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Abstract: Simulating large systems, such as smart grids, often requires to build a network of specific simulators. Making

heterogeneous simulators work together is a challenge in itself, but recent advances in the field of co-simulation

are providing answers. However, one key problem arises, and has not been sufficiently addressed: the initial-

ization of such networks. Many simulators need to have proper input values to start. But in the network, each

input is another simulator’s output. One have to find the initial input values of all simulators so their computed

output is equal to the initial input value of the other linked simulators. Given that simulators often contain

differential equations, this is hard to solve even with a small number of simulators, and nearly impossible with

a large number of them. In this paper, we present a mutli-agent system designed to solve the co-simulation

initialization problem, and show preliminary results on large networks.

1 INTRODUCTION

Alternatives to nuclear power, renewable energy

like solar panels or wind power, often involves pro-

ducing electricity near the consumers. This radically

changes the topology of the electric grid and makes it

way more difficult to manage and control. Smart grids

are a very active research field. Simulating smart

grids enables the validation of network control meth-

ods and various network properties, that are as im-

portant as the (simulated) physical properties of the

power system (Liberatore and Al-Hammouri, 2011).

Nevertheless, designing a simulator and building a

model for large networks is a difficult task due to the

complexity of the considered systems. Co-simulation

overcomes this difficulty by running several models

and simulators together, one for each subsystem. In

this approach, simulators exchange data with each

other, in a ”black box” way. Models are then eas-

ier to obtain since they only focus on a smaller part

of the grid. However, new problems arise, such as

time synchronization (Bouchhima et al., 2006). Most

of them are handled by existing co-simulation frame-

works, but the mutual and interdependent initializa-

tion of each simulator is not.

Indeed, simulators in a co-simulation network re-

quire coherent initial values for their inputs. These in-

puts are connected to the outputs of other simulators.

To preserve the coherence in the network and prevents

simulators from crashing, the initial values that are set

have to be equal (or within a given accuracy limit) to

the values of the connected outputs of the other sim-

ulators. These output values are computed from the

other initial input values, that have been set under the

same constraints. Since each input is connected to an

output in the network, there is no ”first input” that is

free to go back to set an arbitrary value and solve the

whole problem.

Due to the large scale of co-simulations net-

works, the heterogeneity and the intrication of the

models involved, co-simulation initialization (or co-

initialization) is a difficult challenge. It requires a

lot of expertise and domain specific knowledge about

the models. Our approach aims at developping a co-

initialization method that does not rely on such exper-

tise, by considering each simulator as a black-box and

exploring the solutions. In this paper, co-initialization

is viewed as a fixed-point problem. We use a multi-

agent approach to find X such as F(X) = X , where F

is the function that transforms the inputs of all sim-

ulators into their outputs. The distributed and de-

centralised decision process of multi-agent systems

should allow our system to scale up to an increasing

number of simulators in the co-simulation network.

Section 2 presents the problem of co-initilization,

while our multi-agent system is described in section

3. Section 4 shows results before we conclude in the

last section.



2 CO-INITIALIZATION

Co-initialization is the problem of finding ade-

quate initial values simultaneously for all the inputs

of all the simulators in a co-simulation network. This

section explains how we see this problem as a fixed-

point problem.

2.1 Co-Simulation

A co-simulation network is a network of possibly het-

erogeneous simulators running together to simulate

several parts or several scales of a large system. This

method enables to model huge systems that would be

otherwise too complex to handle with a single model,

and to reuse well-establihed and specialized model

with only minor modifications. For instance, to simu-

late an emergency brake maneuver for wind turbines,

Sicklinger et al. combine several models (blades,

gearbox, control system, etc) and achieve a more re-

alistic result than monolithic approaches (Sicklinger

et al., 2015).

Co-simulation has been of growing interest these

past years, but despite its efficiency, it does raise a

number of challenges. The development of a standard

for model exchange, called Functional Mock-up In-

terface (FMI), brings answers to the problem of mod-

els interoperability (Blochwitz et al., 2011). Other

tools deal with time coherence in co-simulation net-

works, such as MECSYCO which relies on the multi-

agent paradigm (Vaubourg et al., 2015).

2.2 Co-Initialization as a Fixed-Point

Problem

This paper addresses the issue of co-initialization, that

arises when simulators and models have constraints

on their input. For instance, some models can be un-

stable if their input changes too widely between two

timesteps, or crash if the inputs goes outside a given

range. In a co-simulation network, all simulators in-

puts are usually connected to an output from another

simulator. For instance, in figure 1, this means that

the initial value of the input of simulator 1 should be

equal or close to the output of simulator 3, which de-

pdends on the initial value of the input of simulator 3,

and so on with simulator 2.

If we consider simulators as functions, we can

express the co-initialization problem as a fixed-point

problem. For instance, with simulator 1 as function

f , simulator 2 function g, and simulator 3 function h,

the initialization problem is to find x1, x2a, x2b, and x3

Figure 1: A Co-Simulation Network with 3 Simulators

such as:











f (x1) = x2a

g(x2a,x2b) = x3

h(x3) = x1 = x2b

It is a fixed-point problem where we want to solve

X = F(X) with X = (x1,x2a,x2b,x3) and F(X) =
(h(x3), f (x1),h(x3),g(x2a,x2b)). In our case, we do

not know the models used by the simulators ( f , g, and

h are unknown). But we have access to their jacobian,

so we can know what variation would be caused on

an output by a modification of an input for a given

simulator.

2.3 Fixed-Point Solvers

The fixed-point problem is a challenging issue that

have many applications in fields where the notion

of stability can be expressed as a fixed-point, such

as economics and game theory (Border, 1989), pro-

gram analysis and code optimization (Costan et al.,

2005), or phase transition in physics (Schaefer and

Wambach, 2005).

The most common and proven approaches to solve

fixed-point problems are iterative methods (Alber

et al., 2003), (Yao et al., 2011). For instance, the

Newton-Raphson method (Bonnans et al., 2013) uses

the first terms of a Taylor series to approximate a

function for which we want to solve an equation.

While their formal definition is sound, this type of

approaches tends to suffer from combinatory explo-

sion when faced with a large number of dimensions.

This is why we work on an alternative solution with a

bottom-up multi-agent approach.



3 A SELF-ADAPTIVE

MULTI-AGENT SYSTEM FOR

CO-INITIALIZATION

This section details our multi-agent system and

explains how agents help their neighborhood so the

whole system converge towards a solution.

3.1 Adapative Multi-Agent Systems

Our approach is inspired by the AMAS (Adaptive

Multi-Agent Systems) theory, a vision of multi-agent

systems where cooperation is the engine of self-

organization (Georgé et al., 2011). The AMAS theory

is a basis for the design of multi-agent systems, where

cooperation drives local agents in a self-organizing

process which provides adaptiveness and learning

skills to the whole system. As cooperative entities,

AMAS agents seek to reach their own local goals as

well as they seek to help other agents achieving their

own local goals. Thus, an agent modifies its behavior

if it thinks that its actions are useless or detrimental to

its environment (including other agents).

The AMAS theory has proved useful and efficient

to tackle various problems where scaling up is a key

challenge, such as big data analytics (Belghache et al.,

2016), multi-satellite mission planning (Bonnet et al.,

2015), or air traffic simulation (Rantrua et al., 2015).

This is why we considered applying this approach to

the problem of large co-simulation initialization.

3.2 Topology

The key problem in co-simulation initialization lies in

the link between simulators. Thus, there is one agent

per link in the network, i.e. one agent for each output

of each simulator. In other words, there is only one

type of agent in our system, instanciated at each out-

put of each simulator. The neighborhood of an agent

A is defined as the agents that are directly affected

by the actions of agent A, including itself. Hence,

the neighborhood of agent A is composed of agent A

and all the agents at the outputs of the simulators con-

nected to the output of agent A. For instance, in figure

2, the neighborhood of agent A is composed of agent

A and agent B.

3.3 Agents Description

Each agent has an input and an output. The value

of its input is perceived in the environment, it is the

output of a simulator. The value of the agent’s out-

put is decided by the agent itself, on its own. The

global goal of the system is to reach a state in which

Figure 2: A Co-Simulation Network with 3 Simulators and
our Agents

each agent perceives on its input the same value it had

written on its output at the previous timestep.

3.3.1 Criticality of an Agent

Each agent seeks to meet the condition |xt −yt−1|= 0,

where x is the input of the agent, y its output, and t the

timestep. The value c = |xt − yt−1| is called the criti-

cality of the agent. The higher its criticality, the less

satisfied an agent is. We define Csys the global crit-

icality of the system as the highest criticality among

the agents. By definition, the problem is solved when

Csys = 0. It is a mere reformulation of the fixed-point

problem expressed in 2.2 that is more suitable for our

approach.

At each timestep, each agent computes its critical-

ity, watches the criticalities in its neighborhood, and

try to correlate their variation to the variation of its

own output. The agents adjust their output value in

order to lower their neighbors’ criticality. The next

section explains how they decide their output value.

3.4 Agents Behavior

Each agent has to decide its next action: whether to

increase or decrease its value, and by what amount,

in order to lower the criticality of its neighborhood as

quickly as possible. Its output y at timestep t is:

yt = yt−1 +at

Where at is the decided action. The decision is based

on two dynamically adjusted internal variables:

• δ ∈ R
+, with δmin ≤ δ ≤ δmax is the amplitude of

the action, δmin and δmax are user-defined parame-

ters, which will be discussed later ;



• σ ∈ N with −n ≤ σ ≤ n indicates the sign of the

action, n is a user-defined parameter of the agent,

which will be discussed later.

These two variables directly define a:

a :=

{

δ× σ
|σ| if σ 6= 0

random(−δ,δ) otherwise

The sign of σ is the sign of the action, and the abso-

lute value of σ reflects how much the agent is con-

vinced that the sign is correct. If σ = 0, the decision

is a coin flip between −δ and δ. We introduced ran-

domness here because all agents perceive and decide

simultaneously, thus falling into the El Farol bar prob-

lem (Whitehead, 2008).

3.4.1 Adaptation

Each agent dynamically manages its own internal δ
and σ variables, and decide how to adapt them. This

section explains how an agent adjusts its δ and σ.

Thanks to the jacobians provided by the simula-

tors connected on its output, the agent computes a

criticality jacobian, giving him an estimation of the

variations of the criticalities of its neighborhood. The

agent splits its neighbors into two groups, regarding

their criticality jacobian:

• the most critical group contains the most critical

neighbor (i.e. the neighbor with the highest crit-

icality) and all the neighbors whose criticality ja-

cobian has the same sign as the criticality jacobian

of the most critical neighbor. This means that if

the agent helps its most critical neighbor, its ac-

tion will also help all the other neighbors of this

group.

• the opposite group contains all the neighbors

whose criticality jacobian are of opposite sign

with the criticality jacobian of the most critical

neighbor. This means that if the agent helps its

most critical neighbor, its action will aslo hurt all

the neighbors of this group.

We call worst neighbor the most critical neighbor,

and opposite worst neighbor the most critical neigh-

bor from the opposite group. The goal for the agent

is then to help its worst neighbor while preventing its

opposite worst neighbor to become the worst neigh-

bor.

The agent observes four indicators in its environ-

ment to decide how to adjust its δ and σ:

• the direction of variation of the criticality of its

worst neighbor,

• the direction of variation of the criticality of its

opposite worst neighbor,

• the direction of variation of the difference be-

tween the worst neighbor’s criticality and the op-

posite worst neighbor’s criticality,

• the correlation between the sign of σ and the sign

of the criticality jacobian of the worst neighbor,

which indicates if the action of the agent is cur-

rently helping the worst neighbor or the opposite

worst neighbor.

Before computing its action, the agent adapts its δ
and σ according to a small set of rules conditioned

by these four indicators. These rules are presented in

table 1.

”Strengthen σ” means its absolute value is in-

creased without changing its sign: if σ is positive then

σ is incremented by one (decremented by one other-

wise). Likewise, ”weaken σ” means its absolute value

of σ is decreased without changing its sign: if σ is

positive then σ is decremented by one (incremented

by one otherwise). Finally, ”increase δ” means δ is

multiplied by α > 1 and ”decrease δ” means it is di-

vided by β > 1. α and β are user-defined parameters.

The idea underlying this set of rules is to decrease

as fast as possible the criticality of all the neighbors.

The agent seeks to maximize its δ while reducing the

difference between the criticality of the worst neigh-

bor and the criticality of the opposite worst neighbor.

The worst case for an agent is when the condi-

tions of line 1 occur: the criticality of both the worst

neighbor and the opposite worst neighbor are increas-

ing, the highest criticality faster than the other. In

this case, the agent adjusts σ and δ in order to give

more help to its worst neighbor and less to the oppo-

site worst neighbor.

The best case is in line 8, when the criticality of

both the worst neighbor and the opposite worst neigh-

bor are decreasing, and the highest criticality is de-

creasing faster. This is an ideal situation if σ = n or

σ = −n, meaning that the agent is certain about its

current action.

3.4.2 Parameters

There are six parameters for the agents:

• n - defines the boundaries of σ, that varies be-

tween −n and n.

• δinit - since δ is adjusted in real time, the system

is able to converge for any initial value of δ but a

proper δinit may help for a quicker convergence.

• δmin - the minimal value for δ has to be strictly

positive, because δmin = 0 often leads to dead-

locks.

• δmax - the maximal value for δ is merely a safety

guard to avoid too big variations. If δmin = δmax



#

Variation

of the criticality

of the worst neighbor

Variation

of the criticality

of the opposite

worst neighbor

Variation

of the difference

between these

two neighbors

Decision of an agent

currently helping

its worst neighbor

Decision of an agent

currently helping

its opposite worst neighbor

1 ↑ ↑ ↑
strengthen σ,

increase δ
weaken σ,

decrease δ

2 ↑ ↑ ↓ decrease δ
weaken σ,

decrease δ

3 ↑ ↓ ↑
strengthen σ,

increase δ
weaken σ,

decrease δ

4 ↑ ↓ ↓ impossible impossible

5 ↓ ↑ ↑ impossible impossible

6 ↓ ↑ ↓ strengthen σ
strengthen σ,

increase δ

7 ↓ ↓ ↑
strengthen σ,

increase δ
strengthen σ,

decrease δ
8 ↓ ↓ ↓ strengthen σ strengthen σ

Table 1: Rules of Adaptation

the system works with a constant δ.

• α - the ”increase factor” by which δ is multiplied

when it needs to increase,

• β - the ”decrease factor” by which δ is divided

when it needs to decrease.

α and β both have to be strictly greater than one. They

are the only really sensitive parameters as the stabi-

lization of the system depends on them. α should be

low comparatively to β. Although a thorough study of

their impact is needed, in our experiments we never

had good results if β was not at least equals to the

double of α. For some experiments, the best results

were obtained with β worths 100 times α.

Generally, the lower δmin and δmax the more pre-

cise the solution, but at the cost of more timesteps to

reach it. A greater β makes δ more frequently close

to δmin , hence gaining precision and loosing speed of

convergence, and vice versa for α. A big α tends to

harm the stability of the system, provoking big oscil-

lations around the solution instead of smoothly con-

verging towards it. Finally, n impacts the inertia of

the system: if it is high, an agent will be slower to

change direction after having strengthened σ several

times consecutively.

Except for δinit all the parameters can be interac-

tively modified at runtime, the system will self-adapt

according to the new values.

4 RESULTS

This section shows results of various experiments

on generated networks with polynomial nodes. We

Figure 3: Neighborhood Graph of a 3 Nodes Test Case

used a generator to create random topologies of net-

works of polynomial nodes. Nodes are of the form of

ax2 + bx+ c with random a, b and c. For these ex-

periments, our system is implemented in Java 1.7 and

runs on an HP Elitebook laptop with an Intel Core i7

processor and 16GB of RAM. The parameters were

set as follows:

• n = 3

• δinit = 1.0

• δmin = 0.001

• δmax = 1.0

• α = 1.2

• β = 100

These values were obtained empirically and proved to

be efficient for all our experimentations with networks

of second degree polynomial nodes, regardless of the

topology.

4.1 3 Polynomial Nodes

Our first experiment involves a simple 3 nodes net-

work. Figure 3 shows the neighborhood graph of this



Figure 4: Convergence with a 3 Nodes Network



simple case. It is a representation of the network of in-

fluence of the agents. An edge from A to B means that

the neighborhood of A includes B, in other words A

directly impacts B via a simulator. Here agent A has

two neighbors including itself, agent B has two neigh-

bors including itself, and agent C has three neighbors

including itself.

Figure 4 shows the input and output of each agent

during the resolution, along with their criticalities (the

difference between their input and their output). We

see that at the beginning, the most critical agent is

C. Since it is in the neighborhood of both A and B,

these agents tend to help C more, even if it increases

their own criticality. Around timestep 1500, agent B

is on the verge to become the most critical agent. The

agents (including B itself) react and find a way to de-

crease both C and B’s criticalities, at the expense of

A. In the end, they all have converged toward a stable

state where their criticality is less than δmin (presently

10−3). It took approximatively 10000 timesteps (3

seconds).

Figure 5: Neighborhood Graph of a 10 Nodes Test Case

4.2 10 Polynomial Nodes

In this experiment, we test our system with a bigger

network. Figure 5 shows the neighborhood graph of

our MAS for this case. For the sake of concision and

readability, we do not show here the input and output

curves of each agents, but only their criticalities (6).

We can see that the agents immediately find a way

to decrease the worst criticalities, but then struggle

to make the residual criticalities disappear. However,

they end up finding a way to reach a state where each

criticality is less than δmin. It took approximatively

14000 timesteps (30 seconds).

With the same parameters, for a network more

than three times the size of the previous one, the num-

ber of timesteps to converge is only 40% greater than

the previous case. Unfortunately, the duration is about

7 times longer.

4.3 100 Polynomial Nodes

This experiments show how the MAS scales up to a

network of 100 polynomial nodes. We do not present

the neighborhood graph because it is unreadable. Fig-

ure 7 shows the criticalities of all agents. We see that

the systems converge in about 18500 timesteps. This

is only 1.32 times more timesteps, while the network

is ten time bigger. However, this time the computa-

tion took 90 minutes to complete (180 times longer

than the 10 nodes network).

4.4 Discussion

The main result of these experiments is that the num-

ber of timesteps to find a solution does not increase

with the size of the network. In other words, the sys-

tem scales up to the size of the network in term of

the the total number of actions needed for each agent.

However, the duration of the computation increases

with the size of the network. This is mainly due to the

fact that our prototype is single-threaded: the compu-

tation of each node has to be done sequentially. Co-

simulations can be distributed, sometimes even phys-

ically distributed, enabling to compute each node of

the network in parallel. Moreover, our agents take

completely local decisions and do not need sophisti-

cated synchronization. This is why our future work

will focus on the parallelization of our implementa-

tion. This should significantly improve time of com-

putation, making the system also scalable in terms of

duration of computation.

5 CONCLUSION AND FUTURE

WORKS

Co-initialization, the problem of properly initial-

izing interdependent simulators in a co-simulation is

challenging, especially when simulators are numer-

ous. This problem can be reinterpreted as a fixed-

point problem, for which current methods suffer from

a lack of scalability. This paper presented a multi-

agent approach where each output of each simula-

tor is an agent trying to find an initial value for the

simulators that are connected to it. Agents seek to

help their neighborhood as well as themselves, and

together converge towards a stable solution.



Figure 6: Convergence with a 10 Nodes Network

Figure 7: Convergence with a 100 Nodes Network.



Results show that this approach is efficient and

scales up to the number of simulators regarding the

number of timesteps required to reach a solution. It

takes only 1.85 times more timesteps to initialize a

network of 100 simulators than a network of 3 sim-

ulators. However, our current single-threaded Java

implementation does not scale: because their execu-

tion is sequential, the higher the number of simula-

tors, the longer a timestep is. Future work will fo-

cus on a multi-threaded parallelized implementation

to make the system also scalable in terms duration of

computation. Our intention is also to get rid of the

jacobians. The less the agents need to know about the

models, the more generic our approach will be. This

could be achieved by enhancing the learning abilities

of the agents, so they improve their understanding of

the simulators with each action they make.
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