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Sequence graphs: characterization and counting
of admissible elements

Sammy Khalife

We present a family of graphs implicitly involved in sequential models, which are
obtained by adding edges between elements of a discrete sequence appearing simul-
taneously in a window of size w, and study their combinatorial properties. First, we
study the conditions for a graph to be a sequence graph. Second, we provide, when
possible, the number of sequences it represents. For w = 2, unweighted 2-sequence
graphs are simply connected graphs, whereas unweighted 2-sequence digraphs form
a less trivial family. The decision and counting for weighted 2-sequence graphs can
be transformed by reduction into Eulerian graph problems. Finally, we present a
polynomial time algorithm to decide if an undirected and unweighted graph has the
said property for w≥ 3. The question of NP-hardness is left opened for other cases.

1 Introduction

The graphs we are interested in this paper, referred to as sequence graphs, represent
the co-occurrences (potentially oriented) of the elements in a sequence appearing si-
multaneously in a window of constant size w. These structures encode information
of several sequential models, in particular for natural language [5, 8, 10], supple-
menting the information of bag-of-words representations, which are invariant to any
permutation. They also have been used for biological sequences, namely for protein
visualization or protein-protein interaction prediction [3, 9]. In this work, we are
interested in two main questions; first the question of recognition of such graphs,
and second, the counting of corresponding sequences.
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Definitions and problem statement

In the following, let x = x1,x2, ...,xp be a finite sequence of discrete elements among
a finite vocabulary X . Without loss of generality, we can suppose that X = {1, ...,n},
let Ip = {1, ..., p} and let N∗ be the set of strictly positive integers.

Definition 1. G = (V,E) is the graph of the sequence x with window size w ∈ N∗ if
and only if V = {xi | i ∈ Ip}, and

(i, j) ∈ E ⇐⇒ ∃(k,k′) ∈ I2
p, |k− k′| ≤ w−1, xk = i and xk′ = j (1)

For digraphs, Eq. (1) is replaced by

(i, j) ∈ E ⇐⇒ ∃(k,k′) ∈ I2
p, k ≤ k′ ≤ k+w−1, xk = i and xk′ = j (2)

Finally, a weighted sequence digraph G is endowed with the matrix Π(G) = (πi j)
such that:

πi j = Card {(k,k′) ∈ I2
p | k ≤ k′ ≤ k+w−1, xk = i and xk′ = j} (3)

By convention, a weighted (undirected) sequence graph is endowed with Π = (πi j),
πi j = π

′
i j +π

′
ji if i 6= j and π ′i j otherwise, where π ′ verifies Eq. (3).

We say that x is a w-admissible sequence for G if G is the graph of the sequence
x. G is referred to as the w-sequence graph of x with window size w.

πi j represents the number of co-occurrences of i and j in a window of size w. Hence,
the graph of a sequence x is unique for a given w. In the following, we use Gw(x) as
a shorthand for the w-sequence graph of x. In the weighted and directed case, it can
be obtained with algorithm 1.

Algorithm 1: Construction of a weighted sequence digraph
Data: Sequence x of length p, window size w, p≥ w≥ 2
Result: (Gw(x), Π)

1 V ← Ø;
2 d← number of distinct elements of x;
3 Initialize Π = (πi, j) to d×d matrix of zeros;
4 for i = 1→ p−1 do
5 V ←V ∪{xi,xi+1} ;
6 for j = i+1→min(i+w−1, p) do
7 πxi,x j ← πxi,x j +1;
8 end
9 end

10 Return V, Π

If G is not oriented, one should replace line 7 of algorithm 1 by the “sym-
metrized” update:



Sequence graphs: characterization and counting of admissible elements 3

if πi 6= π j : α ← πxi,x j , πxi,x j ← α +1, πx j ,xi ← α +1

else : πxi,xi ← πxi,xi +1
(4)

The procedure in algorithm 1 defines a correspondence between the sequence set
SX into the graph set G : φw : SX → G ,x 7→ Gw(x). G ∈ Imφw exactly means that G
is a w−sequence graph. For a given w, the two problems we address in this paper
are the characterization (or recognition) of w-sequences graph, and the counting of
the number of their w-admissible sequences.

Related work

Despite their relations with co-occurences based models for language [2, 8, 10], no
such combinatorial questions were investigated in computational linguistics which
we believe to be of interest, namely to understand the degree of ambiguity of these
models. Besides, such structures have been partially studied in the Distance Geome-
try (DG) literature before, mostly to do with proteins, where an “atom window” can
be defined by using the protein backbone [7]. However, the type of graph studied in
Distance geometry does not refer directly to the results we are investigating in this
paper. Indeed, the necessary and sufficient conditions for which such study would
apply are:

• each element of the sequence x is associated with a unique vertex (which is not
the case we investigate here, since a symbol can be repeated several times but
only one vertex is created)

• the absence of loops

As a consequence, the results mentioned in the DG survey [7] do not apply to the
present case.

Notations

In the following, we use Md(N) as a shorthand for the square d× d matrices over
the set of natural integers, Tr(M) for the trace of a matrix M, and Sp(M) for its set
of eigenvalues.

2 2-sequence graphs

In this section, we consider w = 2. Algorithm 1 encodes each adjacency in the se-
quence x as an edge in Gw(x). Obviously, the simplest case concerns undirected
graphs as stated in the:

Proposition 1. Let G = (V,E) be an unweighted and undirected graph with |V |> 1.
Then, the following assertions are equivalent:
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(i) G is connected
(ii) G has a 2-admissible sequence
(iii) G admits an infinite number of 2-admissible sequences

Proof. If G is connected, a sequence is obtained by visiting all edges, for instance
using a list of arbitrary sequences and shortest paths. The other implications are
immediate. ut

For digraphs, the previous characterization is wrong, even with strong connec-
tivity. A counter example is given in Fig. 1. However, strong connectivity remains a
sufficient condition:

Proposition 2. Let G = (V,E) be an unweighted digraph. If G is strongly connected
then G ∈ Imφ2. Moreover, a 2-admissible sequence can start or end at any given
vertex of G.

Proof. Straightforward, similarly to (i) =⇒ (ii) for Proposition 1. ut

Proposition 3. Let G = (V,E) be an unweighted digraph. If G is Eulerian or semi-
Eulerian, then G ∈ Imφ2.

Proof. If G is Eulerian or semi-Eulerian, there exists a walk going through all edges,
this walk defines a 2-admissible sequence. ut

1 2 3

Fig. 1: G has 123 as a 2-admissible
sequence but is not strongly connected

1

2 34 5

Fig. 2: G has 3531212324 as a
2-admissible sequence but is not

Eulerian nor semi-Eulerian.

Again the converse of Proposition 3 does not hold as depicted in Fig. 2. First, it
is natural to consider the case of directed acyclic graphs (DAGs):

Proposition 4. Let G = (V,E) be a DAG. G is a 2-sequence graph if and only if it is
a directed path, i.e G is a directed tree where each node has at most one child and
at most one parent. In this case, G has a unique 2-admissible sequence.

Proof. If G is a directed path, since G is finite, it admits a source node. Therefore
a 2-admissible sequence is obtained by simply going through all vertices from the
source node. This is obviously the only one.

Conversely, let us suppose G is a DAG and a 2-sequence graph. If G is not a
directed path, there are two cases: either there exists a vertex having two children,
or two parents. Let s be a vertex having 2 distinct children c1 and c2. This is not
possible since there cannot be a walk going through (s,c1) and (s,c2): G would
have a cycle otherwise. Finally a vertex v cannot have two parents p1 and p2: if
a 2-admissible sequence existed, it would have to go through (p1,v) and (p2,v),
creating a cycle, hence the contradiction. ut
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Every directed graph G is a DAG of its strongly connected components. In the
following, let R(G) be the DAG obtained by contracting the strongly connected
components of G.

Proposition 5. Let G = (V,E) be a digraph. If G is a 2-sequence graph then R(G)
is a 2-sequence graph.

Proof. Let G be a 2-sequence graph, and let us suppose that R(G) is not a 2-
sequence graph. Since R(G) is a (weakly) connected DAG, then using Proposition 4,
it cannot be a directed path, so R(G) has either a node having two children or two
parents. Let S be a node of R(G) having at least 2 distinct children C1 and C2. This
means that there exist three distinct corresponding nodes in V , s, v1 and v2 such
that (s,v1) ∈ E and (s,v2) ∈ E. Since G is a 2-sequence graph, there exists a walk
covering (s,v1) and (s,v2), such walk would make S, C1 and C2 the same node in
H(G), hence the contradiction. The case for which a vertex has two parents is dealt
with similarly. ut

The converse of Proposition 5 does not hold as depicted in Fig. 3, which moti-
vates the following definition.

1 2

34

(a) G

c1

c2

(b) R(G)

Fig. 3: G is not a 2-sequence graph while R(G) is.

Definition 2. Let G be a digraph, and R+(G) be the weighted DAG obtained from
R(G), such that the weight of an edge is the number of distinct arcs from two
strongly connected components in G.

Theorem 1. Let G = (V,E) be an unweighted digraph.
G is a 2-sequence graph if and only if R+(G) is a directed path and its weights

are all equal to 1.

Proof. If G is a 2-sequence graph, R(G) is a 2-sequence graph using Proposition 5.
Also Proposition 4 implies that R(G) and R+(G) are directed paths. Moreover, if
R+(G) had a weight strictly greater than 1, then there would be strictly more than
one edge between two strongly connected components C1 and C2. All these edges go
in the same direction otherwise C1∪C2 would be part of a larger strongly connected
component. This is a contradiction since any 2-admissible sequence would have to
go from C1 to C2 and then come back to C1 (or conversely) and C1∪C2 would again
be part of a larger strongly connected component.

Conversely, let us suppose R+(G) is a a directed path and its weights are equal
to one. First, there exists a walk x1, ...,xp covering all edges of R+(G) verifying: (i)
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∀i, xi ∈ V or xi represents a strongly connected component of G, (ii) there is only
one edge in G between from xi to xi+1 and (iii) x has no repetition, i.e there is no
common vertex in G between xi and xi+1. We construct a 2-admissible sequence y
for G by means of the following procedure.

Initialisation: If x1 ∈ V , we simply set y← x1. Otherwise, x1 corresponds to a
strongly connected component C1 of G and we add to y any 2-admissible sequence
of C1.

For i ∈ {1, .., p−1}:
• If (xi,xi+1) ∈ E: we add xi+1 to the sequence y.
• If xi ∈V and xi+1 is a strongly connected component Ci of G: By assumption,

there exists only one edge of G from xi to a vertex of Ci, say ci
0. Since Ci is strongly

connected, using Proposition 2, Ci has a walk going through all of its edges and
starting in ci

0, say ci
0, ...,c

i
p. We add ci

0, ...,c
i
p to y.

• If xi corresponds to a strongly connected component Ci and xi+1 ∈ V : we
perform similar operations by stopping on the single node of Ci that has a edge to
xi+1 (this is possible thanks to Proposition 2).
• xi and xi+1 both correspond to strongly connected components Ci and Ci+1 ,

there exists only one edge between in E between Ci and Ci+1, say ei = (vi,vi+1). We
can complete y by a walk from the last vertex visited which belong to Ci and vi, and
then by a 2-admissible sequence through Ci+1 starting in vi and ending in vi+1.
The process stops when i = p−1, and all edges are covered by the sequence y. ut

Therefore, an algorithm to decide if a digraph is a 2-sequence graph is obtained
by extracting its strongly connected components (there exist linear time algorithms
e.g [11]), and to count the number of distinct edges between these.

Corollary 1. Let G be an unweighted digraph. The possible numbers of 2-admissible
sequences for G is exactly {0,1,+∞}. Moreover, G admits a unique 2-admissible
sequence if and only if G is a directed path.

Proof. Let G a be 2-sequence graph. G verifies the characterization of Theorem 1. If
R(G) has a vertex C representing a strongly connected component of G (or a vertex
with a loop), then by adding an arbitrary number of cycles in C to the admissible
sequence y (cf. Proof 2), the new sequence is still admissible. Otherwise, if every
vertex of R(G) is in V without self-loops in E, then G is a DAG. Using Proposition 4,
y is the unique 2-admissible sequence. ut

Weighted 2-sequence graphs

The weighted case cannot be treated similarly due to the constraint 3. A counterex-
ample is depicted in Fig. 4. Moreover, a weighted graph has a finite number of
admissible sequences. This property can be seen using Proposition 6 below.

Proposition 6. If a graph is a weighted w-sequence graph, all of its admissible se-
quences have the same length.
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1 2 3
3 1

1

Fig. 4: G is strongly connected but is not a 2-sequence graph

Proof. Let x be a w-admissible sequence for G of length p. If G is a digraph, Al-
gorithm 1 is incrementing (p−w+ 1)(w− 1)+ (w−1)(w−2)

2 times the total weight,
therefore:

∑
i, j

πi j = (p−w+1)(w−1)+
(w−1)(w−2)

2
(5)

If w≥ 2, this yields: p = w−1− w−2
2 + 1

(w−1) ∑i, j πi j

Otherwise, if G is undirected, the weights matrix obtained with Algorithm 1 does
not yield Eq. (5), due to the update of Eq. (4). The weights on the diagonal remain
the same, but the others are multiplied by 2, hence the formula:

∑
i, j

πi j +Tr(Π) = 2(p−w+1)(w−1)+(w−1)(w−2) (6)

leading to p = 1
2(w−1) [∑i, j πi j +Tr(Π)]. ut

Corollary 2. Let G be a weighted w-sequence digraph, and Π its weights matrix. If
w even, then (w−1) | ∑i, j πi j.

Corollary 3. Let G be a w-sequence (undirected) graph and Π its weights matrix.
Then 2(w−1) | ∑i, j πi j +Tr(Π).

Definition 3. Let ψ(G) be the auxiliary multigraph with the same vertices as G =
(V,E) and with πi j edges between (i, j) ∈V 2.

Due to the previous study, the characterization of weighted 2-sequence graphs using
ψ(G) is immediate. A semi-eulerian graph is a graph that admits a Eulerian walk
(instead of cycle for eulerian graphs).

Theorem 2. If G is a weighted graph (directed or not), with Π(G) ∈Md(N), then:
G ∈ Imφ2 ⇐⇒ ψ(G) is connected and semi-eulerian.

Proof. G ∈ Imφ2 means that there is a trail going through each edge (i, j) ∈ E ex-
actly πi j times. This trail corresponds to a semi-eulerian path in ψ(G). ut

Counting 2-admissible sequences for weighted graphs

Proposition 7 sums up the results for the counting problem of a weighted graph:

Proposition 7. Counting the number of 2-sequences for a weighted graph is #P-
complete. However, if G is a weighted digraph with Π(G) ∈Md(N), then the num-
ber p2 of 2-admissible sequences is given by:
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p2 =
t(ψ(G))

∏e∈E πe! ∏
v∈V

(
degψ(G)(ψ(v))−1

)
! (7)

where t(G) is the number of spanning trees of a graph G. If L is the Laplacian
matrix of G, then t(G) is given by t(G) = ∏λi∈Sp(L)

λi 6=0
λi.

Proof. Given a 2-admissible sequence of G, the choice of a corresponding eulerian
path in ψ(G) is the choice of σ = (τ1, ...,τ|E|) of |E| permutations of {1, ...,πe}
representing the visit order in ψ(G). G 7→ ψ(G) being bijective, counting eulerian
paths in an undirected graph is #P-complete [4], hence so is the problem of counting
the 2-sequences of a weighted graph. BEST [1] and Matrix tree [6] theorems allow
to derive formula (7) which guarantees in that the problem on digraphs is in P. ut

To use formula (7), degψ(G)(ψ(v)) can be obtained using the following formula:
degψ(G)(ψ(v)) = ∑n∈V πnv +∑n∈V πvn.

Table 1: Results for various instances of our problems (w = 2)

Undirected Directed
Problem Unweighted Weighted Unweighted Weighted

Nb. sequences (P) {0,+∞} #P-hard (P) {0,1,+∞} (P) BEST Theorem
G ∈ Imφ2? G connected ψ(G) eulerian

or semi eulerian
Th. 1 ψ(G) eulerian

or semi eulerian

3 What happens if w > 2?

The characterization of 3-graphs is not the same as for 2-graphs, as the counter-
example in Fig 5a shows: the depicted graph has no loop so there must at least one
clique of size 3, which is not the case. Similarly, Fig 5b depicts a counter example
for directed graphs: G does not have loop, so if it had a 3-admissible sequence,
such sequence must be of the form {1231...,1321...,2312...,3213...,2132...}
but then (2,1) would form an edge.

1 2 3

(a) G is connected but does not have any
3-admissible sequence

1 2 33

(b) G is strongly connected but does not have
any 3-admissible sequence

Fig. 5: Counter-examples for w = 3

Similarly to the procedure in Sec. 2, we will use an auxiliary graph built on G.
Let H(G) = (E,EH) be the new graph obtained with the following procedure. Two
edges e = (v1,v2), f = (v3,v4) of E are connected in H(G) if and only if:
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v2 = v3 and (v1,v4) ∈ E (8)

Therefore, by definition, a walk P in H(G) is always of the form:

P = (t1, t2), ...,(tp−1, tp) s.t ∀i ∈ {1, ..., p−1}, (ti, ti+1) ∈ E (9)

It is clear that if H(G) is a 2-graph, then G is a 3-graph since there is a walk
going through all edges of H(G). However, the converse is not true as depicted in
Fig. 7. In order to determine if G = (V,E) has an admissible sequence for any w, a
procedure is to recursively merge pairs of vertices, maintaining constraints defined
below. These constraints are similar to Eq. (8). We adopt the following notations,
ui, j = (ui,u j) and u1:k = (u1, ...,uk). The iterative procedure (for w≥ 3) is summed
up in 10.

Namely, ∀k ∈ {2, ...,w−2}, one has

E(k) = {u1:k+1 ∈V k+1 | u1:k ∈ E(k−1),u2:k+1 ∈ E(k−1)∧ (u1,uk+1) ∈ E} (10)

Let H(k) = (E(k),E(k+1)), it can be defined recursively through:

H(0) = G ∀k ∈ N∗, H(k) = f (H(k−1)) (11)

where f transforms edges into vertices and creates edges between new vertices that
verify Eq. (10). It should be noted that H(G) is directed if and only if G is.

Definition 4. Let u be a vertex of H(k) for k ∈N, u = (u1, ...,uk,uk+1), where u j ∈V
for each j. The sequence u1, ...,uk+1 is the authentic sequence of u. We also call an
authentic sequence of a walk on H(k): P=(x1, ...,xk+1),(x2, ...,xk+2), ...,(xv, ...,xv+k)
the sequence x1,x2, ...,xv+k.

In order to obtain admissible sequences of length p, the computation of H(p)

requires p iterations, and the number of vertices and edges of H(k) can increase dur-
ing iterations (the complete graph is an example for which theses numbers increase
quadratically).

Proposition 8. Let x= x1, ...,xp be a w-admissible sequence of a graph (or digraph)
G = (V,E). If w≤ p, then x is an authentic sequence of a walk of length p−w+1
on H(w−2).

Proof. Let x = x1, ...,xp be a w-admissible sequence of G. Let P be a walk on
H(w−2), and P[i] be the i-th element of P, P[i] ∈ H(w−2): P[i] = (P[i]1, ...,P[i]w−1).

Let us suppose that w≤ p (which we can always do), and let us show the follow-
ing property by induction on k:

∀k ∈ {w−1, ..., p}, ∃ walk P on H(w−2),
x1:k = P[1]1,P[2]1, ...,P[k− (w−1)]1,P[k+1− (w−1)]1:(w−1)

(12)

• Initialisation: k = w− 1. By construction of H(w−2), x1:w−1 is the authentic se-
quence of “static walk”: P = P[1] = x1:w−1 ∈ H(w−2).
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• Induction: let us suppose the property is verified for k ∈ {w− 1, ..., p− 1}, i.e
there exists a walk P on H(w−2) such that:

x1:k = P[1]1,P[2]1, ...,P[k− (w−1)]1,P[k+1− (w−1)]1:(w−1)

Since x is w-admissible, then by definition:

∀i ∈ {k+1− (w−1), ...,k}, ∀ j ∈ {i+1, ...,min{k+1, i+w−1}} : (xi,x j) ∈ E

Therefore, by definition of H(w−2), ξ k+1 = xk+1−(w−1), ...,xk+1 ∈ H(w−2).
Let P[k+2−(w−1)]=∧ ξ k+1, then P[k+2−(w−1)]1:(w−1)= xk+1−(w−1), ...,xk+1.

Besides, from the induction assumption: ∀i ∈ {1, ...,k− (w− 1)}, P[i]1 = xi. This
ensures that: x1:(k+1) = P[1]1,P[2]1, ...,P[k+1− (w−1)]1,P[k+2− (w−1)]1:(w−1)
which ends the induction and the proof. ut

Theorem 3. Let G be a graph and w ∈ N∗ − {1,2}. If G is undirected and un-
weighted then deciding if G is a w-sequence graph is in P.

Proof. It is possible to compute the connected components of H(w−2), say C1, ...,Cm,
in polynomial time. For each i ∈ {1, ...,m}, it is possible to construct walks cover-
ing all edges in polynomial time (for instance iteratively using shortest paths). Let
W1, ...,Wm be such walks and X1, ...,Xm their respective authentic sequences. Using
Proposition 8, G is a w-sequence graph if and only if there exists a walk W̃i0 on some
Ci0 creating exactly the edges of G. However, Wi0 creates more edges than any walk
on Ci0 by construction.

In conclusion, the assertion: ∃i ∈ {1, ...,m}, φw(Xi) = G is a characterization of
G being a w-sequence graph. This assertion is decidable in polynomial time since
for all i, computing φw(Xi) requires a polynomial number of operations. ut

For digraphs, the analogue of the aforementioned procedure would consist in
enumerating all paths in the DAG R(H(w−2)). However, the number of paths can be
exponential, even for a sequence graph. For the sake of completeness, we will prove
that the reduction by strongly connected components preserves admissibility.

Lemma 1. Let x be a walk on H(w−2) whose authentic sequence is w-admissible for
its corresponding unweighted graph G. If x goes through a strongly component C
of H(w−2), adding any supplementary path of C to x lets x w-admissible. Any graph
generated by a walk on H(w−2) can be generated by a walk on R(H(w−2)).

Proof. Let P = P[1], , ...,P[r] be a walk on H(w−2) going through a strongly con-
nected component C, with an arbitrary ordering of its vertices, i.e C = {c1, ...,cm}.
This means ∃(m0, i0)∈{1, ...,m}×{1, ...,r−1} s.t P[i0] = cm0 and (cm0 ,P[i0+1])∈
E. Let C = cm0 ,c j1 , ...,c jv be a path in C with (c jv ,P[i0 +1]) ∈ E. Let Q be the new
path: Q = P[1], ...,P[i0],c j1 , ...,c jv ,P[i0 +1], ...,P[r]. By construction of H(w−2), the
edges created by any walk on H(w−2) are in E, so Q is still admissible.

Let us label every node of R(H(w−2)) representing a strongly connected compo-
nent of H(w−2) by any 2−admissible sequence (one exists thanks to Proposition 2).
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1 2

3

(a) Original graph G

12 23

13

(b) Graph H

123

13

(c) DAG R(H)

Fig. 6: Reduction on a simple example (w = 3)

1 2

34

(a) Original graph G

31

24
23

43

42

41
34

32

(b) Graph H is not a 2-sequence
graph

31

2443

41 32

34234

(c) DAG R(H(1))

Fig. 7: Procedure to find a 3-admissible sequence. 34234, 41: is 3-admissible, with
authentic sequence 342341

A walk on H(w−2): x1, ...,xp can be met by a walk on R(H(w−2)) using the following
procedure:

For i ∈ {1, ..., p−1}:
• if xi,xi+1 ∈ E, we keep xi and xi+1
• if xi ∈V and xi+1 is in a strongly connected component of H(w−2) (but a node

of R(H(w−2))), represented by c1, ...,cCi , then a path from xi+1 to c1 exists since the
component is strongly connected: xi+1, p1, ..., pm,c1. We keep xi,xi+1, p1, ..., pm,c1, ...,cCi .
Using the aforementioned result, this does not perturb admissibility.
• if xi+1 ∈V and xi is in a strongly connected component of Hw−2, we proceed

similarly (xi and xi+1 are swapped).
• if both xi+1 and xi are strongly connected components of Hw−2, we add inter-

mediary nodes to connected both components similarly.

Algorithm 2: A recognition algorithm for unweighted digraphs
Data: Graph G, window width w
Result: (Boolean, empty set or w-admissible sequence)

1 Build H(w−2) recursively (e.g with 11);
2 Construct Rw

H = R(H(w−2)) ;
3 for source-sink path of Rw

H do
4 if authentic sequence of path is w-admissible for G then
5 return (True, sequence)
6 end
7 end
8 return (False, /0);



12 Sammy Khalife

Conclusion

In this preliminary study, we considered two main combinatorial problems: the
recognition problem of sequences graphs, and the counting of their realizations.
Solving the second problem totally solves the first one, but in the trivial case w = 2,
the first one is “simpler”: the recognition problem of sequence graphs is P for w = 2
for any data instance, but the counting problem is #P-hard for weighted graphs. This
justifies the distinction of these problems from a computational point of view.

Furthermore, for w> 2, the recognition problem is in P for one configuration (un-
weighted graphs), but the complexity classes of the other instances are left opened,
and so are the counting problems for w > 3. A possible lead to answer these ques-
tions would be to investigate forbidden patterns in a sequence graph. Finally, it
should be noted that the abstraction of sequences graphs exactly coincides with
the graphs implicitly involved in co-occurrence models or point wise-mutual infor-
mation models [2, 8, 10], used as input of algorithms to construct word representa-
tions. In these models, representations are ambiguous if the given weighted graph
has several realizations. Therefore, other extensions of this work would be to pro-
pose scalable algorithms (or at least, for reasonable values of w and length of the
sequences) to count and explicit realizations, in order to obtain more information
about the degree of ambiguity in these models.
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