperbolic K-means, and DCCA.

We now vary the number of clusters K and compare the performance between DCCA and
the Hyperbolic K-means. First, we run DCCA using various values of the maximum acceptable
diameter, because this method does not take the number of clusters K as an input, but instead a
threshold on the acceptable diameter to limit the geographical spread of clusters. It generates the
number K of formed clusters as output. We use the resulting number K of clusters per realisation
as entry to the Hyperbolic K-means, for a fair comparison. The performance results of the two
methods for the two cities and in a time-window of 24 hours are illustrated in Fig. 14.

Take-away 4: We observe that in the entire range of K, the Hyperbolic K-means offers much
higher utilization over time, with a cost similar to the DCCA. This result is stronger than Take-away
2, because now the methods are evaluated over multiple time-slots and DCCA is the state-of-the-
art. The improvement is more pronounced for a smaller number of clusters (as expected).
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We have discussed throughout the work, that each cluster needs to respect a distant constraint
related to the length of the optical fibre. This was used as hard constraint in the input of DCCA.
The hyperbolic K-means achieves to produce the same number of clusters with a geographic spread
- measured by the diameter Diam - much smaller compared to the DCCA. The comparison of the
two methods over Diam is illustrated in Fig. 15. We can read the figure as follows:

Take-away 5: Given some distance constraint (y-axis) the number of clusters K that respect
this is considerably smaller in the (robust) Hyperbolic K-means, than in the DCCA. Hence, theH3
method can produce a small number of compact clusters with balanced traffic (high utilization),
using the same number of BBU resources (cost) as the DCCA method.

(a) Lille (b) Nantes
Fig 14: Utilization and Cost for Hyperbolic K-means and DCCA over varying number of clusters.

(a) Lille (b) Nantes
Fig 15: Cluster diameters of Hyperbolic K-means and DCCA over varying numbers of clusters.

6 Conclusion

In this work, we have addressed one of the challenges in the C-RAN and vRAN architecture, the
RU clustering into locally centralised BBU-pools (or RU-CU in the vRAN case). Our objective
was to propose a clustering scheme that maximises the resource utilization, that uses reduced
number of resources, and respects some distance limitations related to the cluster diameter. To
achieve this, we have been based on the vanilla K-means algorithm and proposed a variation that
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considers the traffic (or available resources) as third dimension. Instead of embedding the features
in euclidean space, we used the hyperbolic space, because the induced distance has a behaviour
that can facilitate the formation of clusters with the desired properties. The resulting clusters from
this novel approach further exhibit fairness in the aggregate load. We further made the algorithm
robust over multiple time-slots.

To evaluate performance, we have made use of real mobile data from Orange Mobile France,
for the cities of Lille and Nantes. Our method effectively reduces deployment cost by 15% and
improves resources utilization by 23 − 25%. It outperforms both euclidean K-means as well as
state-of-the art methods from the literature (DCCA).

Rather noteworthy is the fact that the hyperbolic k-means algorithm proposed in this work has
generality. In need not be restricted to problems of RU-BBU association, but could be applied
to any clustering problem that deals with various features which need not necessarily be treated
homogeneously. It is very useful for all clustering problems that require to group together nodes
with complementarity over some feature. The design parameters γ and the temporal window of
clustering are flexible tuning parameters that allow for performance improvement. The hyperbolic
embedding has been proven very useful in this setting, adding further to the arguments in favor of
this novel viewpoint.
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Muñoz, R., Nejabati, R., Yoshikane, N., Anastasopoulos, M., and Marquez-Barja, J., editors,
Optical Network Design and Modeling, pages 82–93, Cham. Springer International Publishing.

24


	Introduction
	Problem statement
	Notation and Evaluation Metrics

	Clustering methods in the literature
	Linear Programming
	K-means clustering
	Distance-Constrained Clustering Algorithm

	Hyperbolic K-means
	Traffic-aware RU clusters
	Hyperbolic Distance
	H3 distance properties
	Hyperbolic K-means algorithm for RU clustering
	Robustness

	Evaluation
	Datasets description
	Evaluation Plan
	Parameter Effect Study
	The scaling parameter 
	The number of clusters K

	Comparison over multiple time-slots

	Conclusion

