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Abstract12

This paper proposes to take into account the influence of some morphologi-

cal fluctuations – often observed in unidirectional composite materials – on

the modelling of the elastic behaviour of such materials. This work relies on

a Generalized Self-Consistent Scheme coupled with a Morphologically Rep-

resentative Pattern based approach. An analytical model is proposed to

deal with “non-percolated” or trapped matrix regions. Closed-form analyt-

ical expressions are provided to investigate different kinds of morphological

fluctuation effects on the effective transverse elastic behaviour. Finally some

examples are given to illustrate the effectiveness of this approach.
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•(k) or •k The letter k is used generically to designate any phase (k). It33

can be the phase index •(i) or •i, i ∈ {1, 2, . . . , n+ 1} or the34

phase index inside the pattern λ, iλ ∈ {1, . . . , nλ}35

•[j] An estimate of • during the iteration process36

•f, •m or •eff Related to “fibre”, “matrix” or “effective” properties37

• λ or • λ Indicates the pattern dependency38

•λ or •λ Identity transformation defined for two patterns and two phases,39

λ ≡ Id (λ) with 1 = 1 and 2 = 240

•λ or •λ Complementary transformation defined for two patterns and41

two phases,42

λ ≡ Cp (λ) with 1 = 2 and 2 = 143

〈•〉Ω2
Average volume fraction of any • expression over the domain Ω244

{Ap}
⊆•

When • needs to be expanded, • can be, partially or completely,45

split into several parts: {A1}
⊆•

, {A2}
⊆•

, . . . ; {Ap}
⊆•

, p ∈ N, represents46

all these parts. When • can be written in different forms, {Bp}
⊆•

,47

{Cp}
⊆•

, . . . are used. When only one part is needed, index is48

omitted49

Material constants and parameters50

µ23 Shear modulus51

ν Poison’s ratio52

E Young’s modulus53
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k23 Transverse bulk modulus54

C˜̃ Elastic stiffness tensor55

Other Symbols56

x Position vector, i.e. x = x1e1 + x2e2 + x3e3 or x = rer + x1e157

(
e1, e2, e3

)
Cartesian orthonormal basis set58

(
er, eθ, e1

)
Cylindrical orthonormal basis set59

(x1, x2, x3) Cartesian coordinates of x in the basis
(
e1, e2, e3

)
60

(r, θ, x1) Cylindrical coordinates of x in the basis
(
er, eθ, e1

)
61

Ω Domain of material whose effective properties are sought62

Ωλ Domain of the pattern λ, partition of Ω63

Ωi Domain of phase (i), partition of Ω64

Ωiλ Domain of phase (i) inside the pattern λ, partition of Ωi65

n Number of phases66

Nλ Number of “Morphological Representative Pattern” families67

nλ Number of phases inside pattern λ68

f Volume fraction of phase (1), in the case Nλ = 2 and nλ = 269

for each pattern; i.e. f = f170

fi Volume fraction of phase (i)71
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mλ Volume fraction of pattern λ72

m Volume fraction of the “direct” pattern, in the case Nλ = 273

and nλ = 2 for each pattern; i.e. m = m174

ciλ Volume fraction of phase (i) inside pattern λ75

ci λ Volume fraction of the “ith” phase inside pattern λ76

c Volume fraction of phase (1) inside the “direct” pattern, in the77

case Nλ = 2 and nλ = 2 for each pattern; i.e. c = c11 = c1 178

Ri Outer radius of phase (i) lying within the radii Ri−1 and Ri79

T Stress vector80

T 0 Applied stress vector81

Ti Stress vector component along ei82

u Displacement vector83

u0 Displacement vector applied to each pattern, homogeneous con-84

ditions85

ug “Given” displacement vector applied to the equivalent homoge-86

neous configuration, homogeneous conditions87

ui Displacement vector component along ei88

σ˜ Stress tensor89

ε˜ Strain tensor90
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ε˜0 Strain tensor such that u0 = ε˜0. x is applied to each pattern91

E˜ Strain tensor such that ug = E˜ . x is applied to the equivalent92

homogeneous configuration93

Aiλ Average intensity concentration for phase (iλ)94

A˜̃ i Average intensity concentration tensor for phase (i)95

Bold Bold notation for rectangular arrays96

i.e. rectangular arrays such as V, J, N or Q with components97

denoted Qkl for example98

Q or Q∗ Transfer matrices99

Ak, Bk, Ck and Dk Integration constants for each phase (k) in the case of100

an in-plane transverse shear mode101

Aiλ and Diλ Constants for phase (iλ)102
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1. Introduction103

1.1. Evaluating the transverse elastic properties of unidirectional compos-104

ites105

Knowing and anticipating how a structure will deform when subjected106

to a load is a daily challenge for engineers. Depending on their anisotropy,107

composite materials can exhibit a strong dependence on the direction in108

which loads are applied. It is clear that a single unidirectional (UD) ply,109

for example reinforcing the rubber of a tire, will exhibit a considerable re-110

sistance to deformation if the load is applied along the direction of the111

reinforcement. In contrast, this same ply will undergo a large deformation112

if the load is now applied in a non-longitudinal direction. To design effi-113

cient composite structures and take advantage of the anisotropy, engineers114

need to characterize or predict the load-deformation material response for115

all the directions in which loads may occur. Regarding transverse proper-116

ties, experimental characterization is always a tedious procedure and result117

uncertainties are often large. These complications provide a strong practical118

motivation for the development of models which can be used to predict the119

material performance.120

However, this does not mean that models remove the underlying difficul-121

ties. If the prediction of UD longitudinal properties is rarely complicated,122

transverse properties are more affected by interactions between the con-123

stituents and predicting accurately the transverse properties is always chal-124

lenging. Models taking into account the morphological distribution of the125

phases, in addition to their volume fractions, are required to obtain realistic126

predictions for the transverse properties of such UD composite materials.127
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Morphological variabilities and fibre packing strongly influence the trans-128

verse linear elastic behaviour of these composites. Numerous and varied129

methods have already been proposed in order to predict effective proper-130

ties of such a multi-phases medium. Existing solutions include, on the one131

hand, full-field approaches – as the Finite Element Method (FEM) for ex-132

ample – requiring to model the microstructure in details. Such methods133

require complex1 mesh operations, especially when the fibres get very close134

or when functionally graded materials are considered. On the other hand,135

mean-field approaches are based on a single inclusion problem and unlike136

full-field approaches, only statistical information about the microstructure137

is needed. Both approaches have their advantages and this work is focused138

on an efficient, fast and cost-effective analytical mean-field model to take139

into account morphological fluctuations at the microscopic scale, in order to140

predict the transverse linear elastic shear and bulk moduli of unidirectional141

composites.142

1.2. A rational microstructure model143

As explained previously, this work is devoted to the study of the elastic144

behaviour of fibre-reinforced composites with different distributions of fi-145

bres. Restricting the attention to cylindrical shape and transverse isotropic146

elasticity, we can refer to Hashin and Rosen’s (1964) composite assem-147

blage or to Christensen and Lo’s (1979) three-phase model which deal148

with two-phases coaxial cylinder for a two-phases material. A model has149

1The two-dimensional models dealt with in the present investigation are nevertheless

far more simple than the three-dimensional ones require in the case of macroscopically

isotropic particulate composites, such as in Bardella et al. (2018).
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been developed in Hervé and Zaoui (1995) to predict the elastic behaviour150

of heterogeneous fibre-reinforced composites including the case of coated151

fibre-reinforced composites, usually referred to as the (n+ 1)-phase model2.152

This work has also provided the elastic strain and stress fields in an infinite153

medium constituted of an n-layered transversely isotropic cylindrical inclu-154

sion, surrounded by a transversely isotropic cylindrical matrix subjected to155

uniform conditions at infinity. These fields have been given in a simpler156

form in Hervé-Luanco (2020). From that, we can study the transverse elas-157

tic behaviour of more complex morphologies regarding the way the fibres158

are distributed inside the matrix and by also accounting for fibres that can159

have a functionally graded behaviour. These concerns lead directly, on the160

one hand, to more than one pattern3, and, on the other hand to more than161

two phases in each pattern.162

The way used here to take into account complex morphologies is to163

add as many elementary patterns as needed like in Marcadon et al. (2007)164

or in Majewski et al. (2017) in the case of particle-reinforced composites165

having size effects, or in Diani and Gilormini (2014) in the case of linear166

viscoelasticity of nano-reinforced polymers with an interphase, or in Bil-167

ger et al. (2007), Bardella and Genna (2001) and Bardella et al. (2018)168

in the case of porous materials. This latter case, dealing with macroscopi-169

cally isotropic particulate composites, is particularly relevant to show that170

2It should be noted that the three-phase model proposed in Christensen and Lo (1979)

corresponds also to the (n+ 1)-phase model developed in Hervé and Zaoui (1995) in the

particular case of n = 2.
3A “pattern” contains a “representative disposition of some of the constitutive me-

chanical phases”, as defined by Bornert et al. (1996).
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the present study makes sense. Although the materials are very different,171

in Bardella et al.’s paper (2018) it is shown that the method adopted in the172

present investigation, using representative patterns to account for complex173

morphologies, works very well even with an extremely large filler volume174

fraction.175

If a biphasic matrix-inclusion material is considered, at low volume frac-176

tion of inclusions, there is no doubt that the matrix is a continuous and177

percolating phase as opposed to inclusions which are distributed discontin-178

uously. If the volume fraction of inclusions increases sufficiently a network179

of percolating aggregates can be formed. The matrix is then trapped by ag-180

gregates which makes it lose its continuity and leads to a “phase inversion”181

phenomenon as discussed in Albérola et al.’s paper (1994). In this specific182

case of two patterns with two phases in each pattern, using an “inverse”183

pattern – where the inclusion surrounds the matrix – allows to model this184

phenomenon (Albérola et al., 1994; Mélé et al., 2005).185

In this work, the Generalized Self-Consistent Scheme (GSCS) used in Hervé186

and Zaoui (1995) and in Hervé-Luanco (2020) is coupled with the Mor-187

phologically Representative Pattern (MRP) based approach developed by188

Bornert et al. (1996) in order to take into account local morphological fluc-189

tuations and heterogeneous distribution of fibres. Analytical estimates are190

provided for both effective transverse shear and bulk moduli. In this pa-191

per, the approach followed by Marcadon et al. (2007) for particle-reinforced192

composites in the case of two patterns with two phases has been generalized193

in the case of: 1) fibre-reinforced composites 2) for any number of patterns194

with any number of phases inside each pattern like in Hervé-Luanco and195

Joannès (2016a). In this latter paper a model has been developed to predict196
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the transverse properties of a fibre-reinforced composite in the case of trans-197

port phenomena. In a second article (Joannès and Hervé-Luanco, 2016b),198

the authors have used their model to study the influence of fibre packing199

effects on the transverse properties of the composites regarding transport200

phenomena.201

In the present paper, a MRP-based approach is coupled to the (n+ 1)-202

phase model thanks to a rearrangement of the transfer matrices in terms203

of their dependence on the behaviour of a given phase as shown in Hervé-204

Luanco (2020). It is organized as follows: Section 2 is devoted to the de-205

velopment of the model. Closed-form equations are given for the transverse206

shear and bulk moduli. In section 3, the model is applied in the case of two207

patterns with two phases inside each pattern. An example of application is208

given to highlight the possibilities of the presented model. Two comparisons209

with experimental data are presented in section 4.210

2. Extension of the (n + 1)-phase model by using a MRP-based211

approach212

2.1. Introduction213

Let us consider the configuration defined in Hervé and Zaoui (1995)214

where the elementary pattern representing the microstructure is a n-phase215

cylindrical inclusion which is embedded in an infinite matrix subjected to216

homogeneous boundary conditions at infinity (Figure 1). Each phase is217

homogeneous, linearly elastic and transversely isotropic with the axis of218

transverse isotropy along the direction of the fibre.219

Let us assume first that the Representative Volume Element (RVE) of220

the studied microstructure is a Hashin assemblage of cylindrical domains221

11



Figure 1: One single elementary pattern made of a n-layered cylindrical inclusion em-

bedded in an infinite matrix, i.e. phase (n+ 1).

consisting of a set of Nλ families (see Figure 2) of homothetic identical fi-222

nite composite domains whose material content is known. These families are223

called here “pattern”, they are made of different phases and this microstruc-224

ture can be referred to as a generalized Hashin’s assemblage of patterns. The225

configuration under study is referred to a Cartesian rectangular coordinate226

system in the basis
(
e1, e2, e3

)
thus allowing to locate any point from the227

origin O by its position vector x = x1e1 + x2e2 + x3e3. Direction given by228

e1 is parallel to the fibre longitudinal axis while
(
O, e2, e3

)
define the trans-229

verse plane. A cylindrical coordinates system with the same origin and230

the orthonormal basis set
(
er, eθ, e1

)
can also be used. In this cylindrical231

representation, coordinates of the position vector are denoted (r, θ, x1). As232

in Hervé and Zaoui (1995), let phase (i), for i ∈ {1, 2, . . . , n+ 1}, lie within233
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the shell limited by the inner radius Ri−1 and the outer radius Ri (see Fig-234

ure 1). It should be noted that we consider R0 = 0 and Rn+1 →∞. The235

interfaces between the different phases are supposed to be perfect leading236

to the continuity of the displacement vector u and of the stress vector T at237

each interface r = Ri. Let k(i)
23 and µ

(i)
23 be respectively the transverse bulk238

and shear moduli of phase (i) and ε˜ and σ˜ be respectively the strain and239

stress tensors. A cylindrical symmetry behaviour is considered where k(i)
23240

and µ
(i)
23 depend only on r. In order to determine the effective transverse241

bulk and shear moduli of the assemblage (i.e. keff
23 and µeff

23), two elementary242

loadings modes are studied: an in-plane hydrostatic mode and an in-plane243

transverse shear one.244

2.2. Methodology245

In the two studied modes the same methodology has been used in order246

to derive closed-form solutions of the transverse bulk and shear moduli. The247

local fields inside each phase of each pattern λ with λ ∈ {1, 2, . . . , Nλ} are248

here expressed thanks to the model developed in Hervé and Zaoui (1995)249

and simplified recently in Hervé-Luanco (2020). Let nλ be the number of250

phases inside pattern λ and mλ the volume fraction of pattern λ. Phase251

(iλ) corresponds to the part of phase (i) present in pattern λ. Depend-252

ing on the context, iλ can take an explicit form4 or represents the position253

of phase (i) inside the pattern λ using an integer to indicate the ranking.254

This is particularly the case if calculations are carried out with iλ such255

as, for example, iλ − 1. In that latter case, iλ may take the following val-256

ues {1, 2, . . . , nλ}. Consider that the studied material occupies a volume Ω257

4For instance 12, designating phase (1) in pattern 2.
13



and that the volume corresponding to pattern λ is denoted Ωλ. We suppose258

that Ω = ∪Nλλ=1Ωλ and that ∩Nλλ=1Ωλ = ∅. We also denote by Ωi the vol-259

ume corresponding to all the parts of phase (i) present in several patterns260

and consider that Ωi = ∪Nλλ=1Ωiλ and ∩Nλλ=1Ωiλ = ∅ where Ωiλ is the volume261

corresponding to the phase (i) in pattern λ. The particular case of two262

patterns and two phases (section 3) makes it possible to grasp more easily263

the relationship between (i) and (iλ).264

Overall properties are defined through consideration of a boundary value265

problem. The determination of the effective behaviour is derived from first,266

the solution of the elementary problem of each pattern embedded in an in-267

finite homogeneous elastic matrix with adequate moduli subjected to the268

same uniform strain at infinity and secondly, with some adequate average269

operation leading to the determination of the effective elastic stiffness ten-270

sor C˜̃ eff (transverse moduli in this paper). The first step is to consider that271

the same kind of boundary conditions are imposed on each pattern as for272

the classical GSCS model (Hervé-Luanco, 2020). The terminal sections of273

the composite are subjected to the following boundary condition:274

u0
1 = 0

T 0
2 = 0

T 0
3 = 0


(1)

and the lateral surface, i.e. r = Rn+1, to the following ones:275

ug = E˜ . x (2)
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On the terminal section of each pattern:276

u0
1 = 0

T 0
2 = 0

T 0
3 = 0


(3)

and on the lateral surface of each pattern:277

u0 = ε˜0. x (4)

where ε˜0 in Eq. (4) depends on the considered mode (in-plane hydrostatic278

or in-plane transverse shear mode).

Figure 2: MRP approach with Nλ patterns made of a nλ-layered cylindrical inclusion

embedded in an infinite medium, i.e. phase (n+1), also corresponding to the Equivalent

Homogeneous Medium (EHM).

279

The linear constitutive relation for elasticity will be denoted by:280

σ˜ = C˜̃ : ε˜ (5)
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Since we disregard eigenstrains the average strain tensor in any phase (i) is281

written as follows:282

〈ε˜〉Ωi = Ai˜̃ : E˜ (6)

where Ai˜̃ is the average intensity concentration tensor regarding phase (i).283

The effective elastic moduli tensor C˜̃ eff is derived from the following rela-284

tions:285

Σ̃ = 〈σ˜〉Ω = C˜̃ eff : 〈ε˜〉Ω = C˜̃ eff : E˜ (7)

It comes immediately from Eqs. (5), (Eq. (6)) and (Eq. (7)) that:286

Σ̃ =
〈
C˜̃ : A˜̃

〉
Ω

: E˜ =
n∑
i=1

fi C˜̃ (i) : Ai˜̃ : E˜ (8)

where fi is the volume fraction of phase (i). Consequently, as defined by Hill287

(1963):288

C˜̃ eff =
n∑
i=1

fi C˜̃ (i) : Ai˜̃ (9)

2.3. In-plane hydrostatic mode289

In the case where an in-plane hydrostatic mode is considered, following290

Hervé and Zaoui (1995), ε˜0 in Eq. (4) is chosen as:291

ε˜0 = β0
[(
e2 ⊗ e2

)
+
(
e3 ⊗ e3

)]
(10)

Thanks to the (n+1)-phase problem solved in Hervé and Zaoui (1995) (Eq.95 (37)),292

with ε = 0, as typographically defined in Hervé and Zaoui’s paper (1995),293

we know the average strain tensor 〈ε˜〉Ωiλ in each phase (iλ) of any pattern λ:294

〈ε˜〉Ωiλ = Q
(iλ−1)
11

Q
(nλ)
11

β0 [(e2 ⊗ e2) + (e3 ⊗ e3)] (11)
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From Eqs. (10) and (Eq. (11)) it is worth noticing that 〈ε˜〉Ωiλ can be written295

under the following form:296

〈ε˜〉Ωiλ = Aiλε˜0 (12)

where Aiλ is a scalar defined by:297

Aiλ = Q
(iλ−1)
11

Q
(nλ)
11

(13)

and where Q is the transfer matrix defined in Hervé and Zaoui (1995). It298

is now possible to write the strain average of whole phase (i) (mλ is the299

volume fraction of pattern λ):300

〈ε˜〉Ωi =
Nλ∑
λ=1

mλ 〈ε˜〉Ωiλ =
Nλ∑
λ=1

mλAiλε˜0 (14)

Therefore:301

E˜ = 〈ε˜〉Ω =
n∑
i=1

fi 〈ε˜〉Ωi =
 n∑
i=1

fi

 Nλ∑
λ=1

mλAiλ

 ε˜0 (15)

It is worth noticing that consequently:302

E˜ = E
[(
e2 ⊗ e2

)
+
(
e3 ⊗ e3

)]
with E =

 n∑
i=1

fi

 Nλ∑
λ=1

mλAiλ

 β0

 (16)

From Eqs.95 (39) and (40) of Hervé and Zaoui (1995), with ε = 0 and using303

Eq. (A.1) from Appendix A (which summarizes some basic elastic relations304

applied to transversely isotropic systems), we get the average stress tensor in305

phase (iλ) when each pattern λ is subjected to boundary conditions defined306

in Eq. (4) with ε˜0 given by Eq. (10):307

〈σ11〉Ωiλ = 2 C(iλ)
12 Aiλβ0

〈σ22 (e2 ⊗ e2) + σ33 (e3 ⊗ e3)〉Ωiλ = 2 k(iλ)
23 Aiλε˜0

 (17)
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leading to:308

〈σ11〉Ω =
 n∑
i=1

fi

 Nλ∑
λ=1

mλ 2 C(iλ)
12 Aiλ

 β0

〈σ22 (e2 ⊗ e2) + σ33 (e3 ⊗ e3)〉Ω = n∑
i=1

fi

 Nλ∑
λ=1

mλ 2 k(iλ)
23 Aiλ

 ε˜0


(18)

The effective elastic moduli tensor C˜̃ eff is derived from relation (Eq. (7))309

and Eq. (A.1) applied to the equivalent homogeneous medium:310

Σ11 = 2 Ceff
12E = 〈σ11〉Ω

Σ22 (e2 ⊗ e2) + Σ33 (e3 ⊗ e3) = 2 keff
23E˜

= 〈σ22 (e2 ⊗ e2) + σ33 (e3 ⊗ e3)〉Ω


(19)

Comparison between Eq. (19) and Eq. (18) where E˜ and E are given by311

Eq. (16) implies that:312

Ceff
12 =

n∑
i=1

fi

 Nλ∑
λ=1

mλ C
(iλ)
12 Aiλ


n∑
i=1

fi

 Nλ∑
λ=1

mλAiλ



keff
23 =

n∑
i=1

fi

 Nλ∑
λ=1

mλ k
(iλ)
23 Aiλ


n∑
i=1

fi

 Nλ∑
λ=1

mλAiλ





(20)

The effective transverse bulk modulus is finally obtained by substituting Aiλ313

from Eq. (13) in Eq. (20):314

keff
23 =

n∑
i=1

fi k
(i)
23

Nλ∑
λ=1

mλ
Q

(iλ−1)
11

Q
(nλ)
11

n∑
i=1

fi

Nλ∑
λ=1

mλ
Q

(iλ−1)
11

Q
(nλ)
11

(21)
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and we get the effective value of C12 in the same manner:315

Ceff
12 =

n∑
i=1

fi C
(i)
12

Nλ∑
λ=1

mλ
Q

(iλ−1)
11

Q
(nλ)
11

n∑
i=1

fi

Nλ∑
λ=1

mλ
Q

(iλ−1)
11

Q
(nλ)
11

(22)

Eq. (22) will not be considered in the following because only the elastic316

transverse behaviour is adressed in this paper.317

It should be noted that keff
23 , given by Eq. (21), depends on the volume frac-318

tion of each phase in the composite, on the volume fraction of each pattern,319

on the distribution of the different phases inside each pattern and also on320

the transverse properties (bulk and shear moduli) of each phase.321

Such a coupling between the effective moduli is totally similar to that no-322

ticed for macroscopically isotropic particulate composites by Bardella and323

Genna (2001).324

It has been shown in Hervé-Luanco (2020) (following Eq. (23)) that Q(nλ)
11325

depends on keff
23 and on µeff

23:326

Q(nλ) = J−1
nλ+1 (Rnλ) Q∗(nλ) (23)

with327

J−1
nλ+1 (Rnλ) = 1

2 Rnλ

(
k

(nλ+1)
23 + µ

(nλ+1)
23

)
2 µ(nλ+1)

23 Rnλ

2 k(nλ+1)
23 −Rnλ

 (24)

leading immediately to:328

Q
(nλ)
11 = 2µ(nλ+1)

23 Q
∗(nλ)
11 +RnλQ

∗(nλ)
21

2Rnλ

(
k

(nλ+1)
23 + µ

(nλ+1)
23

) (25)
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keff
23 can be rearranged by substituting Eq. (25) into Eq. (21):329

keff
23 =

n∑
i=1

fi k
(i)
23

Nλ∑
λ=1

mλ
Q

(iλ−1)
11 Rnλ

2µeff
23Q

∗(nλ)
11 +RnλQ

∗(nλ)
21

n∑
i=1

fi

Nλ∑
λ=1

mλ
Q

(iλ−1)
11 Rnλ

2µeff
23Q

∗(nλ)
11 +RnλQ

∗(nλ)
21

(26)

where
(
k

(nλ+1)
23 + µ

(nλ+1)
23

)
has been removed because this expression is the330

same in all the patterns (same infinite medium).331

The different matrices Q and Q∗ present in Eq. (26) depend all on the332

pattern λ they refer to. For this reason and in order to more easily evalu-333

ate keff
23 , we will write it in the following form5 using the symbol λ to denote334

the pattern dependency:335

keff
23 =

n∑
i=1

fi k
(i)
23

Nλ∑
λ=1

mλ

Q
(iλ−1) λ
11 Rnλ λ

2µeff
23Q

∗ λ
11 +Rnλ λ

Q∗ λ
21

n∑
i=1

fi

Nλ∑
λ=1

mλ

Q
(iλ−1) λ
11 Rnλ λ

2µeff
23Q

∗ λ
11 +Rnλ λ

Q∗ λ
21

(27)

For Nλ > 1 (more than one pattern), it is worth noting that the effec-336

tive transverse bulk modulus keff
23 depends on the effective transverse shear337

modulus µeff
23.338

2.4. In-plane transverse shear mode339

In the case where an in-plane transverse shear mode is considered, fol-340

lowing Hervé and Zaoui (1995), ε˜0 in Eq. (4) is chosen as:341

ε˜0 = γ0
[(
e2 ⊗ e2

)
−
(
e3 ⊗ e3

)]
(28)

5As Q∗ is only written for nλ and nλ being perfectly defined for each pattern, Q∗(nλ)

will be equivalently written Q∗ λ .
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The same methodology as the one presented in the case of an in-plane342

hydrostatic mode is used.343

From Eq.95 (74) published in Hervé and Zaoui (1995), the average strain344

tensor 〈ε˜〉Ωiλ in each phase (iλ) of any pattern λ is given by Eq. (29),345

where Aiλ – not to be confused with Aiλ – and Diλ are defined constants346

for phase (iλ) (see Hervé and Zaoui (1995)):347

〈ε˜〉Ωiλ = 1
Dnλ+1

Diλ − 3Aiλ

(
R4
iλ
−R4

iλ−1

)
R2
iλ

(
R2
iλ
−R2

iλ−1

)
 ε˜0 = Aiλε˜0 (29)

leading to:348

Aiλ = 1
Dnλ+1

Diλ − 3Aiλ

(
R4
iλ
−R4

iλ−1

)
R2
iλ

(
R2
iλ
−R2

iλ−1

)
 (30)

It is easy to deduce that we have still:349

E˜ = 〈ε˜〉Ω =
n∑
i=1

fi 〈ε˜〉Ωi =
 n∑
i=1

fi

 Nλ∑
λ=1

mλAiλ

 ε˜0 (31)

with Aiλ given now by Eq. (30) and consequently:350

E˜ = E [(e2 ⊗ e2)− (e3 ⊗ e3)]

with E =
 n∑
i=1

fi

 Nλ∑
λ=1

mλAiλ

 γ0

 (32)

Using Eq. (A.1) we get the average stress tensor in phase (iλ) when each351

pattern λ is subjected to boundary conditions defined in Eq. (4) with ε˜0
352

given by Eq. (28):353

〈σ˜〉Ωiλ = 2 µ(iλ)
23 Aiλε˜0 (33)

leading to:354

〈σ˜〉Ω =
 n∑
i=1

fi

 Nλ∑
λ=1

mλ 2 µ(iλ)
23 Aiλ

 ε˜0 (34)
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The effective elastic stiffness tensor C˜̃ eff is derived from relations (Eq. (7))355

and (Eq. (A.1)) applied to the equivalent homogeneous medium:356

Σ̃ = 2 µeff
23E˜ = 〈σ˜〉Ω (35)

Comparison between Eq. (34) and Eq. (35) (with ε˜0 given by Eq. (28)),357

where E˜ and E are given by Eq. (32), implies that:358

µeff
23 =

n∑
i=1

fi

 Nλ∑
λ=1

mλ µ
(iλ)
23 Aiλ


n∑
i=1

fi

 Nλ∑
λ=1

mλAiλ

 (36)

Substituting Eq. (30) into Eq. (36) yields the following expression of µeff
23:359

µeff
23 =

n∑
i=1

fi µ
(i)
23

Nλ∑
λ=1

mλ
1

Dnλ+1

Diλ − 3Aiλ

(
R4
iλ
−R4

iλ−1

)
R2
iλ

(
R2
iλ
−R2

iλ−1

)


n∑
i=1

fi

Nλ∑
λ=1

mλ
1

Dnλ+1

Diλ − 3Aiλ

(
R4
iλ
−R4

iλ−1

)
R2
iλ

(
R2
iλ
−R2

iλ−1

)
 (37)

In Hervé and Zaoui (1995), the form of the solution of the displacement360

field is expressed in terms of four constants (Ak, Bk, Ck, Dk) in the case361

of a transverse shear mode and Vk denotes the matrix with these constants362

as components:363

Vk =



Ak

Bk

Ck

Dk


(38)

Here Aiλ and Diλ correspond respectively to Ak and Dk and are given364

in Eq. (39) where phase (k) will be replaced by phase (iλ) present in pat-365

tern λ and n will be replaced by nλ (see Eq.95 (72) in Hervé and Zaoui366
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(1995)):367

Vk

Dn+1
= 1
Q

(n)
44 Q

(n)
11 −Q

(n)
41 Q

(n)
14



Q
(k−1)
11 Q

(k−1)
12 Q

(k−1)
13 Q

(k−1)
14

Q
(k−1)
21 Q

(k−1)
22 Q

(k−1)
23 Q

(k−1)
24

Q
(k−1)
31 Q

(k−1)
32 Q

(k−1)
33 Q

(k−1)
34

Q
(k−1)
41 Q

(k−1)
42 Q

(k−1)
43 Q

(k−1)
44





−Q(n)
14

0

0

Q
(n)
11


(39)

leading to:368

Ak
Dn+1

= −Q
(k−1)
11 Q

(n)
14 +Q

(k−1)
14 Q

(n)
11

Q
(n)
44 Q

(n)
11 −Q

(n)
41 Q

(n)
14

Dk

Dn+1
= −Q

(n)
14 Q

(k−1)
41 +Q

(k−1)
44 Q

(n)
11

Q
(n)
44 Q

(n)
11 −Q

(n)
41 Q

(n)
14


(40)

It is important to highlight that Ak, i.e. Aiλ and Dk, i.e. Diλ , depend on µeff
23

through the different components of Q(nλ). In order to show the dependence

on µeff
23 in Eq. (37), Q(nλ) is expressed thanks to Eq. (23) with J−1

n+1 (Rn) (see

Hervé-Luanco (2020)) given in the transverse shear mode by:

J−1
n+1 (Rn) =

1
νn+1 − 1



−
R2
n+1

8 R3
n

−
R2
n+1

8 R3
n

−
R2
n+1

48 µ(n+1)
23 R2

n

−
R2
n+1

48 µ(n+1)
23 R2

n

0 − R3
n

4 R4
n+1

− νn+1R
4
n

12 µ(n+1)
23 R4

n+1
−(2 νn+1 − 3)R4

n

24 µ(n+1)
23 R4

n+1

− Rn

8 R2
n+1

Rn

8 R2
n+1

R2
n

16 µ(n+1)
23 R2

n+1
− R2

n

16 µ(n+1)
23 R2

n+1

− 1
2 Rn

− 1
4 Rn

νn+1 − 1
4 µ(n+1)

23
−2 νn+1 − 1

8 µ(n+1)
23


(41)

23



After tedious calculations (all the details are given in Appendix B) the final369

equation providing the effective shear modulus is:370

µeff
23 =

n∑
i=1

fi µ
(i)
23

Nλ∑
λ=1

mλRnλ λ

(
6µeff

23α
(i)
λ

+Rnλ λ
β

(i)
λ

)
A λ µ

eff
23

2 +B λ µ
eff
23 + C λ

n∑
i=1

fi

Nλ∑
λ=1

mλRnλ λ

(
6µeff

23α
(i)
λ

+Rnλ λ
β

(i)
λ

)
A λ µ

eff
23

2 +B λ µ
eff
23 + C λ

(42)

with371

α
(i)
λ

= Q
(iλ−1) λ
44

(
Q∗ λ

11 +Q∗ λ
21

)
−Q(iλ−1) λ

41

(
Q∗ λ

14 +Q∗ λ
24

)

− 3

(
R4
iλ λ
−R4

iλ−1 λ

)
R2
iλ λ

(
R2
iλ λ
−R2

iλ−1 λ

)
×
[
Q

(iλ−1) λ
14

(
Q∗ λ

11 +Q∗ λ
21

)
− Q

(iλ−1) λ
11

(
Q∗ λ

14 +Q∗ λ
24

)]

(43)

and372

β
(i)
λ

= Q
(iλ−1) λ
44

(
Q∗ λ

31 +Q∗ λ
41

)
−Q(iλ−1) λ

41

(
Q∗ λ

34 +Q∗ λ
44

)

− 3

(
R4
iλ λ
−R4

iλ−1 λ

)
R2
iλ λ

(
R2
iλ λ
−R2

iλ−1 λ

)
×
[
Q

(iλ−1) λ
14

(
Q∗ λ

31 +Q∗ λ
41

)
− Q

(iλ−1) λ
11

(
Q∗ λ

34 +Q∗ λ
44

)]

(44)
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A λ , B λ and C λ have been determined in Eq. (B.14) of Appendix B:373

A λ = 12Z λ
12 + 6

Rnλ λ

keff
23

(
Z λ

14 + Z λ
32 + Z λ

24 + Z λ
31

)

B λ =
2Z λ

34R
2
nλ λ

keff
23

+ 2Rnλ λ

(
2Z λ

14 + 2Z λ
32 + Z λ

24 + Z λ
31

)
C λ = Z λ

34R
2
nλ λ


(45)

where Z λ
ij denotes:374

Z λ
ij

def= Q∗ λ
i4 Q∗ λ

j1 −Q
∗ λ
j4 Q

∗ λ
i1 (46)

It should be noted (see Eqs. (42) and (Eq. (45))) that the transverse shear375

modulus depends on the transverse bulk modulus. Finally both moduli keff
23376

and µeff
23 are linked together. In addition, the radius Rnλ λ

disappears in377

both final equations (Eq. (27)) and (Eq. (42)) for particular cases of Nλ378

and nλ (see section 3 for Nλ = 2 and nλ = 2 for each pattern).379

3. Particular case of two patterns with two phases in each pat-380

tern (Nλ = nλ = 2)381

In this section we consider one “direct” pattern and one “inverse” pattern382

as drawn in Figure 3.383

The first pattern (λ = 1) is called the “direct” pattern and consists in two384

concentric cylinders where the internal phase is made of the fibre mate-385

rial (1) and the external phase of the pure matrix material (2). The second386

pattern (λ = 2) is called the “inverse” pattern and, on the opposite, the387

internal phase is made now of the pure matrix material (2) and the external388

phase of the fibre material (1). Let f be the overall volume fraction of fibre,389
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Figure 3: Two morphologically representative patterns.

i.e. f = f1 and let m be the volume fraction of the first pattern and c the390

volume fraction of fibre inside this first pattern.391

Let phase (i) (i ∈ {1, 2}) lie in each pattern λ within the shell limited by392

the two concentric cylinders with the radii Ri−1 λ and Ri λ for λ ∈ {1, 2}.393

In this studied configuration, phase (1) represents the fibres and is split394

into phase (11) inside the direct pattern 1 and phase (12) inside the inverse395

pattern 2. As shown in Figure 3, phase (11) corresponds to the first phase,396

i.e. the internal phase of pattern 1, and lies between radii R0 1 = 0 and R1 1 .397

Still considering the fibres, phase (12) corresponds to the outer phase, i.e.398

the second phase of pattern 2, and lies between radii R1 2 and R2 2 . It399

is important not to confuse the phase number and its indexing number400

within each pattern. This is expressed as follows for the volume fractions401

but also applies to radii: ciλ corresponds to the volume fraction of phase (i)402

inside pattern λ whereas ci λ is the volume fraction of the “ith” phase inside403
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pattern λ; c22 and c2 2 are thus not equivalent. The parameters presented404

in Figure 3 are linked by the following relations:405

c11 = c1 1 = c = R2
1 1

/
R2

2 1 and c21 = c2 1 = 1− c

c12 = c2 1 = 1− c22 and c22 = c1 2 = R2
1 2

/
R2

2 2

f1 = mc11 + (1−m) c12 = mc+ (1−m) (1− c22) = f

f2 = 1− f


(47)

It should be noted that f , m and c are the three independent parameters of406

the model and all these data allow to express c22 as c22 = [(1− f) +m (c− 1)]/(1−m).407

Let also k(i)
23 and µ(i)

23 denote respectively the plane strain bulk modulus and408

transverse shear modulus of phase (i).409

Eq. (27) and Eq. (42) have been particularized in this particular case of410

two patterns with two phases in each pattern. For this purpose, the different411

transfer matrices Q and Q∗ have been determined in Appendix C in the412

case of an hydrostatic pressure loading and in the case of a transverse shear413

loading. These developments lead to the following solution for the effective414

transverse modulus (see details of calculation in Appendix C.1).415

keff
23

def=
{C1}
⊆keff

23

µeff
23 + {C2}

⊆keff
23

{C3}
⊆keff

23

µeff
23 + {C4}

⊆keff
23

(48)

where coefficients {Cp}
⊆keff

23

for p ∈ J1, 4K are known in terms of the three in-416

dependent parameters f , m, and c and in terms of moduli of each phase417

inside the two patterns (see Eq. (C.18)). With more tedious calculations418

the effective transverse shear modulus has been determined in Appendix419
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C.2 as the solution of the following equation:420

µeff
23 = µeff

23

(
f,m, c, keff

23 , µ
eff
23 , k

(i)
23 , µ

(i)
23

)
def=
{A1}
⊆µeff

23

{A2}
⊆µeff

23

(49)

421

where coefficients {Ap}
⊆µeff

23

, p ∈ J1, 2K, function of µeff
23, are defined by Eq. (C.34)422

and Eqs. (C.36) to (Eq. (C.44)).423

4. Highlighting the usefulness of the “two patterns - two phases”424

approach425

The specific case of two patterns with two phases in each pattern is par-426

ticularly suitable for taking into account local morphological fluctuations,427

such as trapped matrix regions induced by the heterogeneous distribution of428

fibres. The purpose of this section is to illustrate this ability and to justify429

the addition of an inverse pattern to the classical GSCS.430

In order to check the accuracy of any model, a sufficient amount of re-431

liable “reference data” must be available. Initial resources are generally432

coming from experimental characterization tests and results from the liter-433

ature.434

A very large majority of experimental studies reported in the literature435

are based on “mechanical” testing techniques. Although the mechanical436

characterization of longitudinal and transverse Young’s moduli does not,437

generally, provide any difficulties, this is not as simple for the characteri-438

zation of the transverse bulk and shear moduli which are considered in the439

present paper. These moduli are usually missing from the publications and440

in the best case, are estimated indirectly from elastic constants easier to441
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obtain. To facilitate the characterization of these transverse elastics con-442

stants and reduce the inherent propagation of experimental uncertainties,443

alternative testing methods have been proposed.444

Ultrasonic methods offer such an alternative and have been developed445

since the 1970’s, initiated by Markham (1970) and Zimmer and Cost (1970).446

The principle is based on the propagation of ultrasonic waves through a447

sample and the phase velocity of these propagating plane waves is measured.448

An appropriate geometry thus makes it possible to propagate the waves in449

the desired directions and to estimate more easily elastic constants using the450

well-known Christoffel’s equations. A recent review of ultrasonic methods451

written by Paterson et al. (2018) can be consulted for further details.452

Beyond experimental results on the transverse elastic behaviour, the453

comparison with a micromechanical model, as presented in the present pa-454

per, requires to know the properties of the constituents but also the mor-455

phology of the microstructure. This is the case for Zimmer and Cost’s pa-456

per (1970) which will allow – in a first step – to highlight that the intro-457

duction of the inverse pattern leads to better predictions of the “average”458

experimental values. If ultrasonic methods make it possible to limit exper-459

imental uncertainties, it nonetheless remains true that these uncertainties460

on average properties remain large. In addition, other problems are raised461

when using experimental results as reference data, even when increasing the462

number of tests.463

Experimental results are indeed affected by behaviours unaccounted for464

by the linear elastic homogenization procedure, such as nonlinearities, un-465

certainties on the actual moduli of the employed phases, or even the pres-466

ence of interphases of unknown properties between the reinforcement and467
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the matrix. The use of numerical experiments makes it possible to get rid468

of these issues. In a second step, results obtained with full-field finite ele-469

ment simulations are thus employed to test the present approach. Gusev470

et al.’s paper (2000) has been selected because it combines both experimen-471

tal results – using ultrasonic techniques – and numerical ones for the desired472

elastic properties.473

Material properties related to the two above-mentioned examples cho-474

sen to illustrate the present approach are gathered in Table 1, where “ZC”475

refers to Zimmer and Cost (1970), “GHW” to Gusev et al. (2000), and the476

superscripts “f” and “m” to the fibre and the matrix respectively. As sug-

Property & Notation ZC GHW Units

Overall volume fraction of fibres . . . . . . 〈f〉 0.49 0.54 -

Young’s modulus of the fibre . . . . . . . . .
〈
Ef
〉

72.4 72.5 GPa

Poisson’s ratio of the fibre . . . . . . . . . . . .
〈
νf
〉

0.20 0.20 -

Young’s modulus of the matrix . . . . . . . 〈Em〉 4.34 5.32 GPa

Poisson’s ratio of the matrix . . . . . . . . . . 〈νm〉 0.36 0.365 -

Table 1: Materials data as provided by Zimmer and Cost (1970) (referred as ZC, E-glass

fibre and ScotchplyTM 1002 epoxy matrix) and by Gusev et al. (2000) (referred as GHW,

E-glass fibre and 913 epoxy matrix).

477

gested by Zimmer and Cost, due to the viscoelasticity of the resin and the478

ultrasonic frequencies chosen, the Young’s modulus of the matrix, 〈Em〉ZC,479

is presented with a 40 % increase over the measured value for modelling pur-480

poses; which gave, in their situation, the best matches between experiences481
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and reference models. We place ourselves under the same conditions.482

The primary objective of this paper is clearly the development of the483

model, while emphasizing its effectiveness by experimental and numerical484

examples 6 .485

4.1. Proposed methodology486

Reference data, i.e. transverse bulk and shear moduli, are firstly ex-487

tracted from the two publications mentioned above (Zimmer and Cost, 1970;488

Gusev et al., 2000) and the uncertainties on the average values are evalu-489

ated. These results are intended to be compared with those obtained by the490

model presented in Section 3. For this purpose, material data from Table 1491

are used as input data for the model. The transverse moduli of the uni-492

directional composites are derived by using an iterative algorithm – based493

6A work in progress will complement the illustrative nature of this section and will offer

to scan, different morphologies and fibre volume fractions for validation and parameter

calibration purposes.
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on Eqs. (C.17) and (C.33) – which can be described by Eq. (50)494

keff
23 ≈ k

[j+1]
23

def=
{C1}
⊆keff

23

µ
[j]
23 + {C2}

⊆keff
23

{C3}
⊆keff

23

µ
[j]
23 + {C4}

⊆keff
23

with {Cp}
⊆keff

23

, p ∈ J1, 4K, depending on
(
f,m, c, k

(i)
23 , µ

(i)
23

)

µeff
23 ≈ µ

[j+1]
23

def=
{A1}
⊆µeff

23

{A2}
⊆µeff

23

with {Ap}
⊆µeff

23

, p ∈ J1, 2K, depending on
(
f,m, c, k

(i)
23 , µ

(i)
23 ,

keff
23 ≈ k

[j]
23 , µ

eff
23 ≈ µ

[j]
23

)



(50)

and where k
[j]
23 and µ

[j]
23 are respectively estimates of the effective plane-495

strain bulk and transverse shear moduli at step [j], j ∈ N, of the iteration496

process (see Figure 4). The initial estimates, k[0]
23 and µ

[0]
23 , can be chosen497

as the plane-strain bulk and transverse shear moduli of the matrix or the498

ones of the fibre leading respectively to the lower or to the upper estimates.499

The iteration process is stopped when the relative error defined by Eq. (51)500

is lower than 10−6.501

Err =

√(
µ

[j+1]
23 − µ[j]

23

)2
+
(
k

[j+1]
23 − k[j]

23

)2

√(
µ

[0]
23

)2
+
(
k

[0]
23

)2
(51)

Figure 5 illustrates the iteration process for two isotropic but contrasted502

phases as in Hervé et al. (1991). Convergence is obtained within only a few503

iterations and in a fraction of a second on a personal computer.504

The input parameters in Eq. (50) are the elastic behaviour of each phase505

and the following three morphological parameters: f , the volume fraction506
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Figure 4: Recursive algorithm to get the effective transverse behaviour.

of fibre, m, the volume fraction of the “direct” pattern and c, the volume507

fraction of fibre inside the “direct” pattern. If the values of m and c were508

chosen arbitrarily in the example given in Figure 5, it is necessary to proceed509

differently for the comparison with Zimmer and Cost (1970) and Gusev510

et al. (2000) papers. Let us recall that m and c must satisfy, respectively,511

Eqs. (52) and (53) as in Joannès and Hervé-Luanco (2016b) .512

m ≥ 1
2 + |f − 1

2 | (52)
513

0 ≤ cmin = 1 + f − 1
m

< c < cmax = f

m
≤ 1 (53)

Knowing f from Table 1, the range of variation of m and c is determined514

and possible pairs (m, c) – distributed over the entire parameter space – are515

selected to assess the domain of the response of the model in terms of516

effective moduli keff
23 and µeff

23. Plotting the response domain of the model517

makes it possible to compare it with the reference data.518
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Figure 5: Effective shear modulus of a fibre-reinforced composite yielded by an iterative

algorithm and normalized by the shear modulus of the matrix (phase (2)). The fibre

(phase (1)) volume fraction, f , is equal to 0.5, as to m and c. Shear moduli are µ(1) = 6

and µ(2) = 1 with the Poisson’s coefficients ν(1) = 0 and ν(2) = 0.45.

4.2. Results and discussion519

As previously mentioned, Zimmer and Cost’s paper (1970) is particularly520

suitable to highlight the interest of the present model. Zimmer and Cost521

have considered the ultrasonic characterization of a glass-epoxy composite:522

E-glass fibres reinforcing a ScotchplyTM 1002 epoxy matrix (see Table 1).523

The following results for C22 and C23 (see Eq. (54)) have been reported with524

their associated uncertainties.525

〈C22〉ZC = (17.79± 1.03) GPa

〈C23〉ZC = (9.79± 1.52) GPa

 (54)
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It is worth noting that the transverse moduli C22 and C23 are related to the526

effective transverse plane-strain bulk and shear moduli through Eq. (A.2).527

Experimental average values from Zimmer and Cost (1970) are finally given528

as follows:529 〈
keff

23

〉
ZC

= (13.79± 1.28) GPa〈
µeff

23

〉
ZC

= (4.00± 1.28) GPa

 (55)

〈
keff

23

〉
ZC

is provided with an estimated uncertainty of slightly more than 9 %530

and
〈
µeff

23

〉
ZC

with an estimated uncertainty of 32 %.531

532

By following the iterative process described in § 4.1, and by varying m533

and c, it is possible to build gradually the domain of the response of the534

model corresponding to Zimmer and Cost’s experimental results (1970).535

The data of Table 1 being given, for each investigated pair, (m, c), a “point”536

of the response domain is obtained. In order to illustrate the way the error537

defined in Eq. (51) decreases during the iterative algorithm, its value has538

been plotted in Figure 6 (top and bottom), respectively when the initial539

medium corresponds to the fibre (glass) and to the matrix (epoxy).540

It is worth noticing that the speed of convergence, obviously for one541

set of parameters, is very fast; namely the number of iterations necessary542

to reach the desired relative error (10−6) is low, i.e. 9 iterations for the543

conditions considered here. We have chosen to keep in Figure 6 only five544

different values for m with c = f = 0.49. This is also the case for the545

response domain plotted in Figure 7, even if, for this figure more values546

of m and c are necessary to draw the envelop curves.547

Figure 7 requires some explanations; the values of keff
23 or µeff

23 are placed548

on the y-axis and evolve as a function of c (placed on the x-axis) and of m549
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Figure 6: Error minimization during the iteration process corresponding to Zimmer and

Cost’s experimental conditions (1970), in the particular case where c = f = 0.49 and

where medium [0] corresponds to the fibre (top) or to the matrix (bottom).

represented with dotted lines. The value of m is between 0.51 and 1, this550

latter case corresponding to the classical three-phase model (represented by551

the “ • ” symbol), and the limit values for c are indicated by left and right552

triangles. What appears first is the relatively large area related to Zimmer553
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Figure 7: Analytical results, obtained with the present model, are compared to Zimmer

and Cost’s experimental data (1970).

and Cost’s results (1970) inherent to the experimental uncertainties. If the554

GSCS predicted value for µeff
23 is very close to that obtained experimentally555

by Zimmer and Cost, it is not the same for keff
23 , which is far below the556

expected value. The response domain of the proposed model is located be-557
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tween the solid line curves (envelope curves). The response domain is quite558

large and allows to reach the plain-strain bulk modulus obtained experi-559

mentally. An infinity of pairs (m, c) achieves this goal but the experimental560

uncertainty is really too broad to provide further conclusions. These are561

the limits of this first comparison step based on experimental results.562

As already stated, the second set of data is taken from Gusev et al.563

(2000) where a glass-epoxy composite is also considered: E-glass fibres re-564

inforcing a 913 epoxy matrix. In Gusev et al.’s work (2000), the ultrasonic565

experimental results are compared to finite element simulations making it566

possible to overcome a large part of the uncertainty problems raised above.567

Elastic constants “are calculated numerically based on periodic Monte Carlo568

realizations with unit cells comprising a random dispersion of 100 non-569

overlapping fibres”. According to the authors, this process is sufficient to570

reduce the uncertainty on the average values of elastic constants to less571

than 1 %. They show a good agreement between the experimental and nu-572

merical results. Thanks to their numerical approach, they also show “that573

the randomness of the composite microstructure had a significant influence574

on the transverse composite elastic constants”; what is now well known and575

justifies the use of the MRP approach which offers great flexibility. Gusev576

et al.’s numerical results (2000) are used in this second comparison step577

and C22 and C23 are calculated from the compliance matrix provided in578

their paper. The following results have been found while considering an579

uncertainty of 1 %:580

〈C22〉GWH = (22.38± 0.22) GPa

〈C23〉GWH = (10.09± 0.10) GPa

 (56)

38



which leads to Eq. (57) (using Eq. (A.2)) :581

〈
keff

23

〉
GWH

= (16.23± 0.16) GPa〈
µeff

23

〉
GWH

= (6.14± 0.16) GPa

 (57)

It is necessary to say that the value of µeff
23 provided in Gusev et al.’s pa-582

per (2000) is slightly below (about 1 %) the value calculated here, which583

ensures the transverse isotropy.584

As for the first step, the domain of the response of the proposed model585

is plotted in Figure 8. It can be seen that the analytical results are in good586

agreement and encompass the numerical values. However Gusev et al. do587

not give precise estimates of the uncertainties of their simulations, which588

in all cases are negligible compared to the range of values represented and589

are not shown in Figure 8. The three-phase model corresponding to m = 1590

is the lowest value of the predicted moduli in Figure 7 and Figure 8, the591

predicted moduli are far below the expected values for the materials that592

are considered in this paper. This can be explained by the fact that, in the593

studied microstructures, a part of the matrix is trapped by the fibres (see594

for instance an image7 of the transverse cross-section of Gusev et al.’s ma-595

terial (2000) in Figure 9).596

Figure 7 and Figure 8 clearly show that the introduction of an inverse597

pattern makes it possible to considerably extend the prediction range of the598

three phase model. The reference values considered in the two comparison599

steps are reached without any difficulty by varying m and c. These last two600

figures provide a wealth of results and other analyzes can be drawn from601

them:602

7A similar micrograph is presented in Zimmer and Cost’s publication (1970).
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Figure 8: Analytical predicted transverse moduli compared to Gusev et al.’s numerical

results (2000).

• Even considering relatively low contributions of the inverse pattern,603

it is possible to increase the transverse moduli by several percent.604

This is “graphically” highlighted in Figure 7 where the experimental605

uncertainty range is plotted. In the studied configuration and as a606
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Figure 9: Example of a transverse cross-section microstructure of a unidirectional com-

posite taken from Gusev et al. (2000). Glass fibres appears in black and the epoxy matrix

in white, trapped matrix regions are clearly visible.

first approximation, considering a third of reverse pattern and two-607

thirds of direct pattern allows about 20 % variation on the values of keff
23608

or µeff
23.609

• In the case of the plain strain bulk modulus, for a given m 6= 1, vary-610

ing c does not offer much “modulation” of the predicted values.611

• The effect of c is much more visible when considering the transverse612

shear modulus. Two areas appear in the keff
23 graphs of Figure 7613

and Figure 8: “c < f” and “c > f”. When c < f , the sensitivity614

to c is very low as in the case of µeff
23 analysed above. When c > f ,615

the sensitivity to c becomes very large and tiny variations are enough616

to increase the predicted values by a few percent. This highly sensi-617

tive area is probably difficult to use, while providing very little added618
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value in terms of the predicted range.619

• As a first approximation, setting c = f seems to be a good modelling620

compromise. This allows a wide modulus range to be obtained while621

ensuring stability and smoothness regarding predicted values. More-622

over, it seems that (m, c) solutions pairs for keff
23 and µeff

23 are quite623

close8.624

5. Conclusion625

In this paper, a pattern-based method has been introduced to take into626

account the effect of the morphological fluctuations on the transverse elastic627

behaviour of fibre reinforced composites. For that purpose a Generalized628

Self-Consistent Scheme based on Nλ patterns with nλ phases each has been629

proposed. The particular case of two patterns with two phases has been630

completely developed, the first pattern is a “direct” one (fibre embedded631

in the matrix) and the other is an “inverted” one (matrix embedded in the632

phase fibre). This second pattern allows us to take into account the role the633

non-percolated matrix part plays on the transverse elastic behaviour. Two634

additional morphological parameters (m, the volume fraction of the direct635

pattern in the microstructure and c, the volume fraction of fibre inside the636

second pattern) have been introduced.637

As it has been shown in this paper, these two parameters make it pos-638

sible to widely extend the predictive capacity of the classical three phase639

model. For a given microstructure, several pairs (m, c) seem to be able640

8This analysis, dealing with the uniqueness of solution pairs, constitutes a work in

progress that goes beyond the scope of the present paper.
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to accurately describe the experimental results. This means that from an641

appropriately identified pair (m, c), it is possible to predict the transverse642

behaviour of a composite microstructure with trapped or non-percolated643

matrix areas. This identification, which is not the subject of this paper,644

can be carried out in different ways. An image analysis procedure, derived645

from a covariogram analysis can for example be applied and is under devel-646

opment by the authors. Moreover, a work in progress aims to show that for647

a given microstructure, a couple (m, c) can be chosen quasi-independently648

of the phase contrast and the phase properties in order to predict effective649

transverse elastic constants.650
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Appendix A. Elastic behaviour of transversely isotropic systems655

The linear constitutive relation, for elasticity is written here in the form:656 

σ11

σ22

σ33

σ23

σ31

σ12

≡

≡

≡

≡

≡

≡

σ1

σ2

σ3

σ4

σ5

σ6



=



C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55





ε1

ε2

ε3

ε4

ε5

ε6

≡

≡

≡

≡

≡

≡

ε11

ε22

ε33

2 ε23

2 ε31

2 ε12


(A.1)
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In the equivalent homogeneous material we will use Ceff
ij and in phase (k)657

C
(k)
ij to describe their respective elastic behaviour. By combining C22 and658

C23, k23 and µ23 can be calculated as follows:659

k23 = C22 + C23

2
µ23 = C22 − C23

2

(A.2)

Appendix B. Determination of µeff
23 in the case of Nλ patterns660

with nλ phases661

In section 2.4, the homogenisation approach has led to the following662

effective transverse shear modulus (Eq. (37)):663

µeff
23 =

n∑
i=1

fi µ
(i)
23

Nλ∑
λ=1

mλ
1

Dnλ+1

Diλ − 3Aiλ

(
R4
iλ
−R4

iλ−1

)
R2
iλ

(
R2
iλ
−R2

iλ−1

)


n∑
i=1

fi

Nλ∑
λ=1

mλ
1

Dnλ+1

Diλ − 3Aiλ

(
R4
iλ
−R4

iλ−1

)
R2
iλ

(
R2
iλ
−R2

iλ−1

)
 (B.1)

Aiλ/Dnλ+1 and Diλ/Dnλ+1 in Eq. (B.1) are given by Eq. (40) which is664

written in the following form:665

Aiλ
Dnλ+1

= Q
(iλ−1)
14 Q

(nλ)
11 −Q(iλ−1)

11 Q
(nλ)
14

Q
(nλ)
44 Q

(nλ)
11 −Q(nλ)

41 Q
(nλ)
14

Diλ

Dnλ+1
= Q

(iλ−1)
44 Q

(nλ)
11 −Q(nλ)

14 Q
(iλ−1)
41

Q
(nλ)
44 Q

(nλ)
11 −Q(nλ)

41 Q
(nλ)
14


(B.2)

It should be noted that Aiλ and Diλ depend on µeff
23 through the different666

components of Q(nλ). In order to exhibit the dependance on µeff
23 in Eq. (B.1),667

Q(nλ) is expressed thanks to Eq. (B.3) where Q∗(nλ) does not depend on µeff
23:668

Q(nλ) = J−1
nλ+1 (Rnλ) Q∗(nλ) (B.3)
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with (νnλ+1 − 1) J−1
nλ+1 (Rnλ) (see Hervé-Luanco (2020)) given in the trans-669

verse shear mode by:670 

−
R2
nλ+1

8 R3
nλ

−
R2
nλ+1

8R3
nλ

−
R2
nλ+1

48 µ(nλ+1)
23 R2

nλ

−
R2
nλ+1

48 µ(nλ+1)
23 R2

nλ

0 −
R3
nλ

4 R4
nλ+1

−
νnλ+1R

4
nλ

12 µ(nλ+1)
23 R4

nλ+1
−

(2 νnλ+1 − 3)R4
nλ

24 µ(nλ+1)
23 R4

nλ+1

− Rnλ

8 R2
nλ+1

Rnλ

8 R2
nλ+1

R2
nλ

16 µ(nλ+1)
23 R2

nλ+1
−

R2
nλ

16 µ(nλ+1)
23 R2

nλ+1

− 1
2 Rnλ

− 1
4 Rnλ

νnλ+1 − 1
4 µ(nλ+1)

23
−2 νnλ+1 − 1

8 µ(nλ+1)
23


(B.4)

To facilitate reading, nλ being perfectly defined for each pattern, Q∗(nλ)
671

will be noted Q∗ λ in the following equations where λ denotes the pattern672

dependency. It is worth taking into account that phase (nλ + 1) is the673

same phase in all the patterns and corresponds to the effective medium. To674

determine keff
23 and µeff

23, we will thus consider that keff
23 = k

(nλ+1)
23 and µeff

23 =675

µ
(nλ+1)
23 . Coefficient νnλ+1 can be calculated by using its definition given676

in Hervé and Zaoui (1995):677

νnλ+1 = C
(nλ+1)
23

C
(nλ+1)
23 + C

(nλ+1)
22

(B.5)

By using Eq. (A.2):678

k
(nλ+1)
23 = C

(nλ+1)
22 + C

(nλ+1)
23

2
µ

(nλ+1)
23 = C

(nλ+1)
22 − C(nλ+1)

23
2

 (B.6)

νnλ+1 can then equivalently be rewritten as:679

νnλ+1 = k
(nλ+1)
23 − µ(nλ+1)

23

2 k(nλ+1)
23

(B.7)

Or more generally as:680

νk = k
(k)
23 − µ

(k)
23

2 k(k)
23

(B.8)
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Let us now calculate the denominator of equation (Eq. (B.2)):

{A}
⊆/Dnλ+1

def= Q
(nλ)
44 Q

(nλ)
11 −Q(nλ)

41 Q
(nλ)
14 (B.9)

All of the components of Q(nλ) present in the previous equation can be681

determined by introducing Eq. (B.4) in (Eq. (B.3)):682

Q
(nλ)
44 = 1

νnλ+1 − 1

− Q∗ λ
14

2 Rnλ

− Q∗ λ
24

4 Rnλ

+ Q∗ λ
34

4 µ(nλ+1)
23

(νnλ+1 − 1)− Q∗ λ
44

8 µ(nλ+1)
23

(2 νnλ+1 − 1)


Q
(nλ)
11 = 1

νnλ+1 − 1

(
Rnλ+1

Rnλ

)2
− Q∗ λ

11
8 Rnλ

− Q∗ λ
21

8 Rnλ

− Q∗ λ
31

48 µ(nλ+1)
23

− Q∗ λ
41

48 µ(nλ+1)
23


Q

(nλ)
41 = 1

νnλ+1 − 1

− Q∗ λ
11

2 Rnλ

− Q∗ λ
21

4 Rnλ

+ Q∗ λ
31

4 µ(nλ+1)
23

(νnλ+1 − 1)− Q∗ λ
41

8 µ(nλ+1)
23

(2 νnλ+1 − 1)


Q
(nλ)
14 = 1

νnλ+1 − 1

(
Rnλ+1

Rnλ

)2
− Q∗ λ

14
8 Rnλ

− Q∗ λ
24

8 Rnλ

− Q∗ λ
34

48 µ(nλ+1)
23

− Q∗ λ
44

48 µ(nλ+1)
23





(B.10)

Using Eqs. (B.7) and (Eq. (B.10)), {A}
⊆/Dnλ+1

can consequently be rewritten683

as:684

{A}
⊆/Dnλ+1

=
4 R2

nλ+1

R2
nλ

1 + µ
(nλ+1)
23

k
(nλ+1)
23

2

 {B1}
⊆/Dnλ+1

{B2}
⊆/Dnλ+1

− {B3}
⊆/Dnλ+1

{B4}
⊆/Dnλ+1

 (B.11)
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with {Bp}
⊆/Dnλ+1

, p ∈ J1, 4K, given by:685

{B1}
⊆/Dnλ+1

def= − Q∗ λ
14

2 Rnλ

− Q∗ λ
24

4 Rnλ

+ Q∗ λ
34

4 µ(nλ+1)
23

(νnλ+1 − 1)

− Q∗ λ
44

8 µ(nλ+1)
23

(2 νnλ+1 − 1)

{B2}
⊆/Dnλ+1

def= − Q∗ λ
11

8 Rnλ

− Q∗ λ
21

8 Rnλ

− Q∗ λ
31

48 µ(nλ+1)
23

− Q∗ λ
41

48 µ(nλ+1)
23

{B3}
⊆/Dnλ+1

def= − Q∗ λ
11

2 Rnλ

− Q∗ λ
21

4 Rnλ

+ Q∗ λ
31

4 µ(nλ+1)
23

(νnλ+1 − 1)

− Q∗ λ
41

8 µ(nλ+1)
23

(2 νnλ+1 − 1)

{B4}
⊆/Dnλ+1

def= − Q∗ λ
14

8 Rnλ

− Q∗ λ
24

8 Rnλ

− Q∗ λ
34

48 µ(nλ+1)
23

− Q∗ λ
44

48 µ(nλ+1)
23



(B.12)

By rearranging (Eq. (B.12)) thanks to Z λ
ij

def= Q∗ λ
i4 Q∗ λ

j1 −Q
∗ λ
j4 Q

∗ λ
i1 with i, j ∈ {1, 4}

(Eq. (46)) and by using (Eq. (B.7)) it follows that:

384 R2
nλ
µ

(nλ+1)
23

2
 {B1}

⊆/Dnλ+1

{B2}
⊆/Dnλ+1

− {B3}
⊆/Dnλ+1

{B4}
⊆/Dnλ+1

 =

A λ µ
(nλ+1)
23

2
+B λ µ

(nλ+1)
23 + C λ (B.13)

with A λ , B λ and C λ given by:686

A λ
def= 12Z λ

12 + 6
Rnλ λ

keff
23

(
Z λ

14 + Z λ
32 + Z λ

24 + Z λ
31

)

B λ
def=

2Z λ
34R

2
nλ λ

keff
23

+ 2Rnλ λ

(
2Z λ

14 + 2Z λ
32 + Z λ

24 + Z λ
31

)
C λ

def= Z λ
34R

2
nλ λ


(B.14)

47



It is important to notice that A λ and B λ depend on keff
23 .

Finally:

{A}
⊆/Dnλ+1

=
R2
nλ+1

96 R4
nλ

1 + µ
(nλ+1)
23

k
(nλ+1)
23

2

µ
(nλ+1)
23

2

×
(
A λ µ

(nλ+1)
23

2
+B λ µ

(nλ+1)
23 + C λ

)
(B.15)

Eq. (B.2) takes the following form and consequently can be calculated687

thanks to Eq. (B.15) and to Eq. (B.10):688

Aiλ
Dnλ+1

= Q
(iλ−1)
14 Q

(nλ)
11 −Q(iλ−1)

11 Q
(nλ)
14

{A}
⊆/Dnλ+1

Diλ

Dnλ+1
= Q

(iλ−1)
44 Q

(nλ)
11 −Q(nλ)

14 Q
(iλ−1)
41

{A}
⊆/Dnλ+1


(B.16)

leading to:689

Aiλ
Dnλ+1

=
4 Rnλ

1 + µ
(nλ+1)
23

k
(nλ+1)
23

(6 µ(nλ+1)
23

2
αAiλ +Rnλµ

(nλ+1)
23 βAiλ

)
A λ µ

(nλ+1)
23

2
+B λ µ

(nλ+1)
23 + C λ

(B.17)

with690

αAiλ
def= Q

(iλ−1)
14

(
Q∗ λ

11 +Q∗ λ
21

)
−Q(iλ−1)

11

(
Q∗ λ

14 +Q∗ λ
24

)
βAiλ

def= Q
(iλ−1)
14

(
Q∗ λ

31 +Q∗ λ
41

)
−Q(iλ−1)

11

(
Q∗ λ

34 +Q∗ λ
44

)
 (B.18)

and691

Diλ

Dnλ+1
=

4 Rnλ

1 + µ
(nλ+1)
23

k
(nλ+1)
23

[6 µ(nλ+1)
23

2
αDiλ +Rnλµ

(nλ+1)
23 βDiλ

]
A λ µ

(nλ+1)
23

2
+B λ µ

(nλ+1)
23 + C λ

(B.19)
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with692

αDiλ
def= Q

(iλ−1)
44

(
Q∗ λ

11 +Q∗ λ
21

)
−Q(iλ−1)

41

(
Q∗ λ

14 +Q∗ λ
24

)
βDiλ

def= Q
(iλ−1)
44

(
Q∗ λ

31 +Q∗ λ
41

)
−Q(iλ−1)

41

(
Q∗ λ

34 +Q∗ λ
44

)
 (B.20)

Replacing Aiλ/Dnλ+1 and Diλ/Dnλ+1 respectively with the expressions693

given by Eq. (B.17) and by Eq. (B.19) in Eq. (B.1), µeff
23 becomes:694

µeff
23 =

n∑
i=1

fi µ
(i)
23

Nλ∑
λ=1

4 mλRnλ

1 + µ
(nλ+1)
23

k
(nλ+1)
23

µ(nλ+1)
23

(
6 µ(nλ+1)

23 α
(i)
λ

+Rnλβ
(i)
λ

)
A λ µ

(nλ+1)2

23 +B λ µ
(nλ+1)
23 + C λ

n∑
i=1

fi

Nλ∑
λ=1

4 mλRnλ

1 + µ
(nλ+1)
23

k
(nλ+1)
23

µ(nλ+1)
23

(
6 µ(nλ+1)

23 α
(i)
λ

+Rnλβ
(i)
λ

)
A λ µ

(nλ+1)2

23 +B λ µ
(nλ+1)
23 + C λ

(B.21)

with695

α
(i)
λ

def= αDiλ − 3
R4
iλ
−R4

iλ−1

R2
iλ

(
R2
iλ
−R2

iλ−1

) αAiλ
β

(i)
λ

def= βDiλ − 3
R4
iλ
−R4

iλ−1

R2
iλ

(
R2
iλ
−R2

iλ−1

) βAiλ


(B.22)

µ
(nλ+1)
23 and k

(nλ+1)
23 do not depend on the pattern they are attached to (see696

Figure 2) consequently they do not depend on λ and Eq. (B.21) can be697

rewritten as:698

µeff
23 =

n∑
i=1

fi µ
(i)
23

Nλ∑
λ=1

mλRnλ

(
6µeff

23α
(i)
λ

+Rnλβ
(i)
λ

)
A λ µ

eff
23

2 +B λ µ
eff
23 + C λ

n∑
i=1

fi

Nλ∑
λ=1

mλRnλ

(
6µeff

23α
(i)
λ

+Rnλβ
(i)
λ

)
A λ µ

eff
23

2 +B λ µ
eff
23 + C λ

(B.23)
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where699

α
(i)
λ

= Q
(iλ−1)
44

(
Q∗ λ

11 +Q∗ λ
21

)
−Q(iλ−1)

41

(
Q∗ λ

14 +Q∗ λ
24

)
−3

(
R4
iλ
−R4

iλ−1

)
R2
iλ

(
R2
iλ
−R2

iλ−1

)
×
[
Q

(iλ−1)
14

(
Q∗ λ

11 +Q∗ λ
21

)
− Q

(iλ−1)
11

(
Q∗ λ

14 +Q∗ λ
24

)]
β

(i)
λ

= Q
(iλ−1)
44

(
Q∗ λ

31 +Q∗ λ
41

)
−Q(iλ−1)

41

(
Q∗ λ

34 +Q∗ λ
44

)
−3

(
R4
iλ
−R4

iλ−1

)
R2
iλ

(
R2
iλ
−R2

iλ−1

)
×
[
Q

(iλ−1)
14

(
Q∗ λ

31 +Q∗ λ
41

)
− Q

(iλ−1)
11

(
Q∗ λ

34 +Q∗ λ
44

)]



(B.24)

It is worth remembering that Eq. (B.23) is an implicit equation depending700

both on µeff
23 and on keff

23 through A λ and B λ . In the different applications701

we will use the following expressions to take into account the fact that the702

different radii and the matrices Q and Q∗ present in Eq. (B.23) depend on703

the pattern λ they are attached to:704

µeff
23 =

n∑
i=1

fi µ
(i)
23

Nλ∑
λ=1

mλRnλ λ

(
6µeff

23α
(i)
λ

+Rnλ λ
β

(i)
λ

)
A λ µ

eff
23

2 +B λ µ
eff
23 + C λ

n∑
i=1

fi

Nλ∑
λ=1

mλRnλ λ

(
6µeff

23α
(i)
λ

+Rnλ λ
β

(i)
λ

)
A λ µ

eff
23

2 +B λ µ
eff
23 + C λ

(B.25)
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where finally705

α
(i)
λ

= Q
(iλ−1) λ
44

(
Q∗ λ

11 +Q∗ λ
21

)
−Q(iλ−1) λ

41

(
Q∗ λ

14 +Q∗ λ
24

)
−3

(
R4
iλ λ
−R4

iλ−1 λ

)
R2
iλ λ

(
R2
iλ λ
−R2

iλ−1 λ

)
×
[
Q

(iλ−1) λ
14

(
Q∗ λ

11 +Q∗ λ
21

)
− Q

(iλ−1) λ
11

(
Q∗ λ

14 +Q∗ λ
24

)]
β

(i)
λ

= Q
(iλ−1) λ
44

(
Q∗ λ

31 +Q∗ λ
41

)
−Q(iλ−1) λ

41

(
Q∗ λ

34 +Q∗ λ
44

)
−3

(
R4
iλ λ
−R4

iλ−1 λ

)
R2
iλ λ

(
R2
iλ λ
−R2

iλ−1 λ

)
×
[
Q

(iλ−1) λ
14

(
Q∗ λ

31 +Q∗ λ
41

)
− Q

(iλ−1) λ
11

(
Q∗ λ

34 +Q∗ λ
44

)]



(B.26)

Appendix C. Details of the calculations made in the particular706

case of 2 patterns with 2 inverted phases707

In this section a configuration with two patterns is considered, one is a708

“direct” pattern and the other is an “inverse” one, each one being made of709

two phases (n = 2, Nλ = 2 and nλ = 2 for each pattern) see description in710

section 3 and Figure 3.711

In the following, we will use the functions and parameters defined below:712

Id : {1, 2}
⊆Ω

→ {1, 2}
⊆N

λ 7→ Id (λ) ≡ λ =


1 if λ = 1

2 if λ = 2

(C.1)
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Cp : {1, 2}
⊆Ω

→ {1, 2}
⊆N

λ 7→ Cp (λ) ≡ λ =


1 if λ = 2

2 if λ = 1

(C.2)

where the codomain {1, 2}
⊆N

of Id and Cp transformations have totally lost713

any “pattern” reference. It means that images Id (λ) , i.e. λ , and Cp (λ) ,714

i.e. λ , are just natural numbers and can, for example, describe phase num-715

bers if they are placed in parentheses or in indices as for : •(k) or •k. So,716

taken from Hervé and Zaoui (1995):717

ρλ
def= µ

(λ)
23

/
µ

(λ)
23

aλ
def= ρλ +

(
3− 4 νλ

)
bλ

def=
(
3− 2 νλ

)
+ ρλ

(
2 νλ − 3

)
cλ

def= 1 + ρλ
(
3− 4 νλ

)
dλ

def= 2 νλ − 1 + ρλ
(
1− 2 νλ

)
eλ

def= 1− ρλ



(C.3)

see Eq. (B.8) for νλ and νλ . And:718

q2
λ

def= R2
1 λ

/
R2

2 λ ⇒


q 1

2 = c

q 2
2 = c22

(C.4)

To calculate α(i)
λ

and β
(i)
λ

in the case of the determination of the effective719

transverse shear modulus it may be noted that:720

cλ = aλ + 2 dλ (C.5)
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Appendix C.1. Development of keff
23721

In the case of two patterns with two phases each, Eq. (27) becomes:722

keff
23 =

2∑
i=1

fi k
(i)
23

2∑
λ=1

mλ

Q
(iλ−1) λ
11 R2 λ

2 µeff
23Q

∗ λ
11 +R2 λQ

∗ λ
21

2∑
i=1

fi
2∑

λ=1
mλ

Q
(iλ−1) λ
11 R2 λ

2 µeff
23Q

∗ λ
11 +R2 λQ

∗ λ
21

(C.6)

Substituting the different components of the Q λ matrices (see Hervé and723

Zaoui (1995)) (for λ ∈ {1, 2}) in Eq. (C.6) gives:724

keff
23 =

fk
(1)
23 {A1}

⊆keff
23

+ (1− f) k(2)
23 {A2}

⊆keff
23

f{A1}
⊆keff

23

+ (1− f) {A2}
⊆keff

23

def=
{B1}
⊆keff

23

{B2}
⊆keff

23

(C.7)

where725

{A1}
⊆keff

23

def=
mQ

(0) 1
11 R2 1

2 µeff
23Q

∗ 1
11 +R2 1 Q

∗ 1
21

+
(1−m)Q(1) 2

11 R2 2

2 µeff
23Q

∗ 2
11 +R2 2 Q

∗ 2
21

{A2}
⊆keff

23

def=
mQ

(1) 1
11 R2 1

2 µeff
23Q

∗ 1
11 +R2 1 Q

∗ 1
21

+
(1−m)Q(0) 2

11 R2 2

2 µeff
23Q

∗ 2
11 +R2 2 Q

∗ 2
21


(C.8)

The Q λ matrices are determined from Hervé and Zaoui (1995) for λ ∈726

{1, 2}:727

Q(0) λ = I =⇒ Q
(0) λ
11 = 1 (C.9)

728

Q(1) λ = Nλ(1) = 1

µ
(λ)
23 + k

(λ)
23


(µ(λ)

23 + k
(λ)
23 )

R2
0 λ

R2
1 λ

(µ(λ)
23 − µ

(λ)
23 )

(k(λ)
23 − k(λ)

23 )
R2

0 λ

R2
1 λ

(µ(λ)
23 + k

(λ)
23 )


(C.10)

R2
0 λ = 0 by definition leading to:729

730

Q
(1) λ
11 = µ

(λ)
23 + k

(λ)
23

µ
(λ)
23 + k

(λ)
23

(C.11)
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In order to determine keff
23 in terms of µeff

23 from Eq. (C.6) the Q matrices731

have to be calculated by using the Q∗ matrices like in Hervé-Luanco (2020).732

Q∗ λ = J λ
2

(
R2 λ

)
Q(1) λ (C.12)

with733

J λ
2

(
R2 λ

)
=


R2 λ

R2
1 λ

R2 λ

2 k(λ)
23 −2

R2
1 λ

R2
2 λ
µ

(λ)
23

 (C.13)

It can easily been shown that:734

Q∗ λ
11 =

R2 λ

(
µ

(λ)
23 + k

(λ)
23

)
+
R2

1 λ

R2 λ

(
k
(λ)
23 − k(λ)

23

)

µ
(λ)
23 + k

(λ)
23

Q∗ λ
21 =

2 k(λ)
23

(
µ

(λ)
23 + k

(λ)
23

)
− 2

R2
1 λ

R2
2 λ
µ

(λ)
23

(
k
(λ)
23 − k(λ)

23

)

µ
(λ)
23 + k

(λ)
23


(C.14)

{Ap}
⊆keff

23

, p ∈ J1, 2K, in Eq. (C.8) are then written as:735

{A1}
⊆keff

23

=
m
(
µ

(2)
23 + k

(2)
23

)
2
(
µ

(2)
23 + k

(1)
23

) (
µeff

23 + k
(2)
23

)
+ 2 c

(
k

(2)
23 − k

(1)
23

) (
µeff

23 − µ
(2)
23

)
+

(1−m)
(
µ

(1)
23 + k

(2)
23

)
2
(
µ

(1)
23 + k

(2)
23

) (
µeff

23 + k
(1)
23

)
+ 2 c22

(
k

(1)
23 − k

(2)
23

) (
µeff

23 − µ
(1)
23

)
{A2}
⊆keff

23

=
m
(
µ

(2)
23 + k

(1)
23

)
2
(
µ

(2)
23 + k

(1)
23

) (
µeff

23 + k
(2)
23

)
+ 2 c

(
k

(2)
23 − k

(1)
23

) (
µeff

23 − µ
(2)
23

)
+

(1−m)
(
µ

(1)
23 + k

(1)
23

)
2
(
µ

(1)
23 + k

(2)
23

) (
µeff

23 + k
(1)
23

)
+ 2 c22

(
k

(1)
23 − k

(2)
23

) (
µeff

23 − µ
(1)
23

)


(C.15)
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By reintroducing {A1}
⊆keff

23

and {A2}
⊆keff

23

from Eq. (C.15) in Eq. (C.7) we obtain:736

{B1}
⊆keff

23

=
fk

(1)
23 m

(
µ

(2)
23 + k

(2)
23

)
+ (1− f) k(2)

23 m
(
µ

(2)
23 + k

(1)
23

)
(
µ

(2)
23 + k

(1)
23

) (
µeff

23 + k
(2)
23

)
+ c

(
k

(2)
23 − k

(1)
23

) (
µeff

23 − µ
(2)
23

)
+
fk

(1)
23 (1−m)

(
µ

(1)
23 + k

(2)
23

)
+ (1− f) k(2)

23 (1−m)
(
µ

(1)
23 + k

(1)
23

)
(
µ

(1)
23 + k

(2)
23

) (
µeff

23 + k
(1)
23

)
+ c22

(
k

(1)
23 − k

(2)
23

) (
µeff

23 − µ
(1)
23

)
{B2}
⊆keff

23

=
fm

(
µ

(2)
23 + k

(2)
23

)
+ (1− f)m

(
µ

(2)
23 + k

(1)
23

)
(
µ

(2)
23 + k

(1)
23

) (
µeff

23 + k
(2)
23

)
+ c

(
k

(2)
23 − k

(1)
23

) (
µeff

23 − µ
(2)
23

)
+
f (1−m)

(
µ

(1)
23 + k

(2)
23

)
+ (1− f) (1−m)

(
µ

(1)
23 + k

(1)
23

)
(
µ

(1)
23 + k

(2)
23

) (
µeff

23 + k
(1)
23

)
+ c22

(
k

(1)
23 − k

(2)
23

) (
µeff

23 − µ
(1)
23

)


(C.16)

keff
23 can finally be developed in terms of µeff

23:737

keff
23 =

{C1}
⊆keff

23

µeff
23 + {C2}

⊆keff
23

{C3}
⊆keff

23

µeff
23 + {C4}

⊆keff
23

(C.17)
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with738

{C1}
⊆keff

23

def=
[
fk

(1)
23 m

(
µ

(2)
23 + k

(2)
23

)
+ (1− f) k(2)

23 m
(
µ

(2)
23 + k

(1)
23

)]
×
[
c22

(
k

(1)
23 − k

(2)
23

)
+
(
µ

(1)
23 + k

(2)
23

)]
+
[
fk

(1)
23 (1−m)

(
µ

(1)
23 + k

(2)
23

)
+ (1− f) k(2)

23 (1−m)
(
µ

(1)
23 + k

(1)
23

)]
×
[
c
(
k

(2)
23 − k

(1)
23

)
+
(
µ

(2)
23 + k

(1)
23

)]

{C2}
⊆keff

23

def=
[
fk

(1)
23 m

(
µ

(2)
23 + k

(2)
23

)
+ (1− f) k(2)

23 m
(
µ

(2)
23 + k

(1)
23

)]
×
[(
µ

(1)
23 + k

(2)
23

)
k

(1)
23 − c22

(
k

(1)
23 − k

(2)
23

)
µ

(1)
23

]
+
[
fk

(1)
23 (1−m)

(
µ

(1)
23 + k

(2)
23

)
+ (1− f) k(2)

23 (1−m)
(
µ

(1)
23 + k

(1)
23

)]
×
[(
µ

(2)
23 + k

(1)
23

)
k

(2)
23 − c

(
k

(2)
23 − k

(1)
23

)
µ

(2)
23

]

{C3}
⊆keff

23

def=
[
fm

(
µ

(2)
23 + k

(2)
23

)
+ (1− f)m

(
µ

(2)
23 + k

(1)
23

)]
×
[
c22

(
k

(1)
23 − k

(2)
23

)
+
(
µ

(1)
23 + k

(2)
23

)]
+
[
f (1−m)

(
µ

(1)
23 + k

(2)
23

)
+ (1− f) (1−m)

(
µ

(1)
23 + k

(1)
23

)]
×
[
c
(
k

(2)
23 − k

(1)
23

)
+
(
µ

(2)
23 + k

(1)
23

)]

{C4}
⊆keff

23

def=
[
fm

(
µ

(2)
23 + k

(2)
23

)
+ (1− f)m

(
µ

(2)
23 + k

(1)
23

)]
×
[(
µ

(1)
23 + k

(2)
23

)
k

(1)
23 − c22

(
k

(1)
23 − k

(2)
23

)
µ

(1)
23

]
+
[
f (1−m)

(
µ

(1)
23 + k

(2)
23

)
+ (1− f) (1−m)

(
µ

(1)
23 + k

(1)
23

)]
×
[(
µ

(2)
23 + k

(1)
23

)
k

(2)
23 − c

(
k

(2)
23 − k

(1)
23

)
µ

(2)
23

]


(C.18)
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Appendix C.2. Development of µeff
23739

In the context of two patterns with two phases Eq. (42) becomes:740

µeff
23 =

2∑
i=1

fi µ
(i)
23

2∑
λ=1

mλR2 λ

(
6 µeff

23α
(i)
λ

+R2 λ β
(i)
λ

)
A λ µ

eff
23

2 +B λ µ
eff
23 + C λ

2∑
i=1

fi
2∑

λ=1

mλR2 λ

(
6 µeff

23α
(i)
λ

+R2 λ β
(i)
λ

)
A λ µ

eff
23

2 +B λ µ
eff
23 + C λ

(C.19)

In order to calculate A λ µ
eff
23

2 +B λ µ
eff
23 + C λ let us use the following equa-741

tions:742

A λ = 12 Z λ
12 + 6

R2 λ

keff
23

(
Z λ

14 + Z λ
32 + Z λ

24 + Z λ
31

)

B λ =
2 Z λ

34R
2
2 λ

keff
23

+ 2 R2 λ

(
2 Z λ

14 + 2 Z λ
32 + Z λ

24 + Z λ
31

)

C λ = Z λ
34R

2
2 λ



(C.20)

where all the Zij (see Eq.95 (81) in Hervé and Zaoui (1995)) are already743

defined by:744

Z λ
ij

def= Q∗ λ
i4 Q∗ λ

j1 −Q
∗ λ
j4 Q

∗ λ
i1 (C.21)

with:745

Q∗ λ = J λ
2

(
R2 λ

)
Q(1) λ (C.22)

From Hervé and Zaoui (1995), in the case of a transverse shear loading,746
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J λ
2

(
R2 λ

)
is given by:747

J λ
2

(
R2 λ

)
=



−4 νλR2 λ R2 λ 4
(
1− νλ

)
R2 λ R2 λ(

6− 4 νλ
)
R2 λ R2 λ −

(
2− 4 νλ

)
R2 λ −R2 λ

0 −6 µ(λ)
23 −8 µ(λ)

23 2 µ(λ)
23

12 µ(λ)
23 −6 µ(λ)

23 −4 µ(λ)
23 −2 µ(λ)

23


(C.23)

and Q(1) λ by:

Q(1) λ = 1
4
(
1− νλ

)

×



aλ
q2
λ

1− ρλ
q2
λ

1− ρλ
q2
λ

0

2 q4
λ
bλ q4

λ
cλ 2 q4

λ
dλ q4

λ

(
ρλ − 1

)
−3 q2

λ

(
1− ρλ

)
0 q2

λ
aλ q2

λ

(
1− ρλ

)
−6 dλ 3

(
1− ρλ

)
2 bλ cλ


(C.24)

The different Q∗ λ matrices are calculated from Eq. (C.22) with the help748
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of Eq. (C.23) and Eq. (C.24):749

Q∗ λ
11 =

R2 λ

4
(
1− νλ

)
−4 νλ

aλ
q2
λ

+ 2 q4
λ
bλ

−12
(
1− νλ

)
q2
λ
eλ − 6 dλ


Q∗ λ

21 =
R2 λ

4
(
1− νλ

)
(6− 4 νλ

) aλ
q2
λ

+ 2 q4
λ
bλ

+3
(
2− 4 νλ

)
q2
λ
eλ + 6 dλ


Q∗ λ

31 = 2 µ(λ)
23

4
(
1− νλ

) [−6 q4
λ
bλ + 12 q2

λ
eλ − 6 dλ

]

Q∗ λ
41 = 2 µ(λ)

23

4
(
1− νλ

)
6 aλ

q2
λ

− 6 q4
λ
bλ + 6 q2

λ
eλ + 6 dλ


Q∗ λ

14 =
R2 λ

4
(
1− νλ

) [−q4
λ
eλ + 4

(
1− νλ

)
q2
λ
eλ + cλ

]
Q∗ λ

24 =
R2 λ

4
(
1− νλ

) [−q4
λ
eλ −

(
2− 4 νλ

)
q2
λ
eλ − cλ

]

Q∗ λ
34 = 2 µ(λ)

23

4
(
1− νλ

) [3 q4
λ
eλ − 4 q2

λ
eλ + cλ

]

Q∗ λ
44 = 2 µ(λ)

23

4
(
1− νλ

) [3 q4
λ
eλ − 2 q2

λ
eλ − cλ

]



(C.25)

The different components Z λ
ij present in Eq. (C.20) can then be determined750

thanks to Eq. (C.21) with the previous values of Q∗ λ leading to:751

Z λ
12 =

R2
2 λ

16
(
1− νλ

)2

− 6 q2
λ
aλ eλ − 6 q2

λ
eλ cλ + 12 q2

λ
dλ eλ

+4 q6
λ
bλ eλ

(
3− 4 νλ

)
+ 6 q6

λ
e2
λ

(
4 νλ − 3

)
+ 4 q4

λ
bλ cλ

−12 q4
λ
eλdλ + 2 aλ cλ

q2
λ

(
3− 4 νλ

)
+ 8 aλ eλ

(
3− 6 νλ + 4 ν2

λ

)
(C.26)
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752

Z λ
31 =

2 µ(λ)
23 R2 λ

16
(
1− νλ

)2

8 q4
λ
bλ cλ + 8 q6

λ
eλ bλ

(
2− 3 νλ

)

−12 q2
λ
eλ cλ

(
2− νλ

)
− 12 q2

λ
aλ eλνλ + 12 q6

λ
e2
λ

(
3 νλ − 2

)
+24 q2

λ
eλdλ

(
2− νλ

)
−

4 aλ cλνλ
q2
λ

− 24 q4
λ
dλ eλ + 16 νλ eλaλ


(C.27)753

Z λ
32 =

2 µ(λ)
23 R2 λ

16
(
1− νλ

)2

3
(
6− 4 νλ

)
q2
λ
aλ eλ + 6 q6

λ
e2
λ

(
5− 6 νλ

)

− 8
(
3− 2 νλ

)
aλ eλ − 4

(
5− 6 νλ

)
q6
λ
eλ bλ

−12
(
3− 2 νλ

)
q2
λ
eλdλ + 2 aλ cλ

q2
λ

(
3− 2 νλ

)

−4 q4
λ
bλ cλ + 6 q2

λ
cλ eλ

(
3− 2 νλ

)
+ 12 q4

λ
eλdλ


(C.28)754

Z λ
14 =

2 µ(λ)
23 R2 λ

16
(
1− νλ

)2

6
(
2 νλ − 1

)
q2
λ
aλ eλ + 6 q6

λ
e2
λ

(
5− 6 νλ

)

+12 q4
λ
eλdλ + 8 (3− 4 νλ )aλ eλ

+4 q6
λ
bλ eλ

(
6 νλ − 5

)
+ 12

(
1− 2 νλ

)
q2
λ
dλ eλ

+2 aλ cλ
q2
λ

(3− 2 νλ )− 4 q4
λ
bλ cλ + 6 (2 νλ − 1)q2

λ
eλ cλ


(C.29)755

Z λ
24 =

2 µ(λ)
23 R2 λ

16
(
1− νλ

)2

12 (νλ − 2)q2
λ
aλ eλ − 12 q6

λ
e2
λ

(
2− 3 νλ

)

−24 q4
λ
dλ eλ + 16 νλaλ eλ + 8

(
2− 3 νλ

)
q6
λ
eλ bλ

+24 q2
λ
eλdλνλ −

4 νλaλ cλ
q2
λ

+ 8 q4
λ
bλ cλ − 12 νλ q2

λ
eλ cλ


(C.30)
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756

Z λ
34 = 4 µ(λ)

23

2

16
(
1− νλ

)2

18 q2
λ
aλ eλ − 18 q6

λ
e2
λ

+ 36 q4
λ
eλdλ − 24 aλ eλ

+12 q6
λ
eλ bλ − 36 q2

λ
eλdλ + 6 aλ cλ

q2
λ

− 12 q4
λ
bλ cλ + 18 q2

λ
eλ cλ


(C.31)

and consequently to α
(i)
λ

, A λ , B λ , and C λ , which can be factorized by757

respect to the radius R2 λ . Let us introduce α(i)
�R λ

, A�R λ , B�R λ , C�R λ defined758

as:759

α
(i)
�R λ

def= α
(i)
λ

/
R2 λ

A�R λ
def= A λ

/
R2

2 λ

B�R λ
def= B λ

/
R2

2 λ

C�R λ
def= C λ

/
R2

2 λ


(C.32)

such that µeff
23 in Eq. (C.19) writes now:760

µeff
23 =

2∑
i=1

fi µ
(i)
23

2∑
λ=1

mλ

(
6 µeff

23α
(i)
�R λ

+ β
(i)
λ

)
A�R λ µ

eff
23

2 +B�R λ µ
eff
23 + C�R λ

2∑
i=1

fi
2∑

λ=1

mλ

(
6 µeff

23α
(i)
�R λ

+ β
(i)
λ

)
A�R λ µ

eff
23

2 +B�R λ µ
eff
23 + C�R λ

def=
{A1}
⊆µeff

23

{A2}
⊆µeff

23

(C.33)
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with {Ap}
⊆µeff

23

, p ∈ J1, 2K, given by:761

{A1}
⊆µeff

23

=
m
[
fµ

(1)
23

(
6 α(1)

�R 1 µ
eff
23 + β

(1)
1

)
+ (1− f)µ(2)

23

(
6 α(2)

�R 1 µ
eff
23 + β

(2)
1

)]
A�R 1 µ

eff
23

2 +B�R 1 µ
eff
23 + C�R 1

+
(1−m)

[
fµ

(1)
23

(
6 α(1)

�R 2 µ
eff
23 + β

(1)
2

)
+ (1− f)µ(2)

23

(
6 α(2)

�R 2 µ
eff
23 + β

(2)
2

)]
A�R 2 µ

eff
23

2 +B�R 2 µ
eff
23 + C�R 2

{A2}
⊆µeff

23

=
m
[
f
(
6 α(1)

�R 1 µ
eff
23 + β

(1)
1

)
+ (1− f)

(
6 α(2)

�R 1 µ
eff
23 + β

(2)
1

)]
A�R 1 µ

eff
23

2 +B�R 1 µ
eff
23 + C�R 1

+
(1−m)

[
f
(
6 α(1)

�R 2 µ
eff
23 + β

(1)
2

)
+ (1− f)

(
6 α(2)

�R 2 µ
eff
23 + β

(2)
2

)]
A�R 2 µ

eff
23

2 +B�R 2 µ
eff
23 + C�R 2


(C.34)

It is worth noticing that we have used the fact that A�R λ , B�R λ and C�R λ762

only depend on pattern λ but not on phase (i) in Eq. (C.33).763

We can now get the final expressions of the eight terms α(i)
�R λ

and β(i)
λ

(Eq. (B.26))764

because Q(0) λ = I, an identity array, and because Q(1) λ can be determined765

by the help of Eq.95 (69) in Hervé and Zaoui (1995):766

Q
(1) λ
14 = 0

Q
(1) λ
11 = aλ

4
(
1− νλ

)
q2
λ

Q
(1) λ
44 = cλ

4
(
1− νλ

)

Q
(1) λ
41 = −6dλ

4
(
1− νλ

)



(C.35)
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leading finally to:767

α
(λ )
�R λ

= 2
4
(
1− νλ

)
aλ
q2
λ

(3− 4 νλ ) + q4
λ

(2 bλ − 3 eλ )


α
(λ )
�R λ

= 2
16

(
1− νλ

)2

3 aλ eλ
(
1− q2

λ

)

+cλ q4
λ

(2 bλ − 3 eλ ) + aλ cλ
q2
λ

(3− 4 νλ )



(C.36)

and to:768

β
(λ )
λ

= 12 µ(λ)
23

4
(
1− νλ

)
aλ
q2
λ

− 2 q4
λ
bλ + 3 q4

λ
eλ


β

(λ )
λ

= 12 µ(λ)
23

16
(
1− νλ

)2

− 2 cλ bλ q4
λ

+ 3 aλ eλ q4
λ

+3 aλ eλ (q2
λ
− 1) + 6 eλdλ q4

λ
+ aλ cλ

q2
λ





(C.37)

We can also get the final expressions of A�R λ , B�R λ , C�R λ .769

A�R λ is given by:770

A�R λ
def= {A1}

⊆A�R λ

+
{A2}
⊆A�R λ

keff
23

(C.38)

where771

{A1}
⊆A�R λ

= 12 Z λ
12

R2
2 λ

= 12
4
(
1− νλ

)2

− 6 q2
λ
aλ eλ − 6 q2

λ
eλ cλ + 12 q2

λ
dλ eλ

+4 q6
λ
bλ eλ

(
3− 4 νλ

)
+ 6 q6

λ
e2
λ

(
4 νλ − 3

)
+ 4 q4

λ
bλ cλ

−12 q4
λ
eλdλ + 2 aλ cλ

q2
λ

(
3− 4 νλ

)
+ 8 aλ eλ

(
3− 6 νλ + 4 ν2

λ

)
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and772

{A2}
⊆A�R λ

= 6
R2 λ

(
Z λ

14 + Z λ
32 + Z λ

24 + Z λ
31

)

= 12 µ(λ)
23

16
(
1− νλ

)2

− 12 q2
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− 24 q4

λ
dλ eλ
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(
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λ
bλ cλ − 12 q2

λ
eλ cλ


(C.40)

B�R λ is given by:773

B�R λ
def= {A1}

⊆B�R λ

+
{A2}
⊆B�R λ

keff
23

(C.41)

where774
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and775
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C�R λ is given by:776

C�R λ = Z λ
34

= 4 µ(λ)
23

2

16
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Mélé, P., Marceau, S., Brown, D., and Albérola, N. (2005). Conséquences de l’agrégation823

et de la percolation de charges sur le comportement viscoélastique de nanocomposites.824
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