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Abstract

Being able to compare risk measures in practice is crucial in many applications such as in

finance, insurance or environmental science. The difficulty is that the variables of interest are

not always of the same nature, nor of the same type or scale. Thus the usual risk measures are

often misleading and to solve this issue we propose to use the Expected Proportional Shortfall

(EPS) which is scale invariant and thus, which does not depend on the unit of measurement.

To estimate the EPS, an estimator of the tail index γ is required. The main asymptotic

properties of our EPS estimator are provided under very general assumptions in case of

d−variate β−mixing processes with Pareto-type marginals. Then, we propose a test statistic

based on the EPS estimators to compare different risks, whatever their nature/type/scale

are. Since the performances of the test statistic are poor when a biased estimate of γ is used,

we propose to perform our EPS estimation with an asymptotically unbiased estimator for γ.

The efficiency of our test statistic is illustrated in a simulation experiment and validated on

an environmental dataset.

Keywords: Asymptotically unbiased estimator; β−mixing; Convergence in distribution; Ex-

pected Proportional Shortfall.
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1 Introduction and motivation

In many fields where assessing risk matters, it is of main importance to compare several risk

measures but often these measures are calculated from variables of different types or nature or

have different unit scales. An insurance company, for instance, may be interested in comparing

its claims linked to fire and its claims related to car accidents. In finance, one may want to com-

pare market risks of assets of different currencies. In this paper, we consider an environmental

application, where the question of interest is: what is the most risky climate extremes, floods or

heatwaves, in a certain area? Answering this question is crucial for policy-makers and insurers

to prepare for a future of climate change. Although humans can prevent the effects of floods by

building dams, extreme rainfalls still strike Europe, destroying constructions, lands and, some-

times, killing people. Likewise, severe heatwaves can lead to fatalities. The European heatwave

of 2003, for instance, resulted in at least 30 000 deaths in total, with more than 14 000 recorded

in France. These two risks linked to heavy rainfall and heatwaves originate in phenomena of

different natures and measured on different scales. To help in addressing the question above,

namely, which is the higher risk, we use daily data of precipitation (hourly sum over day, in

mm), of temperatures (daily minimum, in degree Celsius) and of humidity at 2m above ground

(daily maximum, in %) observed in Lausanne, Switzerland, during three years (2016–2019).

In this context of comparing risks linked to different types of data, the use of traditional risk

measures such as the Value-at-Risk (VaR), commonly used in finance, or its equivalent used in

environment (return level), can be misleading. To solve this issue, the Expected Proportional

Shortfall (EPS) has been introduced by Belzunce et al. (2012), and is defined for a non-negative

random variable X with finite mean and continuous distribution function FX , as

EPSp = E

[(
X −VaRp

VaRp

)
+

]
, (1)

for all p ∈ {p ∈ (0, 1) : VaRp > 0}, where VaRp = inf{x ∈ R : FX(x) ≥ 1 − p} and

a+ = max(a, 0). The EPS measures the thickness of the upper tail to a fixed VaR, proportional

to the VaR, and thus it can be useful to measure risks of different nature. In particular, it has

the nice property of being unaltered when all the values are multiplied by a positive scalar value.
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In this paper, we consider d−variate (X(1), . . . , X(d))T time series where each marginal dis-

tribution function is of Pareto-type with tail index γj < 1, j = 1, . . . , d, respectively. We

further assume that the vector is coming from a β-mixing process as we typically encounter in

environmental applications, often dealing with auto-correlated and cross-correlated components.

In a recent paper, Hoga (2018) constructs tests for equality of “tail risk” in the multivariate

context of β-mixing processes. The test is applied to financial data with an estimate of the

test statistic based on the tail index estimator proposed by Hill (1975). As is well-known in

the literature, this estimator may suffer from bias in some circumstances, which affects the

performance of the test. To illustrate this point, we simulate 1 000 independent bivariate

samples of size 1 000 (corresponding to the size of observations in our application) where each

marginal distribution function Fj , j = 1, 2, follows a Burr(λj , τj) distribution, namely:

Fj(x) = 1− (1 + xτj )−λj , (2)

where γj = 1
τjλj

, j = 1, 2. In our simulations below, we set γ1 = γ2 = 0.2, mimicking the esti-

mated values obtained in our application (Section 5). Our objectif is to test the null hypothesis:

H0 : γ1 = γ2. To this aim, we use the test statistic proposed by Hoga (2018) with γj , j = 1, 2,

estimated by the Hill estimator (as done in the latter paper), but also with the bias-corrected

estimator proposed by Chavez-Demoulin and Guillou (2018). The choice of the tuning parame-

ters involved in these estimators is the one suggested in each of the two abovementioned papers.

Since we want to point out that the bias in the tail index estimation has an impact on the per-

formance of the test, an important parameter in this illustration is the second order parameter,

denoted subsequently by ρj , and which is equal to ρj = − 1
λj
, j = 1, 2, for a Burr-type distribu-

tion as defined in (2). More precisely, the closer |ρj | is to 0, the more biased is the Hill estimator.

Table 1 shows the rejection frequency of the null hypothesis H0 : γ1 = γ2. We choose, ρ1 =

ρ2 = −1, corresponding to a situation where the Hill estimator does not suffer from bias. The

columns of the table correspond to the test statistic proposed by Hoga (2018) in case where the

tail index is estimated by the Hill estimator (left, Hill-estimate) and the Chavez-Demoulin and
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Guillou (2018) estimator (right, CG-estimate), for two levels 5% and 10% corresponding to the

rows of the table. Clearly, both methods perform well with rejection frequency close to the level.

This was expected since the second order parameters ρj , j = 1, 2, are far from 0, and thus the

test statistic is not too much sensitive on the tail index estimation method used.

Hill-estimate CG-estimate

5% 0.055 0.047

10% 0.12 0.092

Table 1: Burr distribution. Rejection frequency of the null hypothesis H0 : γ1 = γ2 in case

γ1 = γ2 = 0.2 and ρ1 = ρ2 = −1, based on 1 000 samples of size 1 000.

Similarly, Table 2 shows also the rejection frequency of the null hypothesis, but this time, when

ρ1 = −0.5 and ρ2 ∈ {−0.7,−0.6,−0.5,−0.4,−0.3}. As |ρ2| becomes closer to 0, the rejection fre-

quency based on the test statistic computed with the Hill-estimate increases drastically, leading

to an important type I error. On the contrary, with the CG-estimate, the rejection frequency

stays close to the level.

ρ2 -0.7 -0.6 -0.5 -0.4 -0.3

5%

Hill-estimate 0.036 0.060 0.091 0.146 0.274

CG-estimate 0.046 0.047 0.052 0.052 0.049

10%

Hill-estimate 0.101 0.123 0.160 0.236 0.421

CG-estimate 0.088 0.100 0.099 0.096 0.110

Table 2: Burr distribution. Rejection frequency of the null hypothesis H0 : γ1 = γ2 in case

γ1 = γ2 = 0.2 and ρ1 = −0.5, based on 1 000 samples of size 1 000.

Since the bias in estimating the tail index parameter clearly affects the performance of the test

statistic, we only use throughout the paper the bias-corrected estimator proposed by Chavez-

Demoulin and Guillou (2018). First, we extend the theoretical results of the latter paper to the
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multivariate context of d-variate β-mixing processes. Then, since a test based on equality of tail

indices is difficult to interpret for practitioners, except if they are familiar with extreme value

theory, we focus in this paper on a test statistic based on the EPS which, in addition to be easily

interpretable, allows us to compare risks of different nature, and as such it provides an answer

to our initial environmental question.

The remainder of the paper is organized as follows. In Section 2, an estimator of the Expected

Proportional Shortfall is proposed and its asymptotic properties are established. Then, in Sec-

tion 3, a test statistic based on this risk measure has been constructed in order to compare risks

of different nature or different unit scales. The performance of our test statistic in terms of

size and power is illustrated in Section 4 through a small simulation study. Finally, Section 5

is devoted to the analysis of the real data presented in the introduction in order to answer our

environmental question. All the proofs are postponed to the appendix.

2 Estimation of the Expected Proportional Shortfall

Let {ℵi = (X
(1)
i , · · · , X(d)

i )T }i=1,··· ,n be a d−variate time series, where the continuous distribu-

tion function of X
(j)
i , j ∈ {1, · · · , d}, are denoted by Fj and is assumed to be of Pareto-type

with index γj > 0, that is

1− Fj(x) = x−1/γj`j(x),

where `j(.) is a slowly varying function at infinity. Define also the associated tail quantile

function by Uj(x) = inf{y : Fj(y) ≥ 1 − 1/x}. Our estimator of the Expected Proportional

Shortfall is based on an intermediate sequence k, i.e., an integer sequence such that k = kn →∞

with k/n→ 0 as n→∞. To establish its convergence towards some Gaussian process, we need

to assume, as usual in extreme value theory, the following second order condition (SOC):

Assumption (SOC). For j ∈ {1, · · · , d}, there exist ρj < 0 and a positive or negative function

Aj(·) with limt→∞Aj(t) = 0, such that for all y > 0,

lim
t→∞

Uj(ty)
Uj(t)

− yγj

Aj(t)
= yγj

yρj − 1

ρj
, for y > 0.
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The function Aj(·) in Assumption (SOC) is regularly varying with index ρj < 0, and the bias

of the tail estimators, e.g., extreme value index or EPS estimators, can be explained by the rate

of convergence of this function Aj(·) towards 0: the closer ρj is to 0, the larger the bias.

More precisely, our time series {ℵi}i=1,··· ,n are assumed to be strictly stationary sequences of

Rd−valued random vectors, which are β−mixing, i.e., such that

β(`) := sup
m∈N

E

[
sup

A∈F∞m+`+1

|P(A|Fm1 )− P(A)|

]
−→ 0, as `→∞,

where F∞m+`+1 and Fm1 are the σ−algebra generated by (ℵm+`+1,ℵm+`+2, · · · ) and (ℵ1, · · · ,ℵm),

respectively.

All our results require some additional assumptions which can be viewed as multivariate analogue

of conditions required in extreme value theory for dependent data, as already used in, e.g., Drees

(2000, 2003), and defined as follows:

• Assumption (C1). {ℵi}i∈N is a strictly stationary β−mixing process with continuous

marginals and mixing coefficients β(·) such that

lim
n→∞

{
n

rn
β(`n) +

rn√
k

log2(k)

}
= 0,

for sequences {`n}n∈N ⊂ N, {rn}n∈N ⊂ N tending to infinity with `n = o(rn) and rn = o(n);

• Assumption (C2). There exists a function ri,j(x, y), (i, j) ∈ {1, · · · , d}2, such that for

some δ > 0, we have for all (x, y) ∈ (0, 1 + δ]2:

lim
n→∞

n

rnk
Cov

(
rn∑
`=1

1l{X(i)
` >Ui(

n
kx

)},

rn∑
m=1

1l{X(j)
m >Uj(

n
ky

)}

)
= ri,j(x, y);

• Assumption (C3). For some constants C > 0, δ > 0, we have for i ∈ {1, · · · , d}:

n

rnk
E

[
rn∑
`=1

1l{Ui( nky )<X
(i)
` ≤Ui(

n
kx

)}

]4
≤ C(y − x), ∀ 0 < x < y ≤ 1 + δ, n ∈ N.

Examples of time series satisfying Assumptions (C1)− (C3) can be found, for instance, in Drees

(2000, 2003), and include, among others, linear and ARCH models.
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Our aim is to estimate the Expected Proportional Shortfall defined in (1). To this goal, observe

that the EPS based on X(j), j ∈ {1, · · · , d}, can be rewritten, for γj < 1, as follows

EPSp,j =

∫ ∞
VaRp,j

(
x

VaRp,j
− 1

)
dFj(x)

= p

∫ ∞
1

1− Fj(zVaRp,j)

1− Fj(VaRp,j)
dz

= p

{∫ ∞
1

z−1/γjdz +Aj

(
1

p

)∫ ∞
1

z−1/γj
zρj/γj − 1

γjρj
dz

+Aj

(
1

p

)∫ ∞
1

 1−Fj(zVaRp,j)
1−Fj(VaRp,j) − z

−1/γj

Aj

(
1
p

) − z−1/γj z
ρj/γj − 1

γjρj

 dz


= p

{
γj

1− γj
+O

(
Aj

(
1

p

))}
, (3)

since, according to de Haan and Ferreira (2006, p. 161), under our Assumption (SOC), we

have the following inequality: for any ε, δ̃ > 0, there exists s0 = s0(ε, δ̃) > 1 such that for all

s, sz ≥ s0 and j ∈ {1, · · · , d}:∣∣∣∣∣∣
1−Fj(zs)
1−Fj(s) − z

−1/γj

Aj(1/(1− Fj(s)))
− z−1/γj z

ρj/γj − 1

γjρj

∣∣∣∣∣∣ ≤ εz−
1
γj

+
ρj
γj max

(
zδ̃, z−δ̃

)
. (4)

Thus, to estimate the Expected Proportional Shortfall, we need to estimate the extreme value

index γj .

Chavez-Demoulin and Guillou (2018) introduced a class of estimators for the extreme value

index in the case of a univariate β−mixing time series, say X. This class can be viewed as

statistical tail functionals, T (Qn), where Qn is the tail quantile function defined as Qn(u) :=

Xn−bkuc,n, 0 < u < n/k, and T (·) is a suitable functional, see also Goegebeur and Guillou (2013).

We propose to extend this class of estimators in the case of d−variate β−mixing time series, as

follows:

γ̂Kj,k(t) :=

∫ 1

0
log

Q
(j)
n,t(z)

Q
(j)
n,t(1)

d(zK(z)), (5)

where

Q
(j)
n,t(z) := X

(j)
bntc−bbktczc,bntc, for 0 < z < n/k, t ∈ [0, 1], and j ∈ {1, · · · , d}, (6)
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and where K satisfies the following assumption:

Assumption (K). Let K be a function such that
∫ 1
0 K(t)dt = 1. Suppose that K is continuously

differentiable on (0, 1) and that there exist M > 0 and τ ∈ [0, 1/2) such that |K(t)| ≤M t−τ .

These conditions on the function K(.) are not restrictive, in particular they are satisfied by

the usual power kernel function K(u) = (1 + ν)uν , ν ≥ 0, and the log-weight function K(u) =

(− log u)ν/Γ(1 + ν), ν ≥ 0. Note also that the usual tail quantile function Qn has been slightly

generalized in (6) since, later in Section 3, we use the self-normalization approach in order to

construct the test statistic, and thus we need to evaluate this function for different values of t.

Clearly, the estimator proposed in Chavez-Demoulin and Guillou (2018) is a particular case of

(5) corresponding to the specific value t = 1, whereas the well-known Hill estimator (Hill, 1975)

corresponds to the case K(z) = 1 and t = 1.

Before stating our first theorem on the convergence in distribution of our kernel-type estimator

for the index, we first define, for any t0 ∈ (0, 1), the space D[t0, 1] of càdlàg functions on [t0, 1]

equipped with the Skorohod metric, and by Dd[t0, 1] = D[t0, 1]×· · ·×D[t0, 1] the product space

endowed with the product metric.

Theorem 1. Let {ℵi}i=1,··· ,n be a time series satisfying Assumptions (C1)− (C3) together with

the second order condition (SOC) with
√
kAj(

n
k ) → λj ∈ R for j ∈ {1, · · · , d}, as n → ∞.

Assume that the distributions Fj are continuous, for all j ∈ {1, · · · , d}, and that the kernel K

satisfies Assumption (K). Then we have

t
√
k


γ̂K1,k(t)− γ1 −A1

(
n
k

) ∫ 1
0
s−ρ1−1
ρ1

d(sK(s))
...

γ̂Kd,k(t)− γd −Ad
(
n
k

) ∫ 1
0
s−ρd−1
ρd

d(sK(s))

 d−→ Σ
1/2
d Bd(t) in Dd[t0, 1],

where Bd(·) denotes a standard d−dimensional Brownian motion and

Σd :=

(
γiγj

∫ 1

0

∫ 1

0

[
σi,j(x, y)

xy
− σi,j(x, 1)

x
− σi,j(1, y)

y
+ σi,j(1, 1)

]
d(xK(x))d(yK(y))

)
(i,j)∈{1,··· ,d}2

,

with σi,j(x, y) := 1
2 [ri,j(x, y) + ri,j(y, x)] , (i, j) ∈ {1, · · · , d}2.

This theorem can be viewed as a generalization of Theorem 1 in Chavez-Demoulin and Guillou

(2018) to the multivariate context. Recall that our aim is to construct asymptotically unbiased
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estimators. To reach this goal, we have to use a mixture between two kernels, of the form

∆K1(·) + (1−∆)K2(·), where ∆ ∈ R is selected in such a way that the bias of our kernel-type

estimator computed with this mixture is 0. This yields to a class of asymptotically unbiased

estimators. Although the question of finding the asymptotically unbiased estimator with minimal

variance is open in the case of a β−mixing time series, in the independent and identically

distributed (iid) framework it has been solved by Goegebeur and Guillou (2013), who found the

following “optimal” kernel

Kρ(z) :=

(
1− ρ
ρ

)2

− (1− ρ)(1− 2ρ)

ρ2
z−ρ, z ∈ (0, 1).

In the sequel, we propose to use this advocated kernel for our β−mixing time series, as already

done in Chavez-Demoulin and Guillou (2018) in the case of a univariate β−mixing time series.

From (3), a natural estimator of the Expected Proportional Shortfall in case p→ 0 is given by

ÊPS
ρj
p,j(t) = p

γ̂
Kρj
j,k (t)

1− γ̂
Kρj
j,k (t)

, for j ∈ {1, · · · , d}. (7)

We are now able to show the convergence in distribution of our EPS estimator defined in (7).

Corollary 1. Let {ℵi}i=1,··· ,n be a time series satisfying Assumptions (C1)− (C3) together with

the second order condition (SOC) with
√
kAj(

n
k ) → λj ∈ R for j ∈ {1, · · · , d}, as n → ∞.

Assume that the distributions Fj are continuous with γj < 1, for all j ∈ {1, · · · , d}, and that

p = pn is such that k/(np)→∞. Then we have

t
√
k


ÊPS

ρ1
p,1(t)

EPSp,1
− 1

...

ÊPS
ρd
p,d(t)

EPSp,d
− 1

 d−→ Σ
1/2
d Bd(t) in Dd[t0, 1],

where

Σd :=
(

1
(1−γi)(1−γj)

∫ 1
0

∫ 1
0

[
σi,j(x,y)

xy − σi,j(x,1)
x − σi,j(1,y)

y + σi,j(1, 1)
]
d(xKρi(x))d(yKρj (y))

)
(i,j)∈{1,··· ,d}2

,

and σi,j(x, y), (i, j) ∈ {1, · · · , d}2, defined as in Theorem 1.
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Our Expected Proportional Shortfall estimator is thus asymptotically unbiased in the sense that

the expectation of the limit is zero whatever λj , j ∈ {1, · · · , d}, is.

Unfortunately the second order parameters ρj , j ∈ {1, ..., d}, are unknown in practice and thus

we can either replace them in (7) by canonical values or estimators. First, we consider the case

where ρj is replaced by some canonical value ρ̃j , j ∈ {1, · · · , d}. In that case, the convergence

in distribution of our EPS estimators given in Corollary 1 is modified as follows.

Corollary 2. Let {ℵi}i=1,··· ,n be a time series satisfying Assumptions (C1)− (C3) together with

the second order condition (SOC) with
√
kAj(

n
k ) → λj ∈ R for j ∈ {1, · · · , d}, as n → ∞.

Assume that the distributions Fj are continuous with γj < 1, for all j ∈ {1, · · · , d}, and that

p = pn is such that k/(np)→∞. Then we have

t
√
k


ÊPS

ρ̃1
p,1(t)

EPSp,1
− 1−A1

(
n
k

) (1−ρ̃1)(ρ̃1−ρ1)
ρ̃1(1−ρ1)(1−ρ1−ρ̃1)(1−γ1)γ1
...

ÊPS
ρ̃d
p,d(t)

EPSp,d
− 1−Ad

(
n
k

) (1−ρ̃d)(ρ̃d−ρd)
ρ̃d(1−ρd)(1−ρd−ρ̃d)(1−γd)γd

 d−→ Σ
1/2
d Bd(t) in Dd[t0, 1],

where

Σd :=
(

1
(1−γi)(1−γj)

∫ 1
0

∫ 1
0

[
σi,j(x,y)

xy − σi,j(x,1)
x − σi,j(1,y)

y + σi,j(1, 1)
]
d(xKρ̃i(x))d(yKρ̃j (y))

)
(i,j)∈{1,··· ,d}2

,

and σi,j(x, y), (i, j) ∈ {1, · · · , d}2, defined as in Theorem 1.

One clearly loses the bias correction, except if ρ̃j corresponds to the true value of ρj , j ∈

{1, · · · , d}. However, the Expected Proportional Shortfall estimators are not very sensitive to

such a mis-specification and thus our estimator ÊPS
ρ̃j
p,j(t), j ∈ {1, ..., d}, can still outperform the

estimators that are not corrected for bias. If we want nevertheless to keep the property of being

asymptotically unbiased, we need to estimate ρj in a consistent way. This leads to the following

general result.

Corollary 3. Let {ℵi}i=1,··· ,n be a time series satisfying Assumptions (C1)− (C3) together with

the second order condition (SOC) with
√
kAj(

n
k ) → λj ∈ R for j ∈ {1, · · · , d}, as n → ∞.

Assume that the distributions Fj are continuous with γj < 1, for all j ∈ {1, · · · , d}, and that
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p = pn is such that k/(np)→∞. Let ρ̂j,kρ := ρ̂j be an external estimator for ρj, j ∈ {1, · · · , d},

consistent in probability, which depends on an intermediate sequence kρ. Then we have

t
√
k


ÊPS

ρ̂1
p,1(t)

EPSp,1
− 1

...

ÊPS
ρ̂d
p,d(t)

EPSp,d
− 1

 d−→ Σ
1/2
d Bd(t) in Dd[t0, 1],

where Σd is defined as in Corollary 1.

A possible choice for ρ̂j,kρ , j ∈ {1, · · · , d}, is that proposed by Gomes et al. (2002) and defined

as

ρ̂j,kρ :=
−4 + 6S

(2)
j,kρ

+
√

3S
(2)
j,kρ
− 2

4S
(2)
j,kρ
− 3

provided S
(2)
j,kρ
∈
(
2
3 ,

3
4

)
,

where

S
(2)
j,kρ

:=
3

4

[
M

(4)
j,kρ
− 24

(
M

(1)
j,kρ

)4] [
M

(2)
j,kρ
− 2

(
M

(1)
j,kρ

)2]
[
M

(3)
j,kρ
− 6

(
M

(1)
j,kρ

)3]2
with

M
(α)
j,kρ

:=
1

kρ

kρ∑
`=1

(
logX

(j)
n−`+1,n − logX

(j)
n−kρ,n

)α
, α ∈ N.

According to Theorem 2.1 in Gomes et al. (2002), this estimator ρ̂j,kρ is consistent in probability

as soon as the intermediate sequence kρ satisfies
√
kρAj(n/kρ) → ∞ and our second order

condition (SOC) hold.

3 Test statistic based on the Expected Proportional Shortfall

We have now all the ingredients to move to our final goal of the paper, i.e., the construction

of our test statistic, based on the Expected Proportional Shortfall, in order to compare risks of

different nature or of different unit scales. Our null hypothesis is formulated as follows

HEPS
0 : lim

p→0

EPSp,j
EPSp,d

= 1, or equivalently lim
p→0

log
EPSp,j
EPSp,d

= 0, ∀j = 1, · · · , d− 1,

11



and allows us to compare the EPS of β−mixing series as p goes to zero.

To construct our test statistic we propose to use the self-normalization approach, originally in-

troduced by Kiefer et al. (2000), Lobato (2001) and Shao (2010). See also Shao (2015) for a

recent review. The idea behind this approach is to use a ratio-type statistic in order to cancel

the unknown asymptotic variance Σd appearing in both the numerator and denominator. Thus

a pivotal limiting distribution results, whose critical values may be computed through simula-

tions. The main advantages of this approach is the simplicity of implementation together with

the fact that it does not depend on any tuning parameters.

To this aim, define the two (d− 1)× 1 matrices:

L̂REPSp(t) :=


log

ÊPS
ρ̂1
p,1(t)

ÊPS
ρ̂d
p,d(t)

...

log
ÊPS

ρ̂d−1
p,d−1(t)

ÊPS
ρ̂d
p,d(t)

 and LREPSp(t) :=


1
d

∑d
j=1 log

ÊPS
ρ̂j
p,j(t)

ÊPS
ρ̂d
p,d(t)

...

1
d

∑d
j=1 log

ÊPS
ρ̂j
p,j(t)

ÊPS
ρ̂d
p,d(t)

 .

Then, our test statistic for HEPS
0 is given by

TEPS
p :=

[
L̂REPSp(1)− LREPSp(1)

]T
×
[∫ 1

t0

t2
{[

L̂REPSp(t)− LREPSp(t)
]
−
[
L̂REPSp(1)− LREPSp(1)

]}
×
{[

L̂REPSp(t)− LREPSp(t)
]
−
[
L̂REPSp(1)− LREPSp(1)

]}T
dt

]−1
×
[
L̂REPSp(1)− LREPSp(1)

]
, (8)

and its behaviour, under the null hypothesis and its alternative, is summarized in the following

theorem.

Theorem 2. Under the same conditions as in Corollary 3, if Σd is a positive-definite matrix,

then we have:

• under HEPS
0 :

TEPS
p

d−→ BTd−1(1)

[∫ 1

t0

{Bd−1(t)− tBd−1(1)} {Bd−1(t)− tBd−1(1)}T dt
]−1
Bd−1(1),

12



where Bd−1(·) denotes a standard (d− 1)−dimensional Brownian motion;

• under HEPS
1 :

TEPS
p

k
= OP(1).

4 Simulation experiment

In this section, we perform a simulation study in order to illustrate the performance in terms of

size and power of our test statistic defined in (8). We limit ourselves to the case d = 2, although

similar results can be obtained in higher dimensions. Note that our EPS estimator (7) is defined

in case p tends to 0, but since our test statistic involves ratios between two EPS estimators, it

no longer depends on p. In practice this means that the conclusion of the test is stable over

levels p (small enough) or equivalently over time horizons if the interpretation of the EPS is in

terms of the return period. This seems realistic in the environmental context: If, in a given area

and over a certain (long-term) horizon, flood is more risky than heatwave, this is likely to be

true for higher time horizon, under same underlying conditions of climate or human interven-

tion. We choose throughout this section p = 1/n corresponding to the boundary of observations.

Now, we need to select t0. This parameter cannot be too large or too small. Indeed, a small

value of t0 means that the EPS estimator (7) is based on samples that are too small for t close

to t0, whereas a too large value, implies that the integral-term in our test statistic (8) is based

on too few differences. An extensive simulation study (not reported in the paper) shows that

the value t0 = 0.3 provides a reasonable trade-off and performs well in all the models considered

and whatever the sample size is. Then, we have to compute the critical values of the limiting

distribution in Theorem 2 for t0 = 0.3. This is done by a Monte Carlo method using 100 000

paths of standard Brownian motions, each path coming from 100 000 standard normal random

variables. Table 3 gives these critical values.

Next, the intermediate sequence k used in our test statistic needs to be selected. To this aim,

13



Level 5% 10%

Critical value 67 41

Table 3: Critical values of the limiting distribution in Theorem 2 for t0 = 0.3 and d = 2, for two

levels.

the following algorithm is used. For a given series j, j = 1, ..., d, since the Chavez-Demoulin and

Guillou (2018) estimator for γ is asymptotically unbiased, we expect to see a plateau when we

look at this estimate as a function of the intermediate sequence. Thus, the latter is selected as

the smallest value from which the median of the estimates of γ over all the replications exhibit

a stable part. We denote this value by kj , j = 1, ..., d. Finally, the retained value of k used in

our test statistic corresponds to k = min1≤j≤d kj . We use here the minimum since a too large

value of this parameter might induce a bias in the estimation procedure.

Concerning the choice of the sequence kρ required in the estimation of the second order parameter

ρ, as in Chavez-Demoulin and Guillou (2018) we use

kρ := sup

{
k : k ≤ min

(
m− 1,

2m

log logm

)
and ρ̂k exists

}
,

with m the number of positive observations in the sample.

In this simulation study, we use two data-generating β-mixing processes. One corresponds

to the iid case of two Burr-type random variables as defined in (2) and the second one, to

a VMA process, which is a more realistic process encountered in real environmental context.

More precisely, it is a β-mixing process that allows both auto-correlation and cross-correlation,

and thus it can naturally appear in environmental data, auto-correlation reflecting persistence

of weather, whereas cross-correlation reflects the dynamics of weather. Our VMA(1) process

considered is of the following form X
(1)
i = W

(1)
i +W

(1)
i−1 + νW

(2)
i−1

X
(2)
i = W

(2)
i +W

(2)
i−1,

(9)

i = 1, . . . , n, where (W (1),W (2))T , is a bivariate random vector with marginsW (j) ∼ Burr(λj , τj),

14



j = 1, 2 and with dependence structure coming from a Gumbel copula with parameter θ = 2.

The choice of a Gumbel copula is to exhibit upper tail dependence. We take ν = −0.45 to mimic

the (negative) cross correlation we observe between temperature and humidity in our application.

Table 4, respectively Table 5, shows the rejection frequency of the null hypothesis HEPS
0 in the

iid case of two Burr-type random variables, respectively our VMA(1) process defined in (9),

with γ1 = 0.2, mimicking the estimated values obtained in our application and with ρ1 = −1

and ρ2 = −0.25. The index γ2 varies from 0.2 to 0.9. We run 1 000 samples of size 500, 1 000

and 2 000.

From these two tables, one can draw the following conclusions:

• If γ2 = γ1, the frequencies of rejection, which correspond to the type I error, are rather

close to the level of the test, especially in Table 4 when the sample size is sufficiently large;

• If γ2 is different from γ1, but without being too far away from it (e.g., γ1 = 0.2 and γ2 =

0.25), the frequencies of rejection are already high, especially in Table 5. It underlines the

quality of the test which is able to detect deviations, even small, with the null hypothesis;

• When γ2 deviates significantly from γ1, the frequencies of rejection drastically increase for

both levels and all sample sizes, illustrating the high power of the test.

5 Application to an environmental dataset

The past few decades have seen extreme climate events with catastrophic impacts on human

society and the economy. In addition to global warming, many climate projections suggest an

increase in climate extremes in Europe (IPCC, 2012). With the warming of the oceans, periods

of excessive rainfall will appear considerably more often. The European Environment Agency

(www.eea.europa.eu) supports this projection, endorsing, in November 2019, the statement that

“Heavy precipitation events are likely to become more frequent in most parts of Europe” and
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γ2 0.2 0.25 0.5 0.7 0.9

n = 500

5% 0.034 0.055 0.478 0.839 0.986

10% 0.056 0.116 0.705 0.904 0.991

n = 1 000

5% 0.040 0.151 0.757 0.951 1.000

10% 0.087 0.270 0.872 0.971 1.000

n = 2 000

5% 0.050 0.220 0.891 0.862 0.996

10% 0.098 0.341 0.954 0.941 0.998

Table 4: Rejection frequency of the null hypothesis HEPS
0 in the iid case of two Burr-type

random variables based on 1 000 samples, for different values of γ2, levels and sample sizes. The

parameters are γ1 = 0.2, ρ1 = −1 and ρ2 = −0.25.

γ2 0.2 0.25 0.5 0.7 0.9

n = 500

5% 0.040 0.102 0.602 0.678 0.933

10% 0.064 0.177 0.763 0.808 0.964

n = 1 000

5% 0.066 0.242 0.874 0.862 0.981

10% 0.122 0.371 0.949 0.942 0.994

n = 2 000

5% 0.065 0.342 0.943 0.818 0.954

10% 0.119 0.492 0.978 0.927 0.980

Table 5: Rejection frequency of the null hypothesis HEPS
0 in case of the VMA(1) process defined

in (9) based on 1 000 samples, for different values of γ2, levels and sample sizes. The parameters

are γ1 = 0.2, ρ1 = −1 and ρ2 = −0.25.
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the possible consequences include erratic climate situations, leading to crop failures, increases

in food prices, and economic and social instabilities (Vogel et al., 2019). In Europe, another

source of societal damages and fatalities is the extremes of temperature causing severe winter

conditions or heatwaves. A large majority (91%) of deaths due to extreme temperatures are

the result of heatwaves. Between 2000 and 2019, Europe accounts for 88% of all deaths, due to

the heatwave in 2003. Although human intervention can, to a certain extent, return significant

damage due to flooding, it is impossible to divert a heatwave or an extreme precipitation. These

points are crucial in managing societal risk and in making public safety decisions. It is therefore

important to ask the question: in a specific region of Europe and during the same season of the

year, what is the highest risk between a heatwave or an heavy precipitation? These two events

have alternatively stricken Lausanne several times in late spring season.

In this study, our aim is to compare the different risks of observing extreme precipitation, extreme

humidity and extreme daily maximum temperature in Lausanne. The three being measured on

different scales, it does not make sense to compare their VaR whereas the EPS is precisely an

adequate risk measure in this context. Comparing the tail index γ of the three time series would

be an alternative but unfortunately it is not easily interpretable for practitioners or people who

are not familiar with extreme value theory. On the other hand, the EPS can claim to be a

universal measure for risks of different natures.

Our dataset concern 1003 observations measured daily in Lausanne, from July 9, 2016 to April

12, 2019. The data consist of humidity at 2m above ground, in %, daily maximum (Figure 1);

precipitation, in mm, hourly sum over day (Figure 2); and temperature, in degree Celsius, daily

maximum (Figure 3). ACF plots (not shown here) of the series show some auto-correlation, so

we apply ARMA models to the series individually and keep the residuals series to work with.

According to the CCF plots of Figure 4, the residuals look cross-correlated, especially when the

residual series of precipitation is involved, which means that a VMA process can be adjusted to

our data. Figure 5 represents the estimators for γ, with, on the left panel, the Chavez-Demoulin

and Guillou (2018) estimators and, on the right panel, the Hill estimators, for temperature (solid

line), humidity (dotted line) and precipitation (dashed line). In the three cases, the estimates

of γ based on the Chavez-Demoulin and Guillou (2018) method look more stable as a function
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Figure 1: Humidity at 2m above ground in Lausanne (in %, daily maximum) from July 9, 2016

to April 12, 2019.
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Figure 2: Precipitation in Lausanne (in mm, hourly sum over day) from July 9, 2016 to April

12, 2019.

of k than the Hill estimators. This is explained by the fact that the Chavez-Demoulin and

Guillou (2018) estimators are asymptotically unbiased and, as explained in the introductory
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Figure 3: Temperature in Lausanne (in degree Celsius, daily maximum) from July 9, 2016 to

April 12, 2019.

section, for this reason, they are the reference in the estimation of the EPS. The retained value

of k is 50, corresponding to the smallest value of the three intermediate sequences after which

a stability in the left panel of Figure 5 appears. Choosing a level p = 1/n, for humidity, we

get ÊPSH = 2.79 × 10−4, for precipitation we have ÊPSP = 5.38 × 10−4, and for temperature,

ÊPST = 7.78 × 10−5. As expected, and in accordance with climate science literature, the

risk of extreme rainfall in this region is higher than the risk of high humidity or high daily

temperature. Lausanne has been struck by huge spring precipitation in June 2018 and 2019.

On June 11th, 2018, 41.0 mm fell within 10 minutes, making that period of three days (three

crossed points in Figure 2) an extreme climate event. Although the risk of humidity is lower

than the risk of high precipitation, it is linked to precipitation by physical law. Table 6 provides

the values of the test statistic based on the comparison of the three series together and then of

all combinations of pairs. According to Table 3, the critical value corresponding to a level of 5%

is 67 in dimension 2 and a similar computation yields to 168 in dimension 3. Since we reject the

null hypothesis when using the three series, it is important to perform pairwise tests. We notice

that we reject the null hypothesis based on the EPS of the pair (Precipitation, Temperature)
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Figure 4: Cross Correlation plot (CCF) between Precipitation-Humidity, Precipitation-

Temperature and Humidity-Temperature.

whereas we do not reject the null hypothesis when we use the pairs (Humidity, Precipitation)

and (Humidity, Temperature). As shown in the left panel of Figure 5, the estimator for γ

based on the precipitation variable is larger than the ones for humidity and temperature. This

means that we can expect more rainfall extremes than high temperature or humidity extremes

in Lausanne. The fact that we get significantly much higher risk (EPS) of extreme precipitations

than temperature is in accordance with the increase of extreme rainfalls recently observed in

Switzerland and planned by the climate extremes projections. Although there is an increase of

heatwaves observed in Switzerland, note that the daily maximum temperature does not really

define an heatwave but just a punctual peak, the definition of an heatwave including also the

heat duration. For the pair (Humidity, Precipitation), the non-rejection of the null hypothesis

may be due to the physical link between these two variables, whereas for the pair (Humidity,
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Figure 5: The Chavez-Demoulin and Guillou estimator (left panel) and the Hill estimator (right

panel) for temperature (solid line), humidity (dotted line) and precipitation (dashed line).

Temperature), it shows an equivalent and limited risk for each variable, in Lausanne.

HEPS0 Test statistic Decision

EPSH = EPSP = EPST 190.88 Rejection

EPSH = EPSP 3.77 Non− rejection

EPSH = EPST 6.37 Non− rejection

EPSP = EPST 73.17 Rejection

Table 6: Test statistic based on the three series (Humidity, Precipitation, Temperature) and the

pairs (Humidity, Precipitation), (Humidity, Temperature), (Precipitation, Temperature).
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6 Appendix: Proofs of the results

Before proving our Theorem 1, we first remark that our kernel-type estimator of the index,

γ̂Kj,k(t), can be rewritten as

γ̂Kj,k(t) =

∫ 1

0
log

Q
(j)
n,t(z)

Q
(j)
n,t(1)

d(zK(z)) =

bktc∑
i=1

∫ i
bktc

i−1
bktc

log
Q

(j)
n,t(z)

Q
(j)
n,t(1)

d(zK(z))

=

bktc∑
i=1

log
X

(j)
bntc−i+1,bntc

X
(j)
bntc−bktc,bntc

∫ i
bktc

i−1
bktc

d(zK(z))

=

bktc∑
i=1

log
X

(j)
bntc−i+1,bntc

X
(j)
bntc−bktc,bntc

{
i

bktc
K

(
i

bktc

)
− i− 1

bktc
K

(
i− 1

bktc

)}

=

bktc∑
i=1

logX
(j)
bntc−i+1,bntc

{
i

bktc
K

(
i

bktc

)
− i− 1

bktc
K

(
i− 1

bktc

)}
−K(1) logX

(j)
bntc−bktc,bntc

=

bktc−1∑
i=0

bktc − i
bktc

K

(
bktc − i
bktc

)
log

X
(j)
bntc−bktc+i+1,bntc

X
(j)
bntc−bktc+i,bntc

=

bktc−1∑
i=0

∫ X
(j)
bntc−bktc+i+1,bntc

X
(j)
bntc−bktc,bntc

X
(j)
bntc−bktc+i,bntc

X
(j)
bntc−bktc,bntc

{∫ bktc−i
bktc

0
d(zK(z))

}
dy

y

=

∫ ∞
1

{∫ Fn,j(t,y)

0
d(zK(z))

}
dy

y
(10)

where

Fn,j(t, y) :=
1

bktc

bntc∑
i=1

1l{X(j)
i >yX

(j)
bntc−bktc,bntc}

=


bktc−i
bktc if y ∈

[
X

(j)
bntc−bktc+i,bntc

X
(j)
bntc−bktc,bntc

,
X

(j)
bntc−bktc+i+1,bntc

X
(j)
bntc−bktc,bntc

)
0 if y ≥

X
(j)
bntc,bntc

X
(j)
bntc−bktc,bntc

.

Thus to study the asymptotic properties of γ̂Kj,k(t), we need first to look at the behaviour of

Fn,j(t, ·). This preliminary result is given and proved in Section 6.1 below.
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6.1 Preliminary result

Theorem A. Let {ℵi}i=1,··· ,n be a time series satisfying Assumptions (C1) − (C3) together

with the second order condition (SOC) with
√
kAj(

n
k )→ λj ∈ R for j ∈ {1, · · · , d}, as n→∞.

Assume that the distributions Fj are continuous, for all j ∈ {1, · · · , d}. Then, for any t0 ∈ (0, 1)

and ν ∈ [0, 1/2), under a Skorohod construction, we have, as n→∞

sup
t∈[t0,1],z≥1

∣∣∣∣∣∣∣∣∣∣∣


z
ν
γ1

{
t
√
k

[
Fn,1(t, z)− z

− 1
γ1 −A1

(
n
k

)
z
− 1
γ1

z
ρ1
γ1 −1
γ1ρ1

]
−
[
W1

(
t, z
− 1
γ1

)
− z−

1
γ1W1(t, 1)

]}
...

z
ν
γd

{
t
√
k

[
Fn,d(t, z)− z

− 1
γd −Ad

(
n
k

)
z
− 1
γd

z
ρd
γd −1
γdρd

]
−
[
Wd

(
t, z
− 1
γd

)
− z−

1
γdWd(t, 1)

]}


∣∣∣∣∣∣∣∣∣∣∣
a.s.−→ 0,

where W(., .) = (W1(·, ·), · · · ,Wd(·, ·))T is a d−variate continuous centered Gaussian process

with covariance function given by

Cov(W(t1, y1),W(t2, y2)) =

(
min(t1, t2)

2
[ri,j(y1, y2) + ri,j(y2, y1)]

)
(i,j)∈{1,··· ,d}2

.

Proof of Theorem A. We follow the lines of the proof of Theorem 1 in Hoga (2018), in par-

ticular, we consider random variables U
(j)
i , i ∈ {1, · · · , n}, j ∈ {1, · · · , d}, uniformly distributed

on [0, 1], such that

• Assumption (U1).
{
Ui = (U

(1)
i , · · · , U (d)

i )T
}
i∈N

is a strictly stationary β−mixing process

with uniform[0, 1] marginals and mixing coefficients β(·) such that

lim
n→∞

{
n

rn
β(`n) +

rn√
k

log2(k)

}
= 0

for sequences {`n}n∈N ⊂ N, {rn}n∈N ⊂ N tending to infinity with `n = o(rn) and rn = o(n);

• Assumption (U2). There exists a function rUi,j(u, v), (i, j) ∈ {1, · · · , d}2, such that for

some δ > 0, we have for all (u, v) ∈ (0, 1 + δ]2:

lim
n→∞

n

rnk
Cov

(
rn∑
`=1

1l{U(i)
` >1− k

n
u},

rn∑
m=1

1l{U(j)
m >1− k

n
v}

)
= rUi,j(u, v);

• Assumption (U3). For some constants C > 0, δ > 0, we have for i ∈ {1, · · · , d}:

n

rnk
E

[
rn∑
`=1

1l{1− k
n
v<U

(i)
` ≤1−

k
n
u}

]4
≤ C(v − u), ∀ 0 < u < v ≤ 1 + δ, n ∈ N.
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Then, as n→∞, we have, for any ν ∈ [0, 1/2)

y−ν
√
k


1
k

∑bntc
`=1

[
1l{U(1)

` >1− k
n
y} −

k
ny
]

...

1
k

∑bntc
`=1

[
1l{U(d)

` >1− k
n
y} −

k
ny
]
 d−→ y−ν


W1(t, y)

...

Wd(t, y)

 in Dd([t0, 1]× (0, 1 + δ]). (11)

Note that Assumptions (C1)− (C3) for X
(j)
` , j ∈ {1, · · · , d}, imply Assumptions (U1)− (U3) for

U
(j)
` = Fj(X

(j)
` ). Also

X
(j)
` > Uj

(
n

ky

)
⇔ U

(j)
` > 1− k

n
y

which implies by (11) and since nt− 1 < bntc ≤ nt, that, as n→∞,

y−ν
√
k


1
k

∑bntc
`=1 1l{X(1)

` >U1(
n
ky

)} − ty
...

1
k

∑bntc
`=1 1l{X(d)

` >Ud(
n
ky

)} − ty

 d−→ y−ν


W1(t, y)

...

Wd(t, y)

 in Dd([t0, 1]× (0, 1 + δ]).

By the Skorohod’s representation theorem, this convergence holds a.s. on a suitable probability

space, i.e.,

sup
t∈[t0,1],y∈(0,1+δ]

∣∣∣∣∣∣∣∣∣∣
y−ν
√
k


1
k

∑bntc
`=1 1l{X(1)

` >U1(
n
ky

)} − ty
...

1
k

∑bntc
`=1 1l{X(d)

` >Ud(
n
ky

)} − ty

− y−ν

W1(t, y)

...

Wd(t, y)


∣∣∣∣∣∣∣∣∣∣
a.s.−→ 0, (12)

the limit being continuous, the convergence is thus uniform.

Now, we need to show that Uj(
n
ky ) can be replaced by Uj(

n
k )y−γj , j ∈ {1, · · · , d}. To this aim,

we use the inequality (4) by setting s = Uj(
n
k ), z = y−γj , from which we deduce that, as n→∞,

sup
y∈(0,1+δ]

∣∣∣∣∣∣
n
k [1− Fj(y−γjUj(nk ))]− y −Aj(nk ) y y−ρj−1

γjρj

yAj(
n
k )

∣∣∣∣∣∣ = o(1). (13)

Set yn,j := n
k [1− Fj(y−γjUj(nk ))]. In the j−th row of the matrix in (12), j = 1, · · · , d, inserting

yn,j for y, implies that

sup
t∈[t0,1],y∈(0,1+δ]

∣∣∣∣∣∣∣∣∣∣∣


y−νn,1

{√
k

[
1
k

∑bntc
`=1 1l{X(1)

` >U1(
n

kyn,1
)} − tyn,1

]
−W1(t, yn,1)

}
...

y−νn,d

{√
k

[
1
k

∑bntc
`=1 1l{X(d)

` >Ud(
n

kyn,d
)} − tyn,d

]
−Wd(t, yn,d)

}


∣∣∣∣∣∣∣∣∣∣∣
a.s.−→ 0,

24



i.e.,

sup
t∈[t0,1],y∈(0,1+δ]

∣∣∣∣∣∣∣∣∣∣


y−νn,1

{√
k
[
1
k

∑bntc
`=1 1l{X(1)

` >y−γ1U1(
n
k
)} − tyn,1

]
−W1(t, yn,1)

}
...

y−νn,d

{√
k
[
1
k

∑bntc
`=1 1l{X(d)

` >y−γdUd(
n
k
)} − tyn,d

]
−Wd(t, yn,d)

}

∣∣∣∣∣∣∣∣∣∣
a.s.−→ 0.

Using (13), the fact that
√
kAj(

n
k ) → λj ∈ R and a uniform continuity argument for Wj(t, ·),

j ∈ {1, · · · , d}, we have

sup
t∈[t0,1],y∈(0,1+δ]

∣∣∣∣∣∣∣∣∣∣


y−ν

{√
k
[
1
k

∑bntc
`=1 1l{X(1)

` >y−γ1U1(
n
k
)} − ty −A1(

n
k )t y y−ρ1−1

γ1ρ1

]
−W1(t, y)

}
...

y−ν
{√

k
[
1
k

∑bntc
`=1 1l{X(d)

` >y−γdUd(
n
k
)} − ty −Ad

(
n
k

)
t y y−ρd−1

γdρd

]
−Wd(t, y)

}

∣∣∣∣∣∣∣∣∣∣
a.s.−→ 0,

or by changing y into z
− 1
γj (j−th component)

sup
t∈[t0,1],z≥1−δ̃

∣∣∣∣∣∣∣∣∣∣∣


z
ν
γ1

{√
k

[
1
k

∑bntc
`=1 1l{X(1)

` >zU1(
n
k
)} − tz

− 1
γ1 −A1

(
n
k

)
tz
− 1
γ1

z
ρ1
γ1 −1
γ1ρ1

]
−W1

(
t, z
− 1
γ1

)}
...

z
ν
γd

{√
k

[
1
k

∑bntc
`=1 1l{X(d)

` >zUd(
n
k
)} − tz

− 1
γd −Ad

(
n
k

)
tz
− 1
γd

z
ρd
γd −1
γdρd

]
−Wd

(
t, z
− 1
γd

)}


∣∣∣∣∣∣∣∣∣∣∣
a.s.−→ 0,(14)

for some δ̃ > 0. The next step consists to replace Uj(
n
k ), j ∈ {1, · · · , d}, by suitable order

statistics. This can be done since from (14) and the generalized Vervaat Lemma of Einmahl et

al. (2010, Lemma 5), we have for all j ∈ {1, · · · , d}, as n→∞,

sup
t∈[t0,1]

∣∣∣∣∣∣∣
√
k


X(j)

bntc−bktc,bntc

Uj(
n
k )

− 1
γj

− 1

+
Wj(t, 1)

t

∣∣∣∣∣∣∣ a.s.−→ 0.

Finally, replacing in (14) z by zn = zX
(j)
bntc−bktc,bntc/Uj(

n
k ) (j−th component) and since bktck =

t+O
(
1
k

)
uniformly in t, Theorem A follows. Note that the covariance structure of the Gaussian

process W(·, ·) comes from Lemma 1 in Hoga (2018). �

We have now all the ingredients in order to prove our main results.
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6.2 Proofs of the main results

Proof of Theorem 1. To prove this theorem, we make use of the Cramér-Wold device (see,

e.g., Severini, 2005, p. 337). More precisely, we show that

βT t
√
k


γ̂K1,k(t)− γ1 −A1

(
n
k

) ∫ 1
0
s−ρ1−1
ρ1

d(sK(s))
...

γ̂Kd,k(t)− γd −Ad
(
n
k

) ∫ 1
0
s−ρd−1
ρd

d(sK(s))

 d−→ βT


γ1
∫ 1
0

[
s−1W1(t, s)−W1(t, 1)

]
d(sK(s))

...

γd
∫ 1
0

[
s−1Wd(t, s)−Wd(t, 1)

]
d(sK(s))


for all β ∈ Rd.

To this aim, first remark that, using (10), and since, under Assumption (K), we have

γj =

∫ ∞
1

{∫ y−1/γj

0
d(zK(z))

}
dy

y
,

direct computations lead to

βT t
√
k


γ̂K1,k(t)− γ1 −A1

(
n
k

) ∫ 1
0
s−ρ1−1
ρ1

d(sK(s))
...

γ̂Kd,k(t)− γd −Ad
(
n
k

) ∫ 1
0
s−ρd−1
ρd

d(sK(s))



=
d∑
`=1

β` t
√
k

[
γ̂K`,k(t)− γ` −A`

(n
k

)∫ 1

0

s−ρ` − 1

ρ`
d(sK(s))

]

=
d∑
`=1

β` t
√
k

[
γ`

∫ 1

0

{∫ Fn,`(t,z
−γ` )

0
d(sK(s))−

∫ z

0
d(sK(s))

}
dz

z

−A`
(n
k

)∫ 1

0

s−ρ` − 1

ρ`
d(sK(s))

]
.

Then, applying the mean value theorem, we get for some ξz ∈ (0, 1)∫ Fn,`(t,z
−γ` )

0
d(sK(s)) =

∫ z

0
d(sK(s)) +

{
Fn,`(t, z

−γ`)− z
} d(sK(s))

ds
|s=z+ξz[Fn,`(t,z−γ` )−z].

This implies that, uniformly in t ∈ [t0, 1]:
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βT t
√
k


γ̂K1,k(t)− γ1 −A1

(
n
k

) ∫ 1
0
s−ρ1−1
ρ1

d(sK(s))
...

γ̂Kd,k(t)− γd −Ad
(
n
k

) ∫ 1
0
s−ρd−1
ρd

d(sK(s))



=
d∑
`=1

β` t
√
k

[
γ`

∫ 1

0

{
Fn,`(t, z

−γ`)− z
} d(sK(s))

ds
|s=z+ξz[Fn,`(t,z−γ` )−z]

dz

z

−A`
(n
k

)∫ 1

0

s−ρ` − 1

ρ`
d(sK(s))

]
d−→

d∑
`=1

β`γ`

∫ 1

0

[
s−1W`(t, s)−W`(t, 1)

]
d(sK(s))

by our Theorem A. This achieves the proof of Theorem 1. �

Proof of Corollary 1. Combining (3) with (7), together with the fact that |Aj(.)| is regularly

varying at infinity with index ρj < 0, we deduce that

t
√
k

(
ÊPS

ρj
p,j(t)

EPSp,j
− 1

)
= t

√
k

 γ̂
Kρj
j,k (t)

1− γ̂
Kρj
j,k (t)

1− γj
γj +O(Aj(

1
p))
− 1


=

1

γj

(
1− γ̂

Kρj
j,k (t)

) t√k (γ̂Kρjj,k (t)− γj
)

+OP

(√
kAj

(
1

p

))

=
1

γj(1− γj)
t
√
k
(
γ̂
Kρj
j,k (t)− γj

)
(1 + oP(1)) + oP

(√
kAj

(n
k

))
=

1

γj(1− γj)
t
√
k
(
γ̂
Kρj
j,k (t)− γj

)
+ oP(1),

uniformly in t ∈ [t0, 1].

Now, using Theorem 1 and the fact that for all j ∈ {1, · · · , d},
∫ 1
0
s−ρj−1
ρj

d(sKρj (s)) = 0,

Corollary 1 is established. �

Proof of Corollary 2. Following the lines of proof of our Corollary 1,

t
√
k

 ÊPS
ρ̃j
p,j(t)

EPSp,j
− 1−Aj

(n
k

) (1− ρ̃j)(ρ̃j − ρj)
ρ̃j(1− ρj)(1− ρj − ρ̃j)(1− γj)γj


=

1

γj(1− γj)
t
√
k

(
γ̂
Kρ̃j
j,k (t)− γj −Aj

(n
k

) (1− ρ̃j)(ρ̃j − ρj)
ρ̃j(1− ρj)(1− ρj − ρ̃j)

)
+ oP(1),
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uniformly in t ∈ [t0, 1].

Now, combining Theorem 1 with the fact that for all j ∈ {1, · · · , d}∫ 1

0

s−ρj − 1

ρj
d(sKρ̃j (s)) =

(1− ρ̃j)(ρ̃j − ρj)
ρ̃j(1− ρj)(1− ρj − ρ̃j)

Corollary 2 follows. �

Proof of Corollary 3. Again, following the lines of proof of Corollary 1, we have

t
√
k

 ÊPS
ρ̂j
p,j(t)

EPSp,j
− 1

 = t
√
k

 γ̂
Kρ̂j
j,k (t)

1− γ̂
Kρ̂j
j,k (t)

1− γj
γj +O(Aj(

1
p))
− 1


=

1

γj

(
1− γ̂

Kρ̂j
j,k (t)

) t√k(γ̂Kρ̂jj,k (t)− γj
)

+OP

(√
kAj

(
1

p

))

=
1

γj(1− γj)
t
√
k

(
γ̂
Kρ̂j
j,k (t)− γj

)
+ oP(1),

uniformly in t ∈ [t0, 1].

Now, we use the decomposition

t
√
k


γ̂
Kρ̂1
1,k (t)− γ1

...

γ̂
Kρ̂d
d,k (t)− γd

 = t
√
k


γ̂
Kρ1
1,k (t)− γ1

...

γ̂
Kρd
d,k (t)− γd

+ t
√
k


γ̂
Kρ̂1
1,k (t)− γ̂Kρ11,k (t)

...

γ̂
Kρ̂d
d,k (t)− γ̂Kρdd,k (t)

 =: T1 + T2.

The convergence in distribution of T1 follows from Theorem 1. Concerning T2, we have to

show that each component is uniformly negligible as n → ∞. To this aim, remark that, using

(10) combining with the mean value theorem as in the proof of Theorem 1, we have for some

ξz ∈ (0, 1)

t
√
k

(
γ̂
Kρ̂j
j,k (t)− γ̂

Kρj
j,k (t)

)
= t

√
k

∫ ∞
1

{∫ Fn,j(t,y)

0
[d(sKρ̂j (s))− d(sKρj (s))]

}
dy

y

= γjt
√
k

∫ 1

0

{∫ Fn,j(t,z
−γj )

0
[d(sKρ̂j (s))− d(sKρj (s))]

}
dz

z

= γjt
√
k

∫ 1

0

{∫ z

0
[d(sKρ̂j (s))− d(sKρj (s))]

}
dz

z
(15)

+ γjt
√
k

∫ 1

0

[
Fn,j(t, z

−γj )− z
] d(s[Kρ̂j (s)−Kρj (s)])

ds
|s=z+ξz[Fn,j(t,z−γj )−z]

dz

z

= γjt
√
k

∫ 1

0

[
Fn,j(t, z

−γj )− z
] d(s[Kρ̂j (s)−Kρj (s)])

ds
|s=z+ξz[Fn,j(t,z−γj )−z]

dz

z
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since the term in (15) is equal to 0. Now, using again the mean value theorem, we have

d(s[Kρ̂j (s)−Kρj (s)])

ds
= (ρ̂j − ρj)

{
−2(1− ρ̃j)

ρ̃3j
+

2(1− ρ̃j)(1− ρ̃j − ρ̃2j )
ρ̃3j

s−ρ̃j +
(1− ρ̃j)2(1− 2ρ̃j)

ρ̃2j
s−ρ̃j ln s

}

with ρ̃j an intermediate value between ρ̂j and ρj . Since ρ̂j is a consistent estimator for ρj ,

Theorem A achieves the proof of Corollary 3. �

Proof of Theorem 2. First remark that

t
√
k
[
L̂REPSp(t)− LREPSp(t)

]
=: A× t

√
k


log

ÊPS
ρ̂1
p,1(t)

EPSp,1
...

log
ÊPS

ρ̂d
p,d(t)

EPSp,d

+ t
√
k


log

EPSp,1
EPSp,d

− 1
d

∑d
`=1 log

EPSp,`
EPSp,d

...

log
EPSp,d−1

EPSp,d
− 1

d

∑d
`=1 log

EPSp,`
EPSp,d

 ,

where A is the (d− 1)× d matrix defined as

A :=


1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...

0 0 . . . 1 0

−
1

d


1 . . . . . . 1
...

...
...

...
...

...
...

...

1 . . . . . . 1

 .

Then, we can remark that under HEPS
0 , according to (3), we have all the indices equal, i.e.,

γ1 = · · · = γd. This implies that, under HEPS
0 ,

√
k log

EPSp,`
EPSp,d

=
√
k log

{
γ`

1− γ`
1− γd
γd

(
1 +O

(
A`

(
1

p

))
+O

(
Ad

(
1

p

)))}
= O

(√
kA`

(
1

p

))
+O

(√
kAd

(
1

p

))
= o

(√
kA`

(n
k

))
+ o

(√
kAd

(n
k

))
= o(1),

since |A`(.)| and |Ad(.)| are regularly varying with negative parameters and k/(np)→∞.

Moreover, we have

Cov
(
AΣ

1/2
d Bd(t), AΣ

1/2
d Bd(s)

)
= min(s, t)AΣdA

T ,
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where AΣdA
T is a (d − 1) × (d − 1) Hermitian positive-definite matrix, which thus can be

decomposed into LLT , where L is a lower triangular matrix with positive diagonal entries. Thus

t
√
k
[
L̂REPSp(t)− LREPSp(t)

]
d−→ LBd−1(t) in Dd−1[t0, 1].

The first part of Theorem 2 then follows from an application of the continuous mapping theorem.

The second part of Theorem 2 is a direct consequence of our Corollary 3 combining with the

fact that, under HEPS
1 ,

lim
p→0

log
EPSp,`
EPSp,d

= log

(
γ`

1− γ`
1− γd
γd

)
6= 0,

for all ` = 1, · · · , d− 1. �
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