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Abstract: Potential of hydrogen (pH) is one of the most relevant parameters characterizing aqueous
solutions. In biology, pH is intrinsically linked to cellular life since all metabolic pathways are
implicated into ionic flows. In that way, determination of local pH offers a unique and major
opportunity to increase our understanding of biological systems. Whereas the most common
technique to obtain these data in analytical chemistry is to directly measure potential between two
electrodes, in biological systems, this information has to be recovered in-situ without any physical
interaction. Based on their non-invasive optical properties, fluorescent pH-sensitive probe are
pertinent tools to develop. One of the most notorious pH-sensitive probes is fluorescein. In addition
to excellent photophysical properties, this fluorophore presents a pH-sensitivity around neutral
and physiologic domains. This review intends to shed new light on the recent use of fluorescein
as pH-sensitive probes for biological applications, including targeted probes for specific imaging,
flexible monitoring of bacterial growth, and biomedical applications.
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1. Introduction

In chemistry, potential of hydrogen, or pH, is a data describing the acidity or the basicity
of a medium [1]. Logarithmically obtained from H+ ion concentration, pH is one of the main
physical characteristics used to describe an aqueous solution. Since the development of pH-meters,
its measurement became inevitable across scientific fields, such as drinking water [2], industrial waste [3,4],
global health [5], and agronomy [6]. As acidic or basic compounds are continuously released as outputs of
cellular life, pH monitoring offered a unique opportunity to easily acquired data from biologic systems [7].
The relevance of pH in biological systems can be observed at different scales: the pH of biological fluids
is well described and its regulation essential to the proper function of organs, since abnormal values
are both the sign and cause of disease developments. pH regulation within biological systems relies on
a sensitive equilibrium, called pH homeostasis. At the organism level, pH regulation is performed
by the lungs through the elimination of CO2 and the kidney through the filtration of the HCO3

− ion.
In cells, where organic acids, such as lactic, pyruvic, or beta-hydroxybutyrate acids are produced along
metabolic pathways, some membrane proteins compensate the decrease of pH by transporting protons
outside the cytosol [8]. Thus, cellular pH monitoring leads to the understanding of key milestones
within cells, such as proliferation [9], ion transport [10], or carcinogenesis [11]. For example, unchecked
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biological processes occurring in malignant cells release a consequent amount of acid derivatives,
leading to a pH decrease in tumoral tissues [12]. In microbiology, proliferations of aerobic bacteria also
lead to a massive production of acidic metabolites, which quickly induce pH variations in medium [13].
Whereas global pH in cytosol has to be regulated, each organelle is fully effective in specific ionic
environments, which are often correlated to local functions [14]. For example, the average pH in
lysosomes, Golgi network, and mitochondria are 4.7, 6.7, and 8 respectively. Thus, pH monitoring of
each organelle has helped to determine their function. At an atomic scale, all metabolism pathways
are directly correlated to pH since enzymatic activities and kinetics depend on ionic environments.
Another common example is the classification of essential amino acids, according their acidic or basic
trends. Thus, pH is an important physicochemical datum, which can attest of biological activities
at different scales. In order to monitor these fluctuations without any physical contact, fluorescent
pH-sensitive probes were developed during the last century. Under specific light, these molecular
probes re-emit photons at another wavelength for which related intensity depends on the surrounding
pH [7]. Since optical devices are continuously becoming more precise, especially with the broad
dissemination of optic fibers, pH-sensitive molecular probes are recurrent across biological studies.

One of the most used pH probes is fluorescein 1; its chemical structure is composed of a tricyclic
xanthene flanked by two hydroxyl groups and a bicyclic fused lactone fragment linked by a spiro
carbon atom (Figure 1).
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Figure 1. Chemical structure of fluorescein 1.

This family of molecules was discovered in 1871 by Adolf von Baeyer, and has become one of most
ubiquitous probes in biological studies, because of its intense fluorescence, reversible pH sensitivity,
chemical stability, and lack of cytotoxicity at working concentrations. For years, fluorescein 1 has been
used as a starting material to create novel fluorescent probes revealing specific biological activities such
as enzymatic cleavage [15]. Fluorescein 1 is still the focus of interest from the scientific community
for its intense fluorescence and its sensitivity to pH variations around neutral domain [16]. As most
biological systems are fully effective at physiological conditions (pH~7.3), fluorescein 1 became a
benchmark for monitoring pH fluctuations in cell cultures. Indeed, every year, a substantial amount
of new articles describes biological studies using fluorescein 1 as pH-sensitive probe (Figure 2) [17].
In this review, we propose an overview of fluorescein 1 and its main derivatives complemented by a
survey of recent studies using fluorescein 1 as pH sensors for biological applications.
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2. Fluorescein and Derivatives as Notorious pH Sensors

2.1. Fluorescein: Synthesis and Properties

Originally obtained by condensing phtalic anhydride with phenol in acidic conditions by Von
Baeyer, this preparation of fluorescein 1 is nowadays based on Friedel–Crafts reactions (Figure 3).
Thus, the fluorophore can be easily obtained by mixing phtalic anhydride, resorcinol and ZnCl2 or
methanesulfonic acid [18,19]. Large scale manufactured, fluorescein 1 has been included in the World
Health Organization (WHO)’s model list of essential medicines [20] for its biological applications,
but it is also used in other fields, such as petrochemistry for leak detection and cosmetic formulations.
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Under basic conditions (pH > 8), fluorescein 1 absorbs blue light with a maxima absorption peak
around 490 nm, and emits a green light around 515 nm [21]. Due to phenolic fragments and equilibrium
between a carboxylic function and a lactone, ionic charge and chemical structure of fluorescein evolve
depending on the surrounding pH, leading to fluctuations of photophysical properties (Figure 4) [22].
Whereas the fluorescence quantum yield under an excitation at 490 nm is very high under basic
conditions (ΦF: 0.95 in NaOH 0.1 M), an acidification of the solution progressively leads to the
fluorescence extinction [23]. This fluctuation is due to the transition of the di-anionic form of fluorescein
into an anionic equilibrium, which has a lower absorbance associated to a blue-shifting [23].

The most problematic drawback of fluorescein is its photobleaching when exposed to light [24].
Indeed, the fluorescent emission from this probe progressively decreases under intense light irradiations,
which is an issue since pH monitoring is based on this intensity, and repeated measurements cause the
signal to fade. Because of this photobleaching, all fluorescein derivatives must be stored in the dark,
and experiments using this probe have to occur quickly. Spectral bands of fluorescein can also induce
issues with some optical systems. Depending on the purpose of the application, its relatively broad
fluorescent emission can be considered as an advantage (for example, in case of the Förster resonance
energy transfer (FRET) system), but also as a drawback for multi fluorescent probing experiences.
Fluorescein presents also a weak Stokes shift, the interval between highest absorption and emission
wavelength, which is a potential issue for devices using a single optical path, such as entry-level plate
readers. Like most intense fluorescent probes, self-quenching can occur in case of aggregation (ACQ)
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or high degrees of surface substitution [25]. Hopefully, due to low the concentration used in biological
systems, this drawback has little relevance.
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Figure 4. Ionic forms of fluorescein 1 according the pH domains and their relative fluorescence
intensities. At neutral pH and under excitation at 490 nm, the most fluorescent di-anionic form of
fluorescein takes prominence over other forms. Below pH = pKa~6.4, mono-anionic fluorescein displays
a blue-shifted absorption followed by drastic decrease of fluorescence. At even lower pH, neutral and
further cationic forms of fluorescein becomes non-fluorescent under irradiation at 490 nm.

2.2. Most Used Fluorescein Derivatives and Their Properties

Several fluorescein derivatives have been developed in order to fit with the downstream
applications. The best-known derivatives are based on the modification of benzo-fused lactone
moiety in order to add reactive chemical functions such as isothiocyanate, carboxylic acid, or amine.
The outcoming probes are named fluorescein isothiocyanate (FITC) (Figure 5-2), carboxyfluorescein
(5(6)-FAM or CF) (Figure 5-3), and fluoresceinamine (FA) (Figure 5-4), respectively.
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FITC 2 is one of most used derivatives due to its properties and good reactivity for conjugation.
In comparison to fluorescein, FITC 2 presents a slight decrease of fluorescence quantum yield
(ΦF (excitation: 500 nm): 0.75 in 10 mM Phosphate-Buffered Saline) [26]. However, in comparison
with other fluorophores, FITC 2 still has an intense fluorescence and can be used as a pH-sensitive
probe around the neutral domain. FITC 2 can be easily associated to any kind of chemical structures
bearing an amine fragment, such as fluorophores [27], targeting agents [28], proteins [29], polymers [30],
or nanoparticles [31]. Resulting bioconjugation linkage is based on a thiourea function for which
stability depends on physiochemical surroundings due to its strong H-bond interactions [32–34].
Using such derivatives offers a unique opportunity to create specific pH sensors, and particularly,
for biological systems where all proteins are bearing a terminal amine. Even if FITC 2 is still the most
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prolific derivative in literature (Figure 6), new fluorescein reactive derivatives are still described with
optimized properties [35].
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When fluorescein was used for intracellular pH (pHin) monitoring, a high leakage rate appeared
from the cells, which made accurate pH determination difficult. Fluorescein 1 was then replaced
by carboxyfluorescein 3 (FAM or CF) as the main pHin probe, since its main advantage was its
low leaking rate through cell membranes. Indeed, due to its additional carboxylic acid function,
the supplementary anionic charge significantly reduces solubility of FAM 3 in lipid structures composing
cell membranes [36] Moreover, FAM 3 has similar photophysical properties to FITC 2 [26]. Thus,
FAM 3 has become one of the most used probes for characterization of tumoral tissue [37]. FAM 3
can also be used for preparation of bioconjugates using carbodiimide/NHS activation. In this case,
resulting amide function is stable due to its omnipresence in biological systems. Diacetate derivatives
of fluorescein and FAM 3, respectively named fluorescein di-acetate (FDA) and carboxyfluorescein
di-acetate (CFDA) (Figure 7-5), were also been used across several studies [38,39]. Di-ester analogs
present a quenching of the fluorescence, but, under esterase intracellular activities, emissions are
restored [40]. Thus, these derivatives are used to estimate intracellular enzymatic activities [41].
Moreover, in comparison of FAM 3, which is used for its weak membrane permeability, diacetate
derivatives are cell permeable probes. Thus, CFDA 5 is one of best pHin sensors because FAM 3 is
directly released under intracellular enzymatic activities and is not able to leak outside cells.
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While FITC 2 and FAM 3 are the most prominent fluorescein derivatives in the literature,
other probes were developed for specific and optimized applications at physiological pH. Introduced by
Roger Tsien in 1982, 2′,7′-bis-(2-carboxyethyl)-carboxyfluorescein (BCECF) (Figure 7-6) was developed
in order to fit more precisely with pH variation around neutral domain [42]. Indeed, due to its pKa
near 7, weak acidification of medium directly induces a significant reduction of fluorescence intensity.
Moreover, the absorption spectrum of BCECF 6 possesses an isosbestic point, where its absorbance
is pH-independent. This property allows the establishment of ratiometric analyses for which a ratio
of fluorescence is calculated from excitations at two different wavelengths (generally at maxima and
isosbestic point). These protocols greatly overcome common hurdles that are dye loading, leakage,
optical imprecisions, or photobleaching [43].

In order to fit with acidic organelles, present in yeast [44] for example, fluorinated derivatives of
fluorescein, such as Oregon Green 7, have been prepared for acidic pH monitoring (Figure 7-7) [45].
Introduction of electron-withdrawing atoms within the xanthene structure leads to a decrease of pKa
around 4.7. Then, pH-sensitivity of such compounds is suitable with cellular components operating at
pH around 5.
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3. Recent Studies Using Fluorescein as pH Sensors for Biological Applications

3.1. Cellular pH Imaging

3.1.1. Molecular pH Sensor

Most of recent developed pH-sensitive probes are based on ratiometric determination. This strategy
spread across biological studies because previous developments using simple fluorescence monitoring
were subject to several interferences such as the quality of the optical devices used, the biological and
physical environments, and compounds stability (such as photobleaching or chemical degradation).
To overcome these issues and increase probe precision, ratiometric measurements have been successfully
adopted. The most convenient way to use this method is to associate a pH-dependent probe to one
(dyad) or more fluorophores emitting at different wavelengths under the same excitation. The ratio of
fluorescence is then calculated in which pH-independent probes are used as internal control.

Novel chemical associations based on fluorescein 1 were recently elaborated as dyads. For example,
Zhang et al. proposed a ratiometric probe based on the chemical association 8 of an iridium (III)
complex with FITC 2 (Figure 8) for pHin monitoring [27]. Under a single wavelength excitation at
488 nm, ratiometric determination of pHin is possible from 5.2 to 7.8, using near infrared emission
from iridium (III) complex.
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In addition to the creation of ratiometric probes, the dyads strategy can also be an opportunity to
enlarge operating windows of pH-sensitivity of fluorescein. Since large pH fluctuations may occur
in cells, during mitophagy for example, more accurate and wider pH-sensitive monitoring offers a
better understanding of cellular life. However, the range of the pH efficient interval for fluorescein
1 is limited to 6 to 8. Therefore, Lee et al. put forward a novel dyad based on chemical association
with rhodamine B (9) (Figure 9) [46]. Inspired by previous works using both compounds grafted on
nanodots [47], rhodamine was covalently linked to fluorescein 1 in order to create a pH-sensitive probe
efficient from 4 to 8. The widening of the pH efficient interval is based on rhodamine fluorescence,
which decreases with alkalization. Moreover, both fluorophores have similar absorbance properties,
offering an opportunity to use ratiometric calculation by exciting both molecules at 488 nm. Finally,
the dyad was shown to be effective to determine pHin across in vitro experiments.
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Another approach was proposed by Wu et al. to widen the interval of pH sensitivity [48].
Two pyrene groups were covalently linked to FITC 2 (10) in order to create a time-resolved FRET
system (Figure 10). Under an excitation at 358 nm, bispyrene moieties have an emission peak at 459 nm
fitting with FITC 2 absorbance. Due to bispyrene lifetime properties, excitation of FITC 2 by FRET
occurs following alkalization of the solution. Thus, ratiometric determination based on both emissions
is effective for pH from 3 to 10. Cellular experiments showed that this probe can be well adapted to
pHin determination between 4 and 8.
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pH-sensitive probes by Wu [48].

Mitochondrion is a prominent organelle for eukaryotes organisms because of its major role in
respiration systems, energy production, enzymatic activity, and cations storage. Monitoring pH
fluctuations within mitochondria is an important challenge considering the importance of the chemical
processes involved. Previously, Carboxy-SNARF® (Seminaphtharhodafluor) was the preferred
mitochondrial pH-monitoring probe due to its passive accumulation [49], but was deemed insufficiently
selective or rapid for this specific application. In order to improve mitochondrial pH monitoring,
different approaches were recently proposed. Chen et al. described a dyad based on the chemical
association of cyanine with FITC 2, called “Mito-pH” (Figure 11-11) [50]. In addition to its ability
to selectively target mitochondria [51], cyanine has pH-insensitive fluorescent properties allowing
a ratiometric monitoring. The ratiometric signal was described as a linear response from pH 6.1 to
8.4 across in vitro experiments. Yet, Li et al. described a ratiometric probe by broadening fluorescein
absorbance with chemical coupling of unsaturated indolium (Figure 11-12) [52]. As previously,
such structure tends to accumulate within mitochondria due to its lipophilic cationic structure [51].
This probe showed a repetitive signal even in highly ionic solutions. After full characterization of the
ratiometric signal for pH varying from 4 to 10, confocal imaging showed the capacity of this probe
to selectively reach its target. Chloroquine treatments were applied to cells in order to simulate pH
fluctuations, since this compound induces intracellular alkalization [53]. This novel probe has proved
its ability to track in real-time wide mitochondrial pH fluctuations. In order to increase the Stokes
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shift, Qi et al. proposed the hybridization of the fluorescein with a coumarin moiety (Figure 11-13) [54].
Indeed, overlapping of emission and excitation spectra, as in case of fluorescein, may induce the
requirement for high-resolution optical devices. Thanks to its hybridization between both fluorophores,
the resulting probe was effective in the determination of mitochondrial pH, with maxima wavelengths
about 450 and 550 nm for absorption and emission respectively.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 23 
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3.1.2. Supported Sensors

For years now, nanoparticles attracted a lot of attention because of their applications in cancer
therapy [55,56]. In addition to physical and chemical advantages inducing flexible and graftable surfaces,
their biocompatibility allows them to massively penetrate tumor cells. Thus, multifunctional nanoparticles
were quickly described for therapeutic and diagnostic applications. Therefore, novel pH-sensitive
nanoparticles bearing fluorescein moieties are continuously described. Because pH measurement within
lysosomes is essential to understand cellular metabolisms, particularly in tumoral cells, Zhang et al.
designed novel pH-sensors based on silicon nanodots bearing aptamers and FAM 3 (14) (Figure 12) [57].
The use of the aptamer (AS1411) enhances cellular uptake and specifically targets tumors and lysosomes
due to its strong affinity for nucleolins. Because of native fluorescence properties from these particles,
only grafting of FAM 3 was required to create a ratiometric system. The preparation of final nanodots
was easily established using simple reactions such as formation of an amide and thiol–Michael click
chemistry. Using ratiometric calculations between emissions from nanodots and FAM 3, estimations of
lysosomal pH were performed. Since aptamers grafted on dots have the ability to recognize malignant
cells, an observable difference of fluorescence between the imaging of human breast MCF-7 cancer
cells and normal cells MCF10-A was easily observed. Thus, such particles offer an interesting way to
selectively image cancer cells and acquire large amounts of data concerning their lysosomal in-situ
pH variations.

Whereas aptamers are used as targeting agents in this previous study, Ding et al. proposed their
own ratiometric pH-sensitive probes specific to cancer cells using folic acid [58]. Due to high density
of folate acceptors in cancer cells, gold nanoclusters (AuNCs) covered by bovine serum albumin (BSA),
FITC 2, and folic acid, were designed to selectively penetrate their target, providing a ratiometric
determination of pHin. Once again, native properties of the used nanoparticles fit perfectly with FITC
2, since a single excitation at 488 nm was enough to induce fluorescence from the clusters and the
pH-sensitive probe. Efficient for pH from 6.0 to 7.8, this system was tested over HeLa cells for which
pH variations were simulated using ammonium chloride treatments.
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Whereas most studies are focused on intracellular data, Yang et al. proposed a ratiometric probe
called “FITC-FPen/FPen@AuNC” for determination of extracellular pH (pHex) [59]. Ionic concentrations
surrounding cell surface is also a parameter, which can indicate metabolic disorders such as tumor
metastasis [60], ion transits deregulation [61], or even some virus infections [62]. A similar chemical
approach to the study from Ding [58] was proposed here; BSA protected AuNCs, were covered by
FITC and cell penetrating peptides (CPP). CPP are cationic peptides, which are generally used as
carriers for transporting compounds through membranes. In this case, the used peptide (FPen) is
ensuring agglomeration of nanosensors at the cell surface whereas emissions from AuNCs and
FITC 2 are providing the ratiometric determination of pHex. Confocal imaging of HeLa cells
exposed to different media proved the good sensitivity and low cytotoxicity of theses nanoparticles
(Figure 13). Another complementary strategy was proposed by Ohgaki et al. using FITC-poly(ethylene
glycol)-phospholipid derivatives [63]. This small and amphiphilic polymer has the ability to be inserted
into plasma membrane of cells, and then grafted FITC can be used as probe for determination of
pHex. The cell-surface labeling with this polymer presented many advantages such as its sensitivity,
pH-reversibility, and its generic application.
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Immobilization of fluorescein for recurrent surface pH determination displays many challenges
because it should avoid leaching, degradation, or photobleaching. Preparation of fluorescent pH-
sensitive surfaces is also offering additional benefits since it can be used as optic fiber coating or in
bioanalytical protocols, such as evanescent wave sensors. Bidmanova et al. investigated a general
procedure for immobilization of fluorescein derivatives on surfaces, by using BSA derivatives [64].
Thus, FAM-BSA conjugates were immobilized on glass surface using direct glutaraldehyde
cross-linking or after incorporation into ORganically MOdified CERAmics (ORMOCER) (Figure 14).
The resulting surfaces have proved to be highly suitable for their mechanical stability, negligible
(photo)leaching, and fluorescent pH-sensitivity from 4.0 to 9.0. Due to the ease of use, such protocols
may lead to the preparation of a supported sensor for a wide range of applications including
bioprocessing, biochemical analyses, environmental analysis, or healthcare devices.
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Figure 14. Immobilization of carboxyfluorescein (FAM)-bovine serum albumin (BSA) on treated glass
by direct glutaraldehyde (GA) cross-linking or after incorporation in ORganically MOdified CERAmics
(ORMOCER), according to Bidmanova [64].

3.2. Dual Sensors

The development of ratiometric probes is related to the recent improvement of optical devices
composing imaging systems. Following this increasing precision, more studies propose to add other
sensitive probes to fluorescein-based compounds. Thus, such dual sensor offers the benefit of two
physiochemical data in a single optical read, which is a unique opportunity for the understanding of
biological systems.

Using AuNCs, Han et al. described the preparation and characterization of a ratiometric probe
15 providing intracellular dual determinations of Cu2+ concentration and pH [65]. Three different
molecules were grafted on these nanoclusters, firstly FITC 2 as pH-sensitive probe, secondly a
tailor-made specific Cu-ligand (called TPAASH) and thirdly a coumarin derivative as a reference
probe (Figure 15). Monitoring of Cu2+ cations is based on the quenching of AuNC emission at 722 nm
(under excitation at 405 nm), following the increase of copper concentration. Therefore, coumarin
was also grafted on clusters to be used as reference probe since its excitation wavelength is also about
405 nm and emission is at 472 nm. These novel particles allow the ratiometric determinations of pHin

from 6 to 9, and simultaneously, of Cu2+ concentration up to 11 µM. A few years later, Zhu et al.
proposed their own version of a dual pH/Cu2+ sensor by grafting FITC 2 and polyethylenimine (PEI)
on carbon dots [66]. Due to a ratiometric and linear signal, they were able to determine pH and Cu2+

concentration into yogurt and human serum samples.
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Oxygen is a key component for biological systems, and especially, for mammal cells for which
metabolism pathways are based on Krebs cycle. Thus, dual sensing probes allowing the simultaneous
monitoring of oxygen concentration and pH at the same time are very important in biomedical sciences.
Relevant publications reported the creation of such dual sensors [67–69] based on the combination
of fluorescein with O2-sensitive fluorophores, such as platinum and ruthenium complexes. In order
to improve dual monitoring of pHin and O2, Xu et al. described the use of semiconducting polymer
dots 16 (Pdots) as a support of both sensitive probes, since these nanomaterials have an improved cell
uptake [70]. For this system, FITC 2 and a platinum porphyrin complex were targeted as pH and O2

sensors respectively (Figure 16C). Once again, the native photophysical properties of the dots were
employed; based on a FRET effect, this multimodal sensor allows ratiometric determination under
excitation at 405 nm, since the fluorescence of Pdots (410 to 470 nm) is matching the absorption of
FITC (410 to 500 nm). Thus, one single excitation at 405 nm leads to emissions from all sensors at
different wavelengths (blue for Pdots, green for FITC 2, red for porphyrin). After calibration, in vitro
experiments on CaSki cells proved that Pdots are well embedded in the cells, allowing the improved
monitoring of both physical parameters using ratiometric results (Figure 16A,B).

A promising approach, described by Meier et al., focuses on imaging devices in order to obtain
signals from dual sensors using a conventional digital camera [71]. A sensor film was created by the
incorporation of microparticles bearing sensors: platinum porphyrin complex for oxygen sensing,
FITC 2 for pH sensing and diphenylanthracene as reference. Under light irradiation at 405 nm,
emissions in red green blue (RGB) channels can be recorded by a digital camera. After characterizations,
calculations and calibrations, the proposed system was even used across in vivo experiments (Figure 17).
The dual sensor film was applied on healing wounds where inflamed tissues were directly submitted
to abnormal pH and oxygen concentrations. Furthermore, the same team developed a diligent
expertise using such systems, by proposing various optimizations, such as a sprayable version [72],
or applications concerning chronic wounds [73], water plants [74], and recently, radiation therapy [75].
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biomedical sciences. Relevant publications reported the creation of such dual sensors [67–69] based 
on the combination of fluorescein with O2-sensitive fluorophores, such as platinum and ruthenium 
complexes. In order to improve dual monitoring of pHin and O2, Xu et al. described the use of 
semiconducting polymer dots 16 (Pdots) as a support of both sensitive probes, since these 
nanomaterials have an improved cell uptake [70]. For this system, FITC 2 and a platinum porphyrin 
complex were targeted as pH and O2 sensors respectively (Figure 16C). Once again, the native 
photophysical properties of the dots were employed; based on a FRET effect, this multimodal sensor 
allows ratiometric determination under excitation at 405 nm, since the fluorescence of Pdots (410 to 
470 nm) is matching the absorption of FITC (410 to 500 nm). Thus, one single excitation at 405 nm 
leads to emissions from all sensors at different wavelengths (blue for Pdots, green for FITC 2, red for 
porphyrin). After calibration, in vitro experiments on CaSki cells proved that Pdots are well 
embedded in the cells, allowing the improved monitoring of both physical parameters using 
ratiometric results (Figure 16A,B). 
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In case of cancer cells, heat production is higher than in healthy cells due to abnormal and aroused
metabolisms [76]. Thus, the developments of dual sensors monitoring pH and temperature have also
been investigated. In this context, Rhodamine B is one of the most notorious temperature-sensitive
fluorescent probes. Liu et al. described the preparation of polystyrene microbeads embedded with
rhodamine, which were subsequently coated with FITC 2. This system presents a linear fluorescence
response from rhodamine and temperature from 32 to 38 ◦C. The physicochemical stability and the
selective response from each probe are among advantages of such combination. Later, Zhang et al.
proposed their own dual sensitive system using similar probes, but of a reduced size [77]. In addition
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to the beneficial nanoscale of this sensor, a europium complex was included as a reference dye in order
to offer a ratiometric determination. Moreover, the surface of this nanosensor was coated with cationic
charges in order to increase its affinity for lysosomes. Across a series of in vitro experiments using
HeLa cells, his dual sensor was able to determine pH ranging from 4.0 to 9.0, and temperature between
25 and 40 ◦C.

3.3. Bacterial Growth

Monitoring aqueous physicochemical data, such as pH, is also a significant opportunity to
understand bacterial growth. Indeed, due to their capacity to transform and adapt their environment
through their quick proliferations and the production of extracellular compounds, ionic variations cause
pH changes in a few hours [78]. The modification of pH along incubation periods has been widely used
to monitor microorganism growths in various media, including in blood cultures. In fact, it is usually
used to detect the presence of bacterial contamination in medical [79], food [80], and water [81] sectors,
which is becoming more of a relevant issue because of emergence of bacterial resistance [82]. Thus,
pH-sensitivity around the neutral domain of fluorescein perfectly fits with microbial culture, since most
of in vitro experiments using common strains are conducted at physiological pH. For example, Si et al.
designed nanoparticles bearing fluoresceinamine (FANPs) for an accurate real-time detection of
Escherichia coli growth (Figure 18) [83]. Resultant non-toxic and fluorescent polystyrene nanoparticles,
obtained after grafting FA 4 by carbodiimide coupling, were incorporated in in vitro cultures,
where emitting fluorescence was directly linked to medium pH. Following the proliferation of
Escherichia coli, the pH is decreasing which directly reduce the fluorescence of the particles. Thus,
the simple fluorescence from culture suspensions is sufficient to determine if there is any growth
or inhibition of the strain. This system was also challenged using cultures exposed to different
concentrations of antibiotics, where pH (and fluorescence) kinetics were precise enough to determine
bacterial behaviors. Thus, such particles can easily be used for the screening of potential growth
inhibitors or for the determination of bacterial minimal inhibitory concentration.
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Figure 18. Fluorescence extinguishments due to the acidification of medium by the bacterial growth in
a1 and c1. Reproduced with authorization from Si [83].

In their view, Wang et al. focused on pH monitoring in case of bacterial growth on Petri dishes
cultures [84]. Since their creation in 1887, Petri dishes are still the most widely used support for
in vitro cultures due to their flexibility fitting the broad microbial diversity. In addition to agarose and
appropriate nutriments, Wang et al. proposed to add silicone nanoparticles bearing FA 4 and porphyrin
moieties in the preparation. These nanosensors are physicochemical stable, easy to incorporate within
agar preparation, are not internalized by bacteria, and are based on ratiometric method. Thus, this study
offers an effective protocol to design pH-sensitive Petri dishes, which can be used to visualize bacterial
growth or determine resultant pH variations due to bacterial behaviors (Figure 19).
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Figure 19. Bacterial and pH imaging using ratiometric signal from nanoparticles included in agar from
Wang [84].

Some strains have the ability to adhere on surfaces and form a biofilm throughout the production
of an extracellular matrix promoting the survival, progression and growth synchronization of the colony.
Bacterial biofilms are a major medical concern because of their ability to colonize indwelling devices,
most importantly catheters and implants [85]. In order to study the metabolisms and mechanisms
implicated in such organized structures, in vitro biofilm cultures have showed their utility, as well as the
development of suitable fluorescent probes. Gashti et al. described the preparation of a pH-monitoring
microfluidic platform adapted for biofilm studies [86]. To reach this goal, FITC 2 based silver core-silica
shell nanoparticles were prepared, and then, covalently linked to glass substrates using click chemistry.
This microfluidic system has many advantages, such as physicochemical stability, lack of leakage
of/from nanoparticles (NPs) and real-time pH measurement. For example, dynamic pH responses
from an oral biofilm of Streptococcus salivarius were monitored following exposition to different glucose
concentrations (Figure 20). Offering bacterial biofilm monitoring, such described system has also
advantages linked to microfluidic scales where liquids consummations are reduced, cultures improved
due to laminar flows and reaction kinetics optimized [87,88]. Moreover, this study is also suggesting
that, due to the use of nanoparticles as platform for fluorescent probes, additional sensitive probes may
be also integrated to create a multi-modal microfluidic system and to increase income of information.
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Figure 20. S. salivarius biofilm pH response under expositions to glucose solutions (A) and imaging of
localized acidification (red) and biofilm accumulation (green) (B). Reproduced with authorization from
Gashti [86].

In comparison with previous reported studies in this review, targeted or optimized probes are rarely
developed for imaging specific bacterial organelles. Due to their small size and their potential mobility
during imaging experimentations, bacteria do not fit perfectly with specific organelle monitoring.
Furthermore, diacetate derivatives (FDA and CFDA 5) are perfect candidates for monitoring bacterial
enzymatic activity, explaining why recent studies are mainly using fluorescein at its purpose [89–93].
However, some work also used these fluorescein derivatives for their pH-sensitivity.

A wide diversity of bacterial species exists across all biological systems. Each local microbiome is
directly linked to the properties of its surroundings, since only bacteria supporting local physicochemical
properties are able to fully grow. Thus, using pH-sensitivity of fluorescein along in vivo assays can be
used as a way to determine the suitable environment for each strain. For example, aciduric bacteria
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are generally involved in buccal microbiome, as described in the study below. Among buccal strains,
Streptococci mutans, Bifidobacterium dentium, and B. longum have been observed in case of caries lesions,
often linked to local acidification. In order to compare their survival rate in acidic environment,
Nakajo et al. proposed protocols using CFDA 5 [94]. Using pH sensitivity of fluorescein, the difference
between pHin and pHex offers a way to observe bacterial ability to protect itself against acidification.
In this case, it appeared that Bifidobacterium strains are the most stable species in acidic environment
explaining why they are predominant in case of caries lesions.

Using similar protocols based on comparison between intra and extracellular pH, bacterial life
cycle can be also monitored since substrate consummation, and resulting productions of metabolites
may induce variations in both environments. For example, Bouix et al. described a protocol to
monitor pHin variations following the malolactic fermentation (MLF) of Oenococcus oeni in wine [95].
Using diacetate derivatives of carboxyfluorescein 3 and Oregon Green 7, pHin variations from 3 to 6
were accurately observed using flow cytometry analysis along different growth phases. It appeared
that fermentation occurs during the exponential phase, where malic acid is co-excreted as lactic acid,
carbon dioxide, and proton. This production induces an increase of pHin and stimulates the ATP
synthase pathway. This study shows that pH monitoring using fluorescein derivatives provides
valuable insights into the cellular mechanisms at play in pathogenesis.

3.4. Other Applications

Following the principle of drug vectorization, any component or organelle from biological systems
may be targeted by fluorescein derivatives in order to monitor its pH variations. For example, Li et al.
recently described a novel pH-sensitive probe targeting bones [28]. It appears that pH is a relevant
datum concerning bones homeostasis [96] or abnormal issues, such as metastasis [97]. To create an
efficient bone pH-sensitive probe, FITC 2 was conjugated to alendronate, a bisphosphonate compound
presenting a significant affinity for hydroxyapatite (HAp) (17) (Figure 21). The resulting probe was able
to selectivity target bones, without interfering with other calcium compounds or organs. Nude mouse
models were tested in vivo and pH variations from 6.8 to 7.4 were observable. The use of a ratiometric
version would provide a powerful diagnostic tool, and this probe is a remarkable example of fluorescein
vectorization for pH monitoring.
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The design of fluorescein based ratiometric sensors was applied to the development of novel
imaging tools. Mathew et al. described a novel nanoprobe for imaging and monitoring pH
variations within Caenorhabditis elegans, a nematode usually used as in vitro model organism [98].
Monitoring intestinal intracellular pH of natural strains of C. elegans was quite challenging, because of
the presence of a protecting and surrounding cuticle, and selective intestinal uptake [99]. To overcome
these issues, nanocolloidal silica particles bearing FITC 2 and rhodamine patterns were prepared.
Thanks to the intrinsic properties of the nanoparticles, the fluorophores are physicochemically stable
and able to bypass the selective intestinal barrier. The resulting probe was successfully challenged by
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using two different mutants (eat-3 and N2), considering that first strain presents a lower pH due to
fragmented mitochondria. Thus, this study proposes a new and non-invasive way to monitor the pHin

of C. elegans, which would interest all further studies using this specie as model organism [100].
Besides the medicinal applications described above, pH monitoring is also a useful tool in

odontology. The dental microbiome is a symbiotic partner with our organism [101]. However,
the proliferation of aciduric bacteria within a sturdy biofilm can metabolize sugars into organic acids,
which may lead to demineralization of enamel [102]. In order to prevent any stubborn damage to the
dentition, such as caries, the healthcare specialists can be provided with a tool to evaluate the production
of organic acids from dental microbiome under sugary environment. Furthermore, conventional
procedures, using pH paper for example, are not readily applicable to the dental topography. Thus,
Sharma et al. worked on an optical system involving fluorescein 1 in order to monitoring dental
pH [103]. Fluorescein 1 fits perfectly the requirements of this use case thanks to its regulatory approval
(FDA, EMA) for internal use in humans. The main attention was focused on the creation of the fiber
optic-based dental probe and post data processing. Based on a ratiometric calculation using anionic
and dianionic forms of fluorescein, this device allowed the monitoring of dental pH across pilot studies,
whereas acidic production was observable following sucrose rinse (Figure 22).

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 16 of 23 

 

these issues, nanocolloidal silica particles bearing FITC 2 and rhodamine patterns were prepared. 
Thanks to the intrinsic properties of the nanoparticles, the fluorophores are physicochemically stable 
and able to bypass the selective intestinal barrier. The resulting probe was successfully challenged 
by using two different mutants (eat-3 and N2), considering that first strain presents a lower pH due 
to fragmented mitochondria. Thus, this study proposes a new and non-invasive way to monitor the 
pHin of C. elegans, which would interest all further studies using this specie as model organism [100]. 

Besides the medicinal applications described above, pH monitoring is also a useful tool in 
odontology. The dental microbiome is a symbiotic partner with our organism [101]. However, the 
proliferation of aciduric bacteria within a sturdy biofilm can metabolize sugars into organic acids, 
which may lead to demineralization of enamel [102]. In order to prevent any stubborn damage to the 
dentition, such as caries, the healthcare specialists can be provided with a tool to evaluate the 
production of organic acids from dental microbiome under sugary environment. Furthermore, 
conventional procedures, using pH paper for example, are not readily applicable to the dental 
topography. Thus, Sharma et al. worked on an optical system involving fluorescein 1 in order to 
monitoring dental pH [103]. Fluorescein 1 fits perfectly the requirements of this use case thanks to its 
regulatory approval (FDA, EMA) for internal use in humans. The main attention was focused on the 
creation of the fiber optic-based dental probe and post data processing. Based on a ratiometric 
calculation using anionic and dianionic forms of fluorescein, this device allowed the monitoring of 
dental pH across pilot studies, whereas acidic production was observable following sucrose rinse 
(Figure 22). 

 
Figure 22. Dental pH monitoring using fluorescein fluorescence under exposition to glucose 
solutions, from Sharma [103]. 

Obviously, the simplest use of fluorescein pH-sensitivity should be acidic or basic titrations 
around neutral domain. Whereas colorimetric titrations in biological medium require further 
calibrations due to irregular native absorptions, fluorescent titrations are convenient to use. An 
example of titration was described by Burton et al. in order to determine sarcosine concentration in 
urine [104]. Previously debated, sarcosine is nowadays recognized as an accurate marker of 
development of prostate cancers [105–107]. In order to reduce the cost of conventional techniques 
based on chromatography, fluorescent titration was established using enzymatic transformation of 
sarcosine in formaldehyde, which is used as a reactant for the production of formic acid. Therefore, 
fluorescent intensity from fluorescein is directly proportional to initial amount of sarcosine (Figure 
23). Despite an expected lower sensitivity of this protocol in comparison to chromatographic 
systems, associating enzymatic transformation with fluorescence titration should be considered for 
its efficacy, efficiency, practical, and flexible procedures. 

Figure 22. Dental pH monitoring using fluorescein fluorescence under exposition to glucose solutions,
from Sharma [103].

Obviously, the simplest use of fluorescein pH-sensitivity should be acidic or basic titrations around
neutral domain. Whereas colorimetric titrations in biological medium require further calibrations
due to irregular native absorptions, fluorescent titrations are convenient to use. An example of
titration was described by Burton et al. in order to determine sarcosine concentration in urine [104].
Previously debated, sarcosine is nowadays recognized as an accurate marker of development of prostate
cancers [105–107]. In order to reduce the cost of conventional techniques based on chromatography,
fluorescent titration was established using enzymatic transformation of sarcosine in formaldehyde,
which is used as a reactant for the production of formic acid. Therefore, fluorescent intensity from
fluorescein is directly proportional to initial amount of sarcosine (Figure 23). Despite an expected
lower sensitivity of this protocol in comparison to chromatographic systems, associating enzymatic
transformation with fluorescence titration should be considered for its efficacy, efficiency, practical,
and flexible procedures.
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While BCEG 6 is one of most sensitive pH fluorescent probes around the neutral domain, a new
fluorescein-like derivative called SNARF® (18, Figure 24) represents a recent breakthrough. With a pKa
similar to BCEG, this probe offers a double fluorescent emission signal at 580 and 640 nm for one single
excitation at 488nm. This double signal allows the estimation of pHin using a ratiometric calculation
without any supplementary probe. For example, Golda-VanEeckhoutte et al. recently showed that
SNARF® 18 was more efficient for the determination of pHin in phytoplankton, than BCECF 6 [108].
By using an acetate ester analog, the pH sensor is accumulating inside cells under the activity of
esterase. The intracellular probe concentration is based on enzymatic kinetics, leading to fluorescence
fluctuations independently from pH variations. The intrinsic ratiometric property from SNARF®

overcomes this issue. Thus, this derivative offers an easy and reliable solution for monitoring of pHin

in phytoplankton, which allows observation of cellular metabolic processes responding to the variation
in oceans.
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4. Conclusions

This review is intended to provide an overview of recent advances in the field of fluorescein
derivatives, their fluorescent pH-sensitive properties, and applications in biological systems. Despite its
discovery in 1871, fluorescein and its derivatives attracted lasting interest from the scientific community
over the past decades. The development of new fluorescein derivatives remains relevant since the
properties of members of this family of probes perfectly fit with changes in pH around the neutral
and physiological domains. New fluorescein-based dyads for the creation of optimized or targeted
probes have been one of main recent focus. Nanoparticles bearing fluorescein moieties, increasing its
stability and offering a broad spectrum of applications, represents one of the most recent advances in
this field. Chemical combinations or grafting mostly used FITC or FAM derivatives, but some novel
fluorescein derivatives have been described in order to modulate photophysical properties, improve
measurements accuracies, and expand the fields of application. Results and findings gathered within
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this review undoubtedly suggest that fluorescein will continue to be an essential pH-sensitive probe in
the future.
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Abbreviations

AuNC Gold nanoclusters
BCECF 2′,7′-bis-(2-carboxyethyl)-carboxyfluorescein
BSA Bovine serum albumin
CFDA Carboxyfluorescein di-acetate
FA Fluoresceinamine
FAM/CF Carboxyfluorescein
FDA Fluorescein di-acetate
FITC Fluorescein isothiocyanate
FRET Förster resonance energy transfer
NP Nanoparticles
pHin/ex Intra/extra cellular pH
SNARF Seminaphtharhodafluor
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