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• (k) or • k The letter k is used generically to designate any phase (k). It can be the phase index • (i) or • i , i ∈ {1, 2, . . . , n + 1} or the phase index inside the pattern λ, i λ ∈ {1, . . . , n λ } • [j] An estimate of • during the iteration process

• f , • m or • eff Related to "fibre", "matrix" or "effective" properties

• λ or • λ Indicates the pattern dependency Strain tensor such that u 0 = ε 0 . x is applied to each pattern E Strain tensor such that u g = E . x is applied to the equivalent homogeneous configuration

A i λ Average intensity concentration for phase (i λ )

A i Average intensity concentration tensor for phase (i)

Bold

Bold notation for rectangular arrays i.e. rectangular arrays such as V, J, N or Q with components denoted Q kl for example

Q or Q * Transfer matrices
A k , B k , C k and D k Integration constants for each phase (k) in the case of an in-plane transverse shear mode A i λ and D i λ Constants for phase (i λ )

1. Introduction

Evaluating the transverse elastic properties of unidirectional composites

Knowing and anticipating how a structure will deform when subjected to a load is a daily challenge for engineers. Depending on their anisotropy, composite materials can exhibit a strong dependence on the direction in which loads are applied. It is clear that a single unidirectional (UD) ply, for example reinforcing the rubber of a tire, will exhibit a considerable resistance to deformation if the load is applied along the direction of the reinforcement. In contrast, this same ply will undergo a large deformation if the load is now applied in a non-longitudinal direction. To design efficient composite structures and take advantage of the anisotropy, engineers need to characterize or predict the load-deformation material response for all the directions in which loads may occur. Regarding transverse properties, experimental characterization is always a tedious procedure and result uncertainties are often large. These complications provide a strong practical motivation for the development of models which can be used to predict the material performance.

However, this does not mean that models remove the underlying difficulties. If the prediction of UD longitudinal properties is rarely complicated, transverse properties are more affected by interactions between the constituents and predicting accurately the transverse properties is always challenging. Models taking into account the morphological distribution of the phases, in addition to their volume fractions, are required to obtain realistic predictions for the transverse properties of such UD composite materials.

Morphological variabilities and fibre packing strongly influence the transverse linear elastic behaviour of these composites. Numerous and varied methods have already been proposed in order to predict effective properties of such a multi-phases medium. Existing solutions include, on the one hand, full-field approaches -as the Finite Element Method (FEM) for example -requiring to model the microstructure in details. Such methods require complex1 mesh operations, especially when the fibres get very close or when functionally graded materials are considered. On the other hand, mean-field approaches are based on a single inclusion problem and unlike full-field approaches, only statistical information about the microstructure is needed. Both approaches have their advantages and this work is focused on an efficient, fast and cost-effective analytical mean-field model to take into account morphological fluctuations at the microscopic scale, in order to predict the transverse linear elastic shear and bulk moduli of unidirectional composites.

A rational microstructure model

As explained previously, this work is devoted to the study of the elastic behaviour of fibre-reinforced composites with different distributions of fibres. Restricting the attention to cylindrical shape and transverse isotropic elasticity, we can refer to [START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF] composite assemblage or to [START_REF] Christensen | Solutions for the effective shear properties in three phase sphere and cylinder models[END_REF] three-phase model which deal with two-phases coaxial cylinder for a two-phases material. A model has been developed in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF] to predict the elastic behaviour of heterogeneous fibre-reinforced composites including the case of coated fibre-reinforced composites, usually referred to as the (n + 1)-phase model 2 .

This work has also provided the elastic strain and stress fields in an infinite medium constituted of an n-layered transversely isotropic cylindrical inclusion, surrounded by a transversely isotropic cylindrical matrix subjected to uniform conditions at infinity. These fields have been given in a simpler form in [START_REF] Hervé-Luanco | Elastic behaviour of multiply coated fibre-reinforced composites: Simplification of the (n+1)-phase model and extension to imperfect interfaces[END_REF]. From that, we can study the transverse elastic behaviour of more complex morphologies regarding the way the fibres are distributed inside the matrix and by also accounting for fibres that can have a functionally graded behaviour. These concerns lead directly, on the one hand, to more than one pattern 3 , and, on the other hand to more than two phases in each pattern.

The way used here to take into account complex morphologies is to add as many elementary patterns as needed like in [START_REF] Marcadon | Micromechanical modeling of packing and size effects in particulate composites[END_REF] or in [START_REF] Majewski | Micromechanical and numerical analysis of packing and size effects in elastic particulate composites[END_REF] in the case of particle-reinforced composites having size effects, or in [START_REF] Diani | Using a pattern-based homogenization scheme for modeling the linear viscoelasticity of nano-reinforced polymers with an interphase[END_REF] in the case of linear viscoelasticity of nano-reinforced polymers with an interphase, or in [START_REF] Bilger | Bounds and estimates for the effective yield surface of porous media with a uniform or a nonuniform distribution of voids[END_REF], [START_REF] Bardella | On the elastic behavior of syntactic foams[END_REF] and [START_REF] Bardella | Failure of glass-microballoons/thermoset-matrix syntactic foams subject to hydrostatic loading[END_REF] in the case of porous materials. This latter case, dealing with macroscopically isotropic particulate composites, is particularly relevant to show that 2 It should be noted that the three-phase model proposed in [START_REF] Christensen | Solutions for the effective shear properties in three phase sphere and cylinder models[END_REF] corresponds also to the (n + 1)-phase model developed in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF] in the particular case of n = 2.

3 A "pattern" contains a "representative disposition of some of the constitutive mechanical phases", as defined by [START_REF] Bornert | Morphologically representative patternbased bounding in elasticity[END_REF].

the present study makes sense. Although the materials are very different, in Bardella et al.'s paper (2018) it is shown that the method adopted in the present investigation, using representative patterns to account for complex morphologies, works very well even with an extremely large filler volume fraction.

If a biphasic matrix-inclusion material is considered, at low volume fraction of inclusions, there is no doubt that the matrix is a continuous and percolating phase as opposed to inclusions which are distributed discontinuously. If the volume fraction of inclusions increases sufficiently a network of percolating aggregates can be formed. The matrix is then trapped by aggregates which makes it lose its continuity and leads to a "phase inversion" phenomenon as discussed in Albérola et al.'s paper (1994). In this specific case of two patterns with two phases in each pattern, using an "inverse" pattern -where the inclusion surrounds the matrix -allows to model this phenomenon [START_REF] Albérola | Composites particulaires : modelisation du comportement viscoelastique, assortie du concept de percolation[END_REF][START_REF] Mélé | Conséquences de l'agrégation et de la percolation de charges sur le comportement viscoélastique de nanocomposites[END_REF].

In this work, the Generalized Self-Consistent Scheme (GSCS) used in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF] and in [START_REF] Hervé-Luanco | Elastic behaviour of multiply coated fibre-reinforced composites: Simplification of the (n+1)-phase model and extension to imperfect interfaces[END_REF] is coupled with the Morphologically Representative Pattern (MRP) based approach developed by [START_REF] Bornert | Morphologically representative patternbased bounding in elasticity[END_REF] in order to take into account local morphological fluctuations and heterogeneous distribution of fibres. Analytical estimates are provided for both effective transverse shear and bulk moduli. In this paper, the approach followed by [START_REF] Marcadon | Micromechanical modeling of packing and size effects in particulate composites[END_REF] for particle-reinforced composites in the case of two patterns with two phases has been generalized in the case of: 1) fibre-reinforced composites 2) for any number of patterns with any number of phases inside each pattern like in Hervé-Luanco and Joannès (2016a). In this latter paper a model has been developed to predict the transverse properties of a fibre-reinforced composite in the case of transport phenomena. In a second article (Joannès and Hervé-Luanco, 2016b), the authors have used their model to study the influence of fibre packing effects on the transverse properties of the composites regarding transport phenomena.

In the present paper, a MRP-based approach is coupled to the (n + 1)phase model thanks to a rearrangement of the transfer matrices in terms of their dependence on the behaviour of a given phase as shown in [START_REF] Hervé-Luanco | Elastic behaviour of multiply coated fibre-reinforced composites: Simplification of the (n+1)-phase model and extension to imperfect interfaces[END_REF]. It is organized as follows: Section 2 is devoted to the development of the model. Closed-form equations are given for the transverse shear and bulk moduli. In section 3, the model is applied in the case of two patterns with two phases inside each pattern. An example of application is given to highlight the possibilities of the presented model. Two comparisons with experimental data are presented in section 4.

Extension of the (n + 1)-phase model by using a MRP-based approach

Introduction

Let us consider the configuration defined in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF] where the elementary pattern representing the microstructure is a n-phase cylindrical inclusion which is embedded in an infinite matrix subjected to homogeneous boundary conditions at infinity (Figure 1). Each phase is homogeneous, linearly elastic and transversely isotropic with the axis of transverse isotropy along the direction of the fibre.

Let us assume first that the Representative Volume Element (RVE) of the studied microstructure is a Hashin assemblage of cylindrical domains consisting of a set of N λ families (see Figure 2) of homothetic identical finite composite domains whose material content is known. These families are called here "pattern", they are made of different phases and this microstructure can be referred to as a generalized Hashin's assemblage of patterns. The configuration under study is referred to a Cartesian rectangular coordinate system in the basis e 1 , e 2 , e 3 thus allowing to locate any point from the origin O by its position vector x = x 1 e 1 + x 2 e 2 + x 3 e 3 . Direction given by e 1 is parallel to the fibre longitudinal axis while O, e 2 , e 3 define the transverse plane. A cylindrical coordinates system with the same origin and the orthonormal basis set e r , e θ , e 1 can also be used. In this cylindrical representation, coordinates of the position vector are denoted (r, θ, x 1 ). As in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF], let phase (i), for i ∈ {1, 2, . . . , n + 1}, lie within the shell limited by the inner radius R i-1 and the outer radius R i (see Fig-

ure 1). It should be noted that we consider R 0 = 0 and R n+1 → ∞. The interfaces between the different phases are supposed to be perfect leading to the continuity of the displacement vector u and of the stress vector T at

each interface r = R i . Let k (i)
23 and µ

(i)
23 be respectively the transverse bulk and shear moduli of phase (i) and ε and σ be respectively the strain and stress tensors. A cylindrical symmetry behaviour is considered where k

(i) 23
and µ

(i)
23 depend only on r. In order to determine the effective transverse bulk and shear moduli of the assemblage (i.e. k eff 23 and µ eff 23 ), two elementary loadings modes are studied: an in-plane hydrostatic mode and an in-plane transverse shear one.

Methodology

In the two studied modes the same methodology has been used in order to derive closed-form solutions of the transverse bulk and shear moduli. The local fields inside each phase of each pattern λ with λ ∈ {1, 2, . . . , N λ } are here expressed thanks to the model developed in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF] and simplified recently in [START_REF] Hervé-Luanco | Elastic behaviour of multiply coated fibre-reinforced composites: Simplification of the (n+1)-phase model and extension to imperfect interfaces[END_REF]. Let n λ be the number of phases inside pattern λ and m λ the volume fraction of pattern λ. Phase (i λ ) corresponds to the part of phase (i) present in pattern λ. Depending on the context, i λ can take an explicit form 4 or represents the position of phase (i) inside the pattern λ using an integer to indicate the ranking. This is particularly the case if calculations are carried out with i λ such as, for example, i λ -1. In that latter case, i λ may take the following values {1, 2, . . . , n λ }. Consider that the studied material occupies a volume Ω and that the volume corresponding to pattern λ is denoted Ω λ . We suppose that Ω = ∪ N λ λ=1 Ω λ and that ∩ N λ λ=1 Ω λ = ∅. We also denote by Ω i the volume corresponding to all the parts of phase (i) present in several patterns and consider that

Ω i = ∪ N λ λ=1 Ω i λ and ∩ N λ λ=1 Ω i λ = ∅
where Ω i λ is the volume corresponding to the phase (i) in pattern λ. The particular case of two patterns and two phases (section 3) makes it possible to grasp more easily the relationship between (i) and (i λ ).

Overall properties are defined through consideration of a boundary value problem. The determination of the effective behaviour is derived from first, the solution of the elementary problem of each pattern embedded in an infinite homogeneous elastic matrix with adequate moduli subjected to the same uniform strain at infinity and secondly, with some adequate average operation leading to the determination of the effective elastic stiffness tensor C eff (transverse moduli in this paper). The first step is to consider that the same kind of boundary conditions are imposed on each pattern as for the classical GSCS model [START_REF] Hervé-Luanco | Elastic behaviour of multiply coated fibre-reinforced composites: Simplification of the (n+1)-phase model and extension to imperfect interfaces[END_REF]. The terminal sections of the composite are subjected to the following boundary condition:

u 0 1 = 0 T 0 2 = 0 T 0 3 = 0                 
(1) and the lateral surface, i.e. r = R n+1 , to the following ones:

u g = E . x (2)
On the terminal section of each pattern:

u 0 1 = 0 T 0 2 = 0 T 0 3 = 0                 
(3) and on the lateral surface of each pattern:

u 0 = ε 0 . x (4)
where ε 0 in Eq. ( 4) depends on the considered mode (in-plane hydrostatic or in-plane transverse shear mode). The linear constitutive relation for elasticity will be denoted by:

σ = C : ε (5)
Since we disregard eigenstrains the average strain tensor in any phase (i) is written as follows:

ε Ωi = A i : E (6)
where A i is the average intensity concentration tensor regarding phase (i).

The effective elastic moduli tensor C eff is derived from the following relations:

Σ = σ Ω = C eff : ε Ω = C eff : E (7)
It comes immediately from Eqs. ( 5), (Eq. ( 6)) and (Eq. ( 7)) that:

Σ = C : A Ω : E = n i=1 f i C (i) : A i : E (8)
where f i is the volume fraction of phase (i). Consequently, as defined by [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF]:

C eff = n i=1 f i C (i) : A i (9)

In-plane hydrostatic mode

In the case where an in-plane hydrostatic mode is considered, following [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF], ε 0 in Eq. ( 4) is chosen as:

ε 0 = β 0 e 2 ⊗ e 2 + e 3 ⊗ e 3 (10) 
Thanks to the (n+1)-phase problem solved in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF] (Eq. 95 (37)), with = 0, as typographically defined in Hervé and Zaoui's paper (1995), we know the average strain tensor ε Ω i λ in each phase (i λ ) of any pattern λ:

ε Ω i λ = Q (i λ -1) 11 Q (n λ ) 11 β 0 [(e 2 ⊗ e 2 ) + (e 3 ⊗ e 3 )] (11) 
From Eqs. ( 10) and (Eq. ( 11)) it is worth noticing that ε Ω i λ can be written under the following form:

ε Ω i λ = A i λ ε 0 (12)
where A i λ is a scalar defined by:

A i λ = Q (i λ -1) 11 Q (n λ ) 11 (13)
and where Q is the transfer matrix defined in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF]. It is now possible to write the strain average of whole phase (i) (m λ is the volume fraction of pattern λ):

ε Ω i = N λ λ=1 m λ ε Ω i λ = N λ λ=1 m λ A i λ ε 0 (14) 
Therefore:

E = ε Ω = n i=1 f i ε Ω i =   n i=1 f i   N λ λ=1 m λ A i λ     ε 0 (15) 
It is worth noticing that consequently:

E = E e 2 ⊗ e 2 + e 3 ⊗ e 3 with E =   n i=1 f i   N λ λ=1 m λ A i λ     β 0            (16) 
From Eqs. 95 (39) and (40) of [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF], with = 0 and using Eq. (A.1) from Appendix A (which summarizes some basic elastic relations applied to transversely isotropic systems), we get the average stress tensor in phase (i λ ) when each pattern λ is subjected to boundary conditions defined in Eq. ( 4) with ε 0 given by Eq. (10):

σ 11 Ω i λ = 2 C (i λ ) 12 A i λ β 0 σ 22 (e 2 ⊗ e 2 ) + σ 33 (e 3 ⊗ e 3 ) Ω i λ = 2 k (i λ ) 23 A i λ ε 0        (17) 
leading to:

σ 11 Ω =   n i=1 f i   N λ λ=1 m λ 2 C (i λ ) 12 A i λ     β 0 σ 22 (e 2 ⊗ e 2 ) + σ 33 (e 3 ⊗ e 3 ) Ω =   n i=1 f i   N λ λ=1 m λ 2 k (i λ ) 23 A i λ     ε 0                        (18) 
The effective elastic moduli tensor C eff is derived from relation (Eq. ( 7))

and Eq. (A.1) applied to the equivalent homogeneous medium:

Σ 11 = 2 C eff 12 E = σ 11 Ω Σ 22 (e 2 ⊗ e 2 ) + Σ 33 (e 3 ⊗ e 3 ) = 2 k eff 23 E = σ 22 (e 2 ⊗ e 2 ) + σ 33 (e 3 ⊗ e 3 ) Ω                  (19) 
Comparison between Eq. ( 19) and Eq. ( 18) where E and E are given by Eq. ( 16) implies that:

C eff 12 = n i=1 f i   N λ λ=1 m λ C (i λ ) 12 A i λ   n i=1 f i   N λ λ=1 m λ A i λ   k eff 23 = n i=1 f i   N λ λ=1 m λ k (i λ ) 23 A i λ   n i=1 f i   N λ λ=1 m λ A i λ                                            (20) 
The effective transverse bulk modulus is finally obtained by substituting A i λ from Eq. ( 13) in Eq. ( 20):

k eff 23 = n i=1 f i k (i) 23 N λ λ=1 m λ Q (i λ -1) 11 Q (n λ ) 11 n i=1 f i N λ λ=1 m λ Q (i λ -1) 11 Q (n λ ) 11 (21) 
and we get the effective value of C 12 in the same manner:

C eff 12 = n i=1 f i C (i) 12 N λ λ=1 m λ Q (i λ -1) 11 Q (n λ ) 11 n i=1 f i N λ λ=1 m λ Q (i λ -1) 11 Q (n λ ) 11 (22) 
Eq. ( 22) will not be considered in the following because only the elastic transverse behaviour is adressed in this paper.

It should be noted that k eff 23 , given by Eq. ( 21), depends on the volume fraction of each phase in the composite, on the volume fraction of each pattern, on the distribution of the different phases inside each pattern and also on the transverse properties (bulk and shear moduli) of each phase.

Such a coupling between the effective moduli is totally similar to that noticed for macroscopically isotropic particulate composites by [START_REF] Bardella | On the elastic behavior of syntactic foams[END_REF].

It has been shown in Hervé-Luanco (2020) (following Eq. ( 23)) that Q

(n λ ) 11
depends on k eff 23 and on µ eff 23 :

Q (n λ ) = J -1 n λ +1 (R n λ ) Q * (n λ ) (23) 
with

J -1 n λ +1 (R n λ ) = 1 2 R n λ k (n λ +1) 23 + µ (n λ +1) 23     2 µ (n λ +1) 23 R n λ 2 k (n λ +1) 23 -R n λ     (24) 
leading immediately to:

Q (n λ ) 11 = 2 µ (n λ +1) 23 Q * (n λ ) 11 + R n λ Q * (n λ ) 21 2 R n λ k (n λ +1) 23 + µ (n λ +1) 23 (25)
k eff 23 can be rearranged by substituting Eq. ( 25) into Eq. ( 21):

k eff 23 = n i=1 f i k (i) 23 N λ λ=1 m λ Q (i λ -1) 11 R n λ 2 µ eff 23 Q * (n λ ) 11 + R n λ Q * (n λ ) 21 n i=1 f i N λ λ=1 m λ Q (i λ -1) 11 R n λ 2 µ eff 23 Q * (n λ ) 11 + R n λ Q * (n λ ) 21 (26) 
where k

(n λ +1) 23 + µ (n λ +1) 23
has been removed because this expression is the same in all the patterns (same infinite medium).

The different matrices Q and Q * present in Eq. ( 26) depend all on the pattern λ they refer to. For this reason and in order to more easily evaluate k eff 23 , we will write it in the following form5 using the symbol λ to denote the pattern dependency:

k eff 23 = n i=1 f i k (i) 23 N λ λ=1 m λ Q (i λ -1) λ 11 R n λ λ 2 µ eff 23 Q * λ 11 + R n λ λ Q * λ 21 n i=1 f i N λ λ=1 m λ Q (i λ -1) λ 11 R n λ λ 2 µ eff 23 Q * λ 11 + R n λ λ Q * λ 21 ( 27 
)
For N λ > 1 (more than one pattern), it is worth noting that the effective transverse bulk modulus k eff 23 depends on the effective transverse shear modulus µ eff 23 .

In-plane transverse shear mode

In the case where an in-plane transverse shear mode is considered, following [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF], ε 0 in Eq. ( 4) is chosen as:

ε 0 = γ 0 e 2 ⊗ e 2 -e 3 ⊗ e 3 (28) 
The same methodology as the one presented in the case of an in-plane hydrostatic mode is used.

From Eq. 95 (74) published in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF], the average strain tensor ε Ω i λ in each phase (i λ ) of any pattern λ is given by Eq. ( 29),

where A i λ -not to be confused with A i λ -and D i λ are defined constants for phase (i λ ) (see [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF]):

ε Ω i λ = 1 D n λ +1   D i λ -3 A i λ R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1   ε 0 = A i λ ε 0 (29)
leading to:

A i λ = 1 D n λ +1   D i λ -3 A i λ R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1   (30) 
It is easy to deduce that we have still:

E = ε Ω = n i=1 f i ε Ω i =   n i=1 f i   N λ λ=1 m λ A i λ     ε 0 (31)
with A i λ given now by Eq. ( 30) and consequently:

E = E [(e 2 ⊗ e 2 ) -(e 3 ⊗ e 3 )] with E =   n i=1 f i   N λ λ=1 m λ A i λ     γ 0            (32) 
Using Eq. (A.1) we get the average stress tensor in phase (i λ ) when each pattern λ is subjected to boundary conditions defined in Eq. ( 4) with ε 0

given by Eq. ( 28):

σ Ω i λ = 2 µ (i λ ) 23 A i λ ε 0 (33)
leading to:

σ Ω =   n i=1 f i   N λ λ=1 m λ 2 µ (i λ ) 23 A i λ     ε 0 (34)
The effective elastic stiffness tensor C eff is derived from relations (Eq. ( 7))

and (Eq. (A.1)) applied to the equivalent homogeneous medium:

Σ = 2 µ eff 23 E = σ Ω (35) 
Comparison between Eq. ( 34) and Eq. ( 35) (with ε 0 given by Eq. ( 28)),

where E and E are given by Eq. ( 32), implies that:

µ eff 23 = n i=1 f i   N λ λ=1 m λ µ (i λ ) 23 A i λ   n i=1 f i   N λ λ=1 m λ A i λ   (36) 
Substituting Eq. ( 30) into Eq. ( 36) yields the following expression of µ eff 23 :

µ eff 23 = n i=1 f i µ (i) 23 N λ λ=1 m λ 1 D n λ +1   D i λ -3 A i λ R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1   n i=1 f i N λ λ=1 m λ 1 D n λ +1   D i λ -3 A i λ R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1   (37) 
In [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF], the form of the solution of the displacement field is expressed in terms of four constants (A k , B k , C k , D k ) in the case of a transverse shear mode and V k denotes the matrix with these constants as components:

V k =              A k B k C k D k              (38) 
Here A i λ and D i λ correspond respectively to A k and D k and are given in Eq. ( 39) where phase (k) will be replaced by phase (i λ ) present in pattern λ and n will be replaced by n λ (see Eq. 95 (72) in Hervé and Zaoui 22 (1995)):

367

V k D n+1 = 1 Q (n) 44 Q (n) 11 -Q (n) 41 Q (n) 14              Q (k-1) 11 Q (k-1) 12 Q (k-1) 13 Q (k-1) 14 Q (k-1) 21 Q (k-1) 22 Q (k-1) 23 Q (k-1) 24 Q (k-1) 31 Q (k-1) 32 Q (k-1) 33 Q (k-1) 34 Q (k-1) 41 Q (k-1) 42 Q (k-1) 43 Q (k-1) 44                           -Q (n) 14 0 0 Q (n) 11              (39) 
leading to:

368 A k D n+1 = -Q (k-1) 11 Q (n) 14 + Q (k-1) 14 Q (n) 11 Q (n) 44 Q (n) 11 -Q (n) 41 Q (n) 14 D k D n+1 = -Q (n) 14 Q (k-1) 41 + Q (k-1) 44 Q (n) 11 Q (n) 44 Q (n) 11 -Q (n) 41 Q (n) 14              (40) It is important to highlight that A k , i.e. A i λ and D k , i.e. D i λ , depend on µ eff 23 through the different components of Q (n λ )
. In order to show the dependence on µ eff 23 in Eq. (37), Q (n λ ) is expressed thanks to Eq. ( 23) with J -1 n+1 (R n ) (see [START_REF] Hervé-Luanco | Elastic behaviour of multiply coated fibre-reinforced composites: Simplification of the (n+1)-phase model and extension to imperfect interfaces[END_REF]) given in the transverse shear mode by:

J -1 n+1 (R n ) = 1 ν n+1 -1                  - R 2 n+1 8 R 3 n - R 2 n+1 8 R 3 n - R 2 n+1 48 µ (n+1) 23 R 2 n - R 2 n+1 48 µ (n+1) 23 R 2 n 0 - R 3 n 4 R 4 n+1 - ν n+1 R 4 n 12 µ (n+1) 23 R 4 n+1 - (2 ν n+1 -3)R 4 n 24 µ (n+1) 23 R 4 n+1 - R n 8 R 2 n+1 R n 8 R 2 n+1 R 2 n 16 µ (n+1) 23 R 2 n+1 - R 2 n 16 µ (n+1) 23 R 2 n+1 - 1 2 R n - 1 4 R n ν n+1 -1 4 µ (n+1) 23 - 2 ν n+1 -1 8 µ (n+1) 23                  (41) 
After tedious calculations (all the details are given in Appendix B) the final equation providing the effective shear modulus is:

µ eff 23 = n i=1 f i µ (i) 23 N λ λ=1 m λ R n λ λ 6 µ eff 23 α (i) λ + R n λ λ β (i) λ A λ µ eff 23 2 + B λ µ eff 23 + C λ n i=1 f i N λ λ=1 m λ R n λ λ 6 µ eff 23 α (i) λ + R n λ λ β (i) λ A λ µ eff 23 2 + B λ µ eff 23 + C λ (42) with α (i) λ = Q (i λ -1) λ 44 Q * λ 11 + Q * λ 21 -Q (i λ -1) λ 41 Q * λ 14 + Q * λ 24 -3 R 4 i λ λ -R 4 i λ -1 λ R 2 i λ λ R 2 i λ λ -R 2 i λ -1 λ × Q (i λ -1) λ 14 Q * λ 11 + Q * λ 21 -Q (i λ -1) λ 11 Q * λ 14 + Q * λ 24 (43) 
and

β (i) λ = Q (i λ -1) λ 44 Q * λ 31 + Q * λ 41 -Q (i λ -1) λ 41 Q * λ 34 + Q * λ 44 -3 R 4 i λ λ -R 4 i λ -1 λ R 2 i λ λ R 2 i λ λ -R 2 i λ -1 λ × Q (i λ -1) λ 14 Q * λ 31 + Q * λ 41 -Q (i λ -1) λ 11 Q * λ 34 + Q * λ 44 (44)
A λ , B λ and C λ have been determined in Eq. (B.14) of Appendix B:

A λ = 12 Z λ 12 + 6 R n λ λ k eff 23 Z λ 14 + Z λ 32 + Z λ 24 + Z λ 31 B λ = 2 Z λ 34 R 2 n λ λ k eff 23 + 2 R n λ λ 2 Z λ 14 + 2Z λ 32 + Z λ 24 + Z λ 31 C λ = Z λ 34 R 2 n λ λ                      (45) 
where Z λ ij denotes:

Z λ ij def = Q * λ i4 Q * λ j1 -Q * λ j4 Q * λ i1 ( 46 
)
It should be noted (see Eqs. ( 42) and (Eq. ( 45))) that the transverse shear modulus depends on the transverse bulk modulus. Finally both moduli k eff 23 and µ eff 23 are linked together. In addition, the radius R n λ λ disappears in both final equations (Eq. ( 27)) and (Eq. ( 42)) for particular cases of N λ and n λ (see section 3 for N λ = 2 and n λ = 2 for each pattern).

Particular case of two patterns with two phases in each pattern (N

λ = n λ = 2)
In this section we consider one "direct" pattern and one "inverse" pattern as drawn in Figure 3.

The first pattern (λ = 1) is called the "direct" pattern and consists in two concentric cylinders where the internal phase is made of the fibre material (1) and the external phase of the pure matrix material (2). The second pattern (λ = 2) is called the "inverse" pattern and, on the opposite, the internal phase is made now of the pure matrix material (2) and the external phase of the fibre material (1). Let f be the overall volume fraction of fibre, i.e. f = f 1 and let m be the volume fraction of the first pattern and c the volume fraction of fibre inside this first pattern.

Let phase (i) (i ∈ {1, 2}) lie in each pattern λ within the shell limited by the two concentric cylinders with the radii R i-1 λ and R i λ for λ ∈ {1, 2}.

In this studied configuration, phase (1) represents the fibres and is split into phase (1 1 ) inside the direct pattern 1 and phase (1 2 ) inside the inverse pattern 2. As shown in Figure 3, phase (1 1 ) corresponds to the first phase, i.e. the internal phase of pattern 1, and lies between radii R 0 1 = 0 and R 1 1 .

Still considering the fibres, phase (1 2 ) corresponds to the outer phase, i.e.

the second phase of pattern 2, and lies between radii R 1 2 and R 2 2 . It is important not to confuse the phase number and its indexing number within each pattern. This is expressed as follows for the volume fractions but also applies to radii: c i λ corresponds to the volume fraction of phase (i) inside pattern λ whereas c i λ is the volume fraction of the "ith" phase inside pattern λ; c 2 2 and c 2 2 are thus not equivalent. The parameters presented in Figure 3 are linked by the following relations:

c 1 1 = c 1 1 = c = R 2 1 1 R 2 2 1 and c 2 1 = c 2 1 = 1 -c c 1 2 = c 2 1 = 1 -c 2 2 and c 2 2 = c 1 2 = R 2 1 2 R 2 2 2 f 1 = mc 1 1 + (1 -m) c 1 2 = mc + (1 -m) (1 -c 2 2 ) = f f 2 = 1 -f                          (47) 
It should be noted that f , m and c are the three independent parameters of the model and all these data allow to express c 2 2 as c

2 2 = [(1 -f ) + m (c -1)]/(1 -m).
Let also k

(i)
23 and µ

(i)
23 denote respectively the plane strain bulk modulus and transverse shear modulus of phase (i).

Eq. ( 27) and Eq. ( 42) have been particularized in this particular case of two patterns with two phases in each pattern. For this purpose, the different transfer matrices Q and Q * have been determined in Appendix C in the case of an hydrostatic pressure loading and in the case of a transverse shear loading. These developments lead to the following solution for the effective transverse modulus (see details of calculation in Appendix C.1). 

k eff 23 def = {C 1 } ⊆k eff 23 µ eff 23 + {C 2 } ⊆k eff 23 {C 3 } ⊆k eff 23 µ eff 23 + {C 4 } ⊆k eff 23 (48 
µ eff 23 = µ eff 23 f, m, c, k eff 23 , µ eff 23 , k (i) 23 , µ (i) 23 def = {A 1 } ⊆µ eff 23 {A 2 } ⊆µ eff 23 ( 

Highlighting the usefulness of the "two patterns -two phases" approach

The specific case of two patterns with two phases in each pattern is particularly suitable for taking into account local morphological fluctuations, such as trapped matrix regions induced by the heterogeneous distribution of fibres. The purpose of this section is to illustrate this ability and to justify the addition of an inverse pattern to the classical GSCS.

In order to check the accuracy of any model, a sufficient amount of reliable "reference data" must be available. Initial resources are generally coming from experimental characterization tests and results from the literature.

A very large majority of experimental studies reported in the literature are based on "mechanical" testing techniques. Although the mechanical characterization of longitudinal and transverse Young's moduli does not, generally, provide any difficulties, this is not as simple for the characterization of the transverse bulk and shear moduli which are considered in the present paper. These moduli are usually missing from the publications and in the best case, are estimated indirectly from elastic constants easier to obtain. To facilitate the characterization of these transverse elastics constants and reduce the inherent propagation of experimental uncertainties, alternative testing methods have been proposed.

Ultrasonic methods offer such an alternative and have been developed

since the 1970's, initiated by [START_REF] Markham | Measurement of the elastic constants of fibre composites by ultrasonics[END_REF] and [START_REF] Zimmer | Determination of the elastic constants of an unidirectional fiber composite using ultrasonic velocity measurements[END_REF].

The principle is based on the propagation of ultrasonic waves through a sample and the phase velocity of these propagating plane waves is measured.

An appropriate geometry thus makes it possible to propagate the waves in the desired directions and to estimate more easily elastic constants using the well-known Christoffel's equations. A recent review of ultrasonic methods written by [START_REF] Paterson | Elastic constant determination of unidirectional composite via ultrasonic bulk wave through transmission measurements: A review[END_REF] can be consulted for further details.

Beyond experimental results on the transverse elastic behaviour, the comparison with a micromechanical model, as presented in the present paper, requires to know the properties of the constituents but also the morphology of the microstructure. This is the case for Zimmer and Cost's paper (1970) which will allow -in a first step -to highlight that the introduction of the inverse pattern leads to better predictions of the "average" experimental values. If ultrasonic methods make it possible to limit experimental uncertainties, it nonetheless remains true that these uncertainties on average properties remain large. In addition, other problems are raised when using experimental results as reference data, even when increasing the number of tests.

Experimental results are indeed affected by behaviours unaccounted for by the linear elastic homogenization procedure, such as nonlinearities, uncertainties on the actual moduli of the employed phases, or even the presence of interphases of unknown properties between the reinforcement and the matrix. The use of numerical experiments makes it possible to get rid of these issues. In a second step, results obtained with full-field finite element simulations are thus employed to test the present approach. Gusev et al. 's paper (2000) has been selected because it combines both experimental results -using ultrasonic techniques -and numerical ones for the desired elastic properties.

Material properties related to the two above-mentioned examples chosen to illustrate the present approach are gathered in Table 1, where "ZC" refers to [START_REF] Zimmer | Determination of the elastic constants of an unidirectional fiber composite using ultrasonic velocity measurements[END_REF], "GHW" to [START_REF] Gusev | Fiber packing and elastic properties of transversely random unidirectional glass/epoxy composite[END_REF], and the superscripts "f" and "m" to the fibre and the matrix respectively. As sug- gested by Zimmer and Cost, due to the viscoelasticity of the resin and the ultrasonic frequencies chosen, the Young's modulus of the matrix, E m ZC , is presented with a 40 % increase over the measured value for modelling purposes; which gave, in their situation, the best matches between experiences and reference models. We place ourselves under the same conditions.

Property
The primary objective of this paper is clearly the development of the model, while emphasizing its effectiveness by experimental and numerical examples6 .

Proposed methodology

Reference data, i.e. transverse bulk and shear moduli, are firstly extracted from the two publications mentioned above [START_REF] Zimmer | Determination of the elastic constants of an unidirectional fiber composite using ultrasonic velocity measurements[END_REF][START_REF] Gusev | Fiber packing and elastic properties of transversely random unidirectional glass/epoxy composite[END_REF] and the uncertainties on the average values are evaluated. These results are intended to be compared with those obtained by the model presented in Section 3. For this purpose, material data from Table 1 are used as input data for the model. The transverse moduli of the unidirectional composites are derived by using an iterative algorithm -based on Eqs. (C.17) and (C.33) -which can be described by Eq. ( 50)

k eff 23 ≈ k [j+1] 23 def = {C 1 } ⊆k eff 23 µ [j] 23 + {C 2 } ⊆k eff 23 {C 3 } ⊆k eff 23 µ [j] 23 + {C 4 } ⊆k eff 23 with {C p } ⊆k eff 23 , p ∈ 1, 4 , depending on f, m, c, k (i) 23 , µ (i) 23 µ eff 23 ≈ µ [j+1] 23 def = {A 1 } ⊆µ eff 23 {A 2 } ⊆µ eff 23 with {A p } ⊆µ eff 23 , p ∈ 1, 2 , depending on f, m, c, k (i) 23 , µ (i) 23 , k eff 23 ≈ k [j] 23 , µ eff 23 ≈ µ [j] 23                                                                    (50) 
and where k

[j]
23 and µ

[j]
23 are respectively estimates of the effective planestrain bulk and transverse shear moduli at step [j], j ∈ N, of the iteration process (see Figure 4). The initial estimates, k

[0] 23 and µ

[0]

23 , can be chosen as the plane-strain bulk and transverse shear moduli of the matrix or the ones of the fibre leading respectively to the lower or to the upper estimates.

The iteration process is stopped when the relative error defined by Eq. ( 51) is lower than 10 -6 .

Err = µ [j+1] 23 -µ [j] 23 2 + k [j+1] 23 -k [j] 23 2 µ [0] 23 2 + k [0] 23 2 (51)
Figure 5 illustrates the iteration process for two isotropic but contrasted phases as in [START_REF] Hervé | A propos de l'assemblage de sphères composites de hashin[END_REF]. Convergence is obtained within only a few iterations and in a fraction of a second on a personal computer.

The input parameters in Eq. ( 50) are the elastic behaviour of each phase and the following three morphological parameters: f , the volume fraction 52) and ( 53) as in Joannès and Hervé-Luanco (2016b) . 

m ≥ 1 2 + |f - 1 2 | (52) 0 ≤ c min = 1 + f -1 m < c < c max = f m ≤ 1 (53) Knowing f from Table 1,

Results and discussion

As previously mentioned, Zimmer and Cost's paper (1970) is particularly suitable to highlight the interest of the present model. Zimmer and Cost have considered the ultrasonic characterization of a glass-epoxy composite:

E-glass fibres reinforcing a Scotchply TM 1002 epoxy matrix (see Table 1).

The following results for C 22 and C 23 (see Eq. ( 54)) have been reported with their associated uncertainties.

C 22 ZC = (17.79 ± 1.03) GPa C 23 ZC = (9.79 ± 1.52) GPa        (54) 
It is worth noting that the transverse moduli C 22 and C 23 are related to the effective transverse plane-strain bulk and shear moduli through Eq. (A.2).

Experimental average values from [START_REF] Zimmer | Determination of the elastic constants of an unidirectional fiber composite using ultrasonic velocity measurements[END_REF] are finally given as follows:

k eff 23 ZC = (13.79 ± 1.28) GPa µ eff 23 ZC = (4.00 ± 1.28) GPa        (55) k eff 23 ZC
is provided with an estimated uncertainty of slightly more than 9 % and µ eff

ZC

with an estimated uncertainty of 32 %.

By following the iterative process described in § 4.1, and by varying m and c, it is possible to build gradually the domain of the response of the model corresponding to Zimmer and Cost's experimental results (1970).

The data of Table 1 being given, for each investigated pair, (m, c), a "point" of the response domain is obtained. In order to illustrate the way the error defined in Eq. ( 51) decreases during the iterative algorithm, its value has been plotted in Figure 6 (top and bottom), respectively when the initial medium corresponds to the fibre (glass) and to the matrix (epoxy).

It is worth noticing that the speed of convergence, obviously for one set of parameters, is very fast; namely the number of iterations necessary to reach the desired relative error (10 -6 ) is low, i.e. 9 iterations for the conditions considered here. We have chosen to keep in Figure 6 is the lowest value of the predicted moduli in Figure 7 and Figure 8, the predicted moduli are far below the expected values for the materials that are considered in this paper. This can be explained by the fact that, in the studied microstructures, a part of the matrix is trapped by the fibres (see for instance an image7 of the transverse cross-section of Gusev et al.'s material (2000) in Figure 9). • Even considering relatively low contributions of the inverse pattern, it is possible to increase the transverse moduli by several percent. This is "graphically" highlighted in Figure 7 where the experimental uncertainty range is plotted. In the studied configuration and as a • In the case of the plain strain bulk modulus, for a given m = 1, varying c does not offer much "modulation" of the predicted values.

• The effect of c is much more visible when considering the transverse shear modulus. Two areas appear in the k eff 23 graphs of Figure 7 and Figure 8: "c < f " and "c > f ". When c < f , the sensitivity to c is very low as in the case of µ eff 23 analysed above. When c > f , the sensitivity to c becomes very large and tiny variations are enough to increase the predicted values by a few percent. This highly sensitive area is probably difficult to use, while providing very little added value in terms of the predicted range.

• As a first approximation, setting c = f seems to be a good modelling compromise. This allows a wide modulus range to be obtained while ensuring stability and smoothness regarding predicted values. Moreover, it seems that (m, c) solutions pairs for k eff 23 and µ eff 23 are quite close8 .

Conclusion

In this paper, a pattern-based method has been introduced to take into account the effect of the morphological fluctuations on the transverse elastic behaviour of fibre reinforced composites. For that purpose a Generalized Self-Consistent Scheme based on N λ patterns with n λ phases each has been proposed. The particular case of two patterns with two phases has been completely developed, the first pattern is a "direct" one (fibre embedded in the matrix) and the other is an "inverted" one (matrix embedded in the phase fibre). This second pattern allows us to take into account the role the non-percolated matrix part plays on the transverse elastic behaviour. Two additional morphological parameters (m, the volume fraction of the direct pattern in the microstructure and c, the volume fraction of fibre inside the second pattern) have been introduced.

As it has been shown in this paper, these two parameters make it possible to widely extend the predictive capacity of the classical three phase model. For a given microstructure, several pairs (m, c) seem to be able to accurately describe the experimental results. This means that from an appropriately identified pair (m, c), it is possible to predict the transverse behaviour of a composite microstructure with trapped or non-percolated matrix areas. This identification, which is not the subject of this paper, can be carried out in different ways. An image analysis procedure, derived from a covariogram analysis can for example be applied and is under development by the authors. Moreover, a work in progress aims to show that for a given microstructure, a couple (m, c) can be chosen quasi-independently of the phase contrast and the phase properties in order to predict effective transverse elastic constants.
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Appendix A. Elastic behaviour of transversely isotropic systems

The linear constitutive relation, for elasticity is written here in the form:

                      σ 11 σ 22 σ 33 σ 23 σ 31 σ 12 ≡ ≡ ≡ ≡ ≡ ≡ σ 1 σ 2 σ 3 σ 4 σ 5 σ 6                       =                       C 11 C 12 C 12 0 0 0 C 12 C 22 C 23 0 0 0 C 12 C 23 C 22 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 55 0 0 0 0 0 0 C 55                                             ε 1 ε 2 ε 3 ε 4 ε 5 ε 6 ≡ ≡ ≡ ≡ ≡ ≡ ε 11 ε 22 ε 33
In the equivalent homogeneous material we will use C eff ij and in phase (k)

C (k)
ij to describe their respective elastic behaviour. By combining C 22 and C 23 , k 23 and µ 23 can be calculated as follows:

k 23 = C 22 + C 23 2 µ 23 = C 22 -C 23 2 (A.2)
Appendix B. Determination of µ eff 23 in the case of N λ patterns with n λ phases

In section 2.4, the homogenisation approach has led to the following effective transverse shear modulus (Eq. ( 37)):

µ eff 23 = n i=1 f i µ (i) 23 N λ λ=1 m λ 1 D n λ +1   D i λ -3 A i λ R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1   n i=1 f i N λ λ=1 m λ 1 D n λ +1   D i λ -3 A i λ R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1   (B.1) A i λ /D n λ +1
and D i λ /D n λ +1 in Eq. (B.1) are given by Eq. ( 40) which is written in the following form:

A i λ D n λ +1 = Q (i λ -1) 14 Q (n λ ) 11 -Q (i λ -1) 11 Q (n λ ) 14 Q (n λ ) 44 Q (n λ ) 11 -Q (n λ ) 41 Q (n λ ) 14 D iλ D n λ +1 = Q (i λ -1) 44 Q (n λ ) 11 -Q (n λ ) 14 Q (i λ -1) 41 Q (n λ ) 44 Q (n λ ) 11 -Q (n λ ) 41 Q (n λ ) 14              (B.2)
It should be noted that A i λ and D i λ depend on µ eff 23 through the different components of Q (n λ ) . In order to exhibit the dependance on µ eff 23 in Eq. (B.1),

Q (n λ ) is expressed thanks to Eq. (B.
3) where Q * (n λ ) does not depend on µ eff 23 : [START_REF] Hervé-Luanco | Elastic behaviour of multiply coated fibre-reinforced composites: Simplification of the (n+1)-phase model and extension to imperfect interfaces[END_REF]) given in the transverse shear mode by:

Q (n λ ) = J -1 n λ +1 (R n λ ) Q * (n λ ) (B.3) with (ν n λ +1 -1) J -1 n λ +1 (R n λ ) (see
                 - R 2 n λ +1 8 R 3 n λ - R 2 n λ +1 8 R 3 n λ - R 2 n λ +1 48 µ (n λ +1) 23 R 2 n λ - R 2 n λ +1 48 µ (n λ +1) 23 R 2 n λ 0 - R 3 n λ 4 R 4 n λ +1 - ν n λ +1 R 4 n λ 12 µ (n λ +1) 23 R 4 n λ +1 - (2 ν n λ +1 -3)R 4 n λ 24 µ (n λ +1) 23 R 4 n λ +1 - R n λ 8 R 2 n λ +1 R n λ 8 R 2 n λ +1 R 2 n λ 16 µ (n λ +1) 23 R 2 n λ +1 - R 2 n λ 16 µ (n λ +1) 23 R 2 n λ +1 - 1 2 R n λ - 1 4 R n λ ν n λ +1 -1 4 µ (n λ +1) 23 - 2 ν n λ +1 -1 8 µ (n λ +1) 23                  (B.4)
To facilitate reading, n λ being perfectly defined for each pattern, Q * (n λ )

will be noted Q * λ in the following equations where λ denotes the pattern dependency. It is worth taking into account that phase (n λ + 1) is the same phase in all the patterns and corresponds to the effective medium. To determine k eff 23 and µ eff 23 , we will thus consider that k eff 23 = k

(n λ +1) 23 and µ eff 23 = µ (n λ +1) 23
. Coefficient ν n λ +1 can be calculated by using its definition given in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF]:

ν n λ +1 = C (n λ +1) 23 C (n λ +1) 23 + C (n λ +1) 22 (B.5)
By using Eq. (A.2):

k (n λ +1) 23 = C (n λ +1) 22 + C (n λ +1) 23 2 µ (n λ +1) 23 = C (n λ +1) 22 -C (n λ +1) 23 2          (B.6)
ν n λ +1 can then equivalently be rewritten as:

ν n λ +1 = k (n λ +1) 23 -µ (n λ +1) 23 2 k (n λ +1) 23 (B.7)
Or more generally as:

ν k = k (k) 23 -µ (k) 23 2 k (k) 23 (B.8)
Let us now calculate the denominator of equation (Eq. (B.2)):

{A} ⊆/D n λ +1 def = Q (n λ ) 44 Q (n λ ) 11 -Q (n λ ) 41 Q (n λ ) 14 (B.9)
All of the components of Q (n λ ) present in the previous equation can be determined by introducing Eq. (B.4) in (Eq. (B.3)): can consequently be rewritten as:

Q (n λ ) 44 = 1 ν n λ +1 -1   - Q * λ 14 2 R n λ - Q * λ 24 4 R n λ + Q * λ 34 4 µ (n λ +1) 23 (ν n λ +1 -1) - Q * λ 44 8 µ (n λ +1) 23 (2 ν n λ +1 -1)   Q (n λ ) 11 = 1 ν n λ +1 -1 R n λ +1 R n λ 2   - Q * λ 11 8 R n λ - Q * λ 21 8 R n λ - Q * λ 31 48 µ (n λ +1) 23 - Q * λ 41 48 µ (n λ +1) 23   Q (n λ ) 41 = 1 ν n λ +1 -1   - Q * λ 11 2 R n λ - Q * λ 21 4 R n λ + Q * λ 31 4 µ (n λ +1) 23 (ν n λ +1 -1) - Q * λ 41 8 µ (n λ +1) 23 (2 ν n λ +1 -1)   Q (n λ ) 14 = 1 ν n λ +1 -1 R n λ +1 R n λ 2   - Q * λ 14 8 R n λ - Q * λ 24 8 R n λ - Q * λ 34 48 µ (n λ +1) 23 - Q * λ 44 48 µ (n λ +1) 23                                                                                          (B.
{A} ⊆/D n λ +1 = 4 R 2 n λ +1 R 2 n λ   1 + µ (n λ +1) 23 k (n λ +1) 23   2   {B 1 } ⊆/D n λ +1 {B 2 } ⊆/D n λ +1 -{B 3 } ⊆/D n λ +1 {B 4 } ⊆/D n λ +1   (B.11) with {B p } ⊆/D n λ +1
, p ∈ 1, 4 , given by:

685 {B 1 } ⊆/D n λ +1 def = - Q * λ 14 2 R n λ - Q * λ 24 4 R n λ + Q * λ 34 4 µ (n λ +1) 23 (ν n λ +1 -1) - Q * λ 44 8 µ (n λ +1) 23 (2 ν n λ +1 -1) {B 2 } ⊆/D n λ +1 def = - Q * λ 11 8 R n λ - Q * λ 21 8 R n λ - Q * λ 31 48 µ (n λ +1) 23 - Q * λ 41 48 µ (n λ +1) 23 {B 3 } ⊆/D n λ +1 def = - Q * λ 11 2 R n λ - Q * λ 21 4 R n λ + Q * λ 31 4 µ (n λ +1) 23 (ν n λ +1 -1) - Q * λ 41 8 µ (n λ +1) 23 (2 ν n λ +1 -1) {B 4 } ⊆/D n λ +1 def = - Q * λ 14 8 R n λ - Q * λ 24 8 R n λ - Q * λ 34 48 µ (n λ +1) 23 - Q * λ 44 48 µ (n λ +1) 23                                                              (B.12)
By rearranging (Eq. (B.12)) thanks to 46)) and by using (Eq. (B.7)) it follows that:

Z λ ij def = Q * λ i4 Q * λ j1 -Q * λ j4 Q * λ i1 with i, j ∈ {1, 4} (Eq. (
384 R 2 n λ µ (n λ +1) 23 2   {B 1 } ⊆/D n λ +1 {B 2 } ⊆/D n λ +1 -{B 3 } ⊆/D n λ +1 {B 4 } ⊆/D n λ +1   = A λ µ (n λ +1) 23 2 + B λ µ (n λ +1) 23 + C λ (B.13)
with A λ , B λ and C λ given by:

686 A λ def = 12 Z λ 12 + 6 R n λ λ k eff 23 Z λ 14 + Z λ 32 + Z λ 24 + Z λ 31 B λ def = 2 Z λ 34 R 2 n λ λ k eff 23 + 2 R n λ λ 2 Z λ 14 + 2Z λ 32 + Z λ 24 + Z λ 31 C λ def = Z λ 34 R 2 n λ λ                      (B.14)
It is important to notice that A λ and B λ depend on k eff 23 . Finally:

{A} ⊆/D n λ +1 = R 2 n λ +1 96 R 4 n λ   1 + µ (n λ +1) 23 k (n λ +1) 23   2 µ (n λ +1) 23 2 × A λ µ (n λ +1) 23 2 + B λ µ (n λ +1) 23 + C λ (B.15)
Eq. (B.2) takes the following form and consequently can be calculated thanks to Eq. (B.15) and to Eq. (B.10):

A i λ D n λ +1 = Q (i λ -1) 14 Q (n λ ) 11 -Q (i λ -1) 11 Q (n λ ) 14 {A} ⊆/D n λ +1 D i λ D n λ +1 = Q (i λ -1) 44 Q (n λ ) 11 -Q (n λ ) 14 Q (i λ -1) 41 {A} ⊆/D n λ +1                    (B.16)
leading to:

A i λ D n λ +1 = 4 R n λ   1 + µ (n λ +1) 23 k (n λ +1) 23   6 µ (n λ +1) 23 2 α A i λ + R n λ µ (n λ +1) 23 β A i λ A λ µ (n λ +1) 23 2 + B λ µ (n λ +1) 23 + C λ (B.17) with α A i λ def = Q (i λ -1) 14 Q * λ 11 + Q * λ 21 -Q (i λ -1) 11 Q * λ 14 + Q * λ 24 β A i λ def = Q (i λ -1) 14 Q * λ 31 + Q * λ 41 -Q (i λ -1) 11 Q * λ 34 + Q * λ 44          (B.18)
and 

D i λ D n λ +1 = 4 R n λ   1 + µ (n λ +1) 23 k (n λ +1) 23   6 µ (n λ +1) 23 2 α D i λ + R n λ µ (n λ +1) 23 β D i λ A λ µ (n λ +1) 23 2 + B λ µ (n λ +1) 23 + C λ (B.19) with α D i λ def = Q (i λ -1) 44 Q * λ 11 + Q * λ 21 -Q (i λ -1) 41 Q * λ 14 + Q * λ 24 β D i λ def = Q (i λ -1) 44 Q * λ 31 + Q * λ 41 -Q (i λ -1) 41 Q * λ 34 + Q * λ 44          (B.
µ eff 23 = n i=1 f i µ (i) 23 N λ λ=1 4 m λ R n λ   1 + µ (n λ +1) 23 k (n λ +1) 23   µ (n λ +1) 23 6 µ (n λ +1) 23 α (i) λ + R n λ β (i) λ A λ µ (n λ +1) 2 23 + B λ µ (n λ +1) 23 + C λ n i=1 f i N λ λ=1 4 m λ R n λ   1 + µ (n λ +1) 23 k (n λ +1) 23   µ (n λ +1) 23 6 µ (n λ +1) 23 α (i) λ + R n λ β (i) λ A λ µ (n λ +1) 2 23 + B λ µ (n λ +1) 23 + C λ (B.21) with α (i) λ def = α D i λ -3 R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1 α A i λ β (i) λ def = β D i λ -3 R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1 β A i λ              (B.22) µ (n λ +1) 23
and k

(n λ +1) 23

do not depend on the pattern they are attached to (see Figure 2) consequently they do not depend on λ and Eq. (B.21) can be rewritten as:

µ eff 23 = n i=1 f i µ (i) 23 N λ λ=1 m λ R n λ 6 µ eff 23 α (i) λ + R n λ β (i) λ A λ µ eff 23 2 + B λ µ eff 23 + C λ n i=1 f i N λ λ=1 m λ R n λ 6 µ eff 23 α (i) λ + R n λ β (i) λ A λ µ eff 23 2 + B λ µ eff 23 + C λ (B.23)
where 

α (i) λ = Q (i λ -1) 44 Q * λ 11 + Q * λ 21 -Q (i λ -1) 41 Q * λ 14 + Q * λ 24 -3 R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1 × Q (i λ -1) 14 Q * λ 11 + Q * λ 21 -Q (i λ -1) 11 Q * λ 14 + Q * λ 24 β (i) λ = Q (i λ -1) 44 Q * λ 31 + Q * λ 41 -Q (i λ -1) 41 Q * λ 34 + Q * λ 44 -3 R 4 i λ -R 4 i λ -1 R 2 i λ R 2 i λ -R 2 i λ -1 × Q (i λ -1) 14 Q * λ 31 + Q * λ 41 -Q (i λ -1) 11 Q * λ 34 + Q * λ 44                                                                                          (B.
µ eff 23 = n i=1 f i µ (i) 23 N λ λ=1 m λ R n λ λ 6 µ eff 23 α (i) λ + R n λ λ β (i) λ A λ µ eff 23 2 + B λ µ eff 23 + C λ n i=1 f i N λ λ=1 m λ R n λ λ 6 µ eff 23 α (i) λ + R n λ λ β (i) λ A λ µ eff 23 2 + B λ µ eff 23 + C λ (B.25)
where finally

α (i) λ = Q (i λ -1) λ 44 Q * λ 11 + Q * λ 21 -Q (i λ -1) λ 41 Q * λ 14 + Q * λ 24 -3 R 4 i λ λ -R 4 i λ -1 λ R 2 i λ λ R 2 i λ λ -R 2 i λ -1 λ × Q (i λ -1) λ 14 Q * λ 11 + Q * λ 21 -Q (i λ -1) λ 11 Q * λ 14 + Q * λ 24 β (i) λ = Q (i λ -1) λ 44 Q * λ 31 + Q * λ 41 -Q (i λ -1) λ 41 Q * λ 34 + Q * λ 44 -3 R 4 i λ λ -R 4 i λ -1 λ R 2 i λ λ R 2 i λ λ -R 2 i λ -1 λ × Q (i λ -1) λ 14 Q * λ 31 + Q * λ Cp : {1, 2} ⊆Ω → {1, 2} ⊆N λ → Cp (λ) ≡ λ =        1 if λ = 2 2 if λ = 1 (C.2)
where the codomain {1, 2}

⊆N of Id and Cp transformations have totally lost any "pattern" reference. It means that images Id (λ) , i.e. λ, and Cp (λ) ,

i.e. λ, are just natural numbers and can, for example, describe phase numbers if they are placed in parentheses or in indices as for :

• (k) or • k . So,
taken from [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF]:

ρ λ def = µ (λ) 23 µ (λ) 23 a λ def = ρ λ + 3 -4 ν λ b λ def = 3 -2 ν λ + ρ λ 2 ν λ -3 c λ def = 1 + ρ λ 3 -4 ν λ d λ def = 2 ν λ -1 + ρ λ 1 -2 ν λ e λ def = 1 -ρ λ                                            (C.3)
see Eq. (B.8) for ν λ and ν λ . And:

q 2 λ def = R 2 1 λ R 2 2 λ ⇒        q 1 2 = c q 2 2 = c 2 2 (C.4) To calculate α (i) λ and β (i)
λ in the case of the determination of the effective transverse shear modulus it may be noted that:

c λ = a λ + 2 d λ (C.5)
In the case of two patterns with two phases each, Eq. ( 27) becomes:

k eff 23 = 2 i=1 f i k (i) 23 2 λ=1 m λ Q (i λ -1) λ 11 R 2 λ 2 µ eff 23 Q * λ 11 + R 2 λ Q * λ 21 2 i=1 f i 2 λ=1 m λ Q (i λ -1) λ 11 R 2 λ 2 µ eff 23 Q * λ 11 + R 2 λ Q * λ 21 (C.6)
Substituting the different components of the Q λ matrices (see [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF]) (for λ ∈ {1, 2}) in Eq. (C.6) gives:

k eff 23 = f k (1) 23 {A 1 } ⊆k eff 23 + (1 -f ) k (2) 23 {A 2 } ⊆k eff 23 f {A 1 } ⊆k eff 23 + (1 -f ) {A 2 } ⊆k eff 23 def = {B 1 } ⊆k eff 23 {B 2 } ⊆k eff 23 (C.7)
where

{A 1 } ⊆k eff 23 def = mQ (0) 1 11 R 2 1 2 µ eff 23 Q * 1 11 + R 2 1 Q * 1 21 + (1 -m) Q (1) 2 11 R 2 2 2 µ eff 23 Q * 2 11 + R 2 2 Q * 2 21 {A 2 } ⊆k eff 23 def = mQ (1) 1 11 R 2 1 2 µ eff 23 Q * 1 11 + R 2 1 Q * 1 21 + (1 -m) Q (0) 2 11 R 2 2 2 µ eff 23 Q * 2 11 + R 2 2 Q * 2 21                (C.8)
The Q λ matrices are determined from [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF] for λ ∈ {1, 2}:

Q (0) λ = I =⇒ Q (0) λ 11 = 1 (C.9) Q (1) λ = N λ(1) = 1 µ (λ) 23 + k (λ ) 23        (µ (λ ) 23 + k (λ) 23 ) R 2 0 λ R 2 1 λ (µ (λ) 23 -µ (λ) 23 ) (k (λ) 23 -k (λ) 23 ) R 2 0 λ R 2 1 λ (µ (λ ) 23 + k (λ ) 23 )        (C.10)
R 2 0 λ = 0 by definition leading to:

Q (1) λ 11 = µ (λ) 23 + k (λ ) 23 µ (λ) 23 + k (λ ) 23 (C.11)                            (C.14) {A p } ⊆k eff 23
, p ∈ 1, 2 , in Eq. (C.8) are then written as: 

{A 1 } ⊆k eff 23 = m µ (2) 23 + k (2) 23 2 µ (2) 23 + k (1) 23 µ eff 23 + k (2) 23 + 2 c k (2) 23 -k (1) 23 µ eff 23 -µ (2) 23 + (1 -m) µ (1) 23 + k (2) 23 2 µ (1) 23 + k (2) 23 µ eff 23 + k (1) 23 + 2 c 2 2 k (1) 23 -k (2) 23 µ eff 23 -µ (1) 23 {A 2 } ⊆k eff 23 = m µ (2) 23 + k (1) 23 2 µ (2) 23 + k (1) 23 µ eff 23 + k (2) 23 + 2 c k (2) 23 -k (1) 23 µ eff 23 -µ (2) 23 + (1 -m) µ (1) 23 + k (1) 23 2 µ (1) 23 + k (2) 23 µ eff 23 + k (1) 23 + 2 c 2 2 k (1) 23 -k (2) 23 µ eff 23 -µ (1) 23                                            (C.
= f k (1) 23 m µ (2) 23 + k (2) 23 + (1 -f ) k (2) 23 m µ (2) 23 + k (1) 23 µ (2) 23 + k (1) 23 µ eff 23 + k (2) 23 + c k (2) 23 -k (1) 23 µ eff 23 -µ (2) 23 + f k (1) 23 (1 -m) µ (1) 23 + k (2) 23 + (1 -f ) k (2) 23 (1 -m) µ (1) 23 + k (1) 23 µ (1) 23 + k (2) 23 µ eff 23 + k (1) 23 + c 2 2 k (1) 23 -k (2) 23 µ eff 23 -µ (1) 23 {B 2 } ⊆k eff 23 = f m µ (2) 23 + k (2) 23 + (1 -f ) m µ (2) 23 + k (1) 23 µ (2) 23 + k (1) 23 µ eff 23 + k (2) 23 + c k (2) 23 -k (1) 23 µ eff 23 -µ (2) 23 + f (1 -m) µ (1) 23 + k (2) 23 + (1 -f ) (1 -m) µ (1) 23 + k (1) 23 µ (1) 23 + k (2) 23 µ eff 23 + k (1) 23 + c 2 2 k (1) 23 -k (2) 23 µ eff 23 -µ (1) 23                                            (C.
= f k (1) 23 m µ (2) 23 + k (2) 23 + (1 -f ) k (2) 23 m µ (2) 23 + k (1) 23 × c 2 2 k (1) 23 -k (2) 23 + µ (1) 23 + k (2) 23 + f k (1) 23 (1 -m) µ (1) 23 + k (2) 23 + (1 -f ) k (2) 23 (1 -m) µ (1) 23 + k (1) 23 × c k (2) 23 -k (1) 23 + µ (2) 23 + k (1) 23 {C 2 } ⊆k eff 23 def = f k (1) 23 m µ (2) 23 + k (2) 23 + (1 -f ) k (2) 23 m µ (2) 23 + k (1) 23 × µ (1) 23 + k (2) 23 k (1) 23 -c 2 2 k (1) 23 -k (2)
23 µ

(1) 23

+ f k (1) 23 (1 -m) µ (1) 23 + k (2) 23 + (1 -f ) k (2) 23 (1 -m) µ (1) 23 + k (1) 23 × µ (2) 23 + k (1) 23 k (2) 23 -c k (2) 23 -k (1) 23 µ (2) 23 {C 3 } ⊆k eff 23 def = f m µ (2) 23 + k (2) 23 + (1 -f ) m µ (2) 23 + k (1) 23 × c 2 2 k (1) 23 -k (2) 23 + µ (1) 23 + k (2) 23 + f (1 -m) µ (1) 23 + k (2) 23 + (1 -f ) (1 -m) µ (1) 23 + k (1) 23 × c k (2) 23 -k (1) 23 + µ (2) 23 + k (1) 23 {C 4 } ⊆k eff 23 def = f m µ (2) 23 + k (2) 23 + (1 -f ) m µ (2) 23 + k (1) 23 × µ (1) 23 + k (2) 23 k (1) 23 -c 2 2 k (1) 23 -k (2) 23 µ (1) 23 + f (1 -m) µ (1) 23 + k (2) 23 + (1 -f ) (1 -m) µ (1) 23 + k (1) 23 
In the context of two patterns with two phases Eq. ( 42) becomes:

µ eff 23 = 2 i=1 f i µ (i) 23 2 λ=1 m λ R 2 λ 6 µ eff 23 α (i) λ + R 2 λ β (i) λ A λ µ eff 23 2 + B λ µ eff 23 + C λ 2 i=1 f i 2 λ=1 m λ R 2 λ 6 µ eff 23 α (i) λ + R 2 λ β (i) λ A λ µ eff 23 2 + B λ µ eff 23 + C λ (C.19)
In order to calculate A λ µ eff 23 2 + B λ µ eff 23 + C λ let us use the following equations:

A λ = 12 Z λ 12 + 6 R 2 λ k eff 23 Z λ 14 + Z λ 32 + Z λ 24 + Z λ 31 B λ = 2 Z λ 34 R 2 2 λ k eff 23 + 2 R 2 λ 2 Z λ 14 + 2 Z λ 32 + Z λ 24 + Z λ 31 C λ = Z λ 34 R 2 2 λ                                      (C.20)
where all the Z ij (see Eq. 95 (81) in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF]) are already defined by:

Z λ ij def = Q * λ i4 Q * λ j1 -Q * λ j4 Q * λ i1 (C.21)
with:

Q * λ = J λ 2 R 2 λ Q (1) λ (C.22)
From [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF], in the case of a transverse shear loading,  

     a λ q 2 λ 1 -ρ λ q 2 λ 1 -ρ λ q 2 λ 0 2 q 4 λ b λ q 4 λ c λ 2 q 4 λ d λ q 4 λ ρ λ -1 -3 q 2 λ 1 -ρ λ 0 q 2 λ a λ q 2 λ 1 -ρ λ -6 d λ 3 1 -ρ λ 2 b λ c λ               (C.
Q * λ 11 = R 2 λ 4 1 -ν λ   -4 ν λ a λ q 2 λ + 2 q 4 λ b λ -12 1 -ν λ q 2 λ e λ -6 d λ   Q * λ 21 = R 2 λ 4 1 -ν λ   6 -4 ν λ a λ q 2 λ + 2 q 4 λ b λ +3 2 -4 ν λ q 2 λ e λ + 6 d λ   Q * λ 31 = 2 µ (λ) 23 4 1 -ν λ -6 q 4 λ b λ + 12 q 2 λ e λ -6 d λ Q * λ 41 = 2 µ (λ) 23 4 1 -ν λ   6 a λ q 2 λ -6 q 4 λ b λ + 6 q 2 λ e λ + 6 d λ   Q * λ 14 = R 2 λ 4 1 -ν λ -q 4 λ e λ + 4 1 -ν λ q 2 λ e λ + c λ Q * λ 24 = R 2 λ 4 1 -ν λ -q 4 λ e λ -2 -4 ν λ q 2 λ e λ -c λ Q * λ 34 = 2 µ (λ) 23 
4 1 -ν λ 3 q 4 λ e λ -4 q 2 λ e λ + c λ

Q * λ 44 = 2 µ (λ) 23 4 1 -ν λ 3 q 4 λ e λ -2 q 2 λ e λ -c λ                                                                                                                      (C.25)
The different components Z λ ij present in Eq. (C.20) can then be determined thanks to Eq. (C.21) with the previous values of Q * λ leading to:

Z λ 12 = R 2 2 λ 16 1 -ν λ 2 
 -6 q 2 λ a λ e λ -6 q 2 λ e λ c λ + 12 q 2 λ d λ e λ +4 q 6 λ b λ e λ 3 -4 ν λ + 6 q 6 λ e 2 λ 4 ν λ -3 + 4 q 4 λ b λ c λ λ b λ c λ + 8 q 6 λ e λ b λ 2 -3 ν λ -12 q 2 λ e λ c λ 2 -ν λ -12 q 2 λ a λ e λ ν λ + 12 q 6 λ e 2 λ 3 ν λ -2 +24 q 2 λ e λ d λ 2 -ν λ -4 a λ c λ ν λ q 2 λ -24 q 4 λ d λ e λ + 16 ν λ e λ a λ   (C.27)

Z λ 32 = 2 µ (λ) 23 R 2 λ 16 1 -ν λ 2   3 6 -4 ν λ q 2
λ a λ e λ + 6 q 6 λ e 2 λ 5 -6 ν λ -8 3 -2 ν λ a λ e λ -4 5 -6 ν λ q 6 λ e λ b λ -12 3 -2 ν λ q 2 λ e λ d λ + 2 a λ c λ q 2 λ 3 -2 ν λ -4 q 4 λ b λ c λ + 6 q 2 λ c λ e λ 3 -2 ν λ + 12 q 4 λ e λ d λ   (C.28)

Z λ 14 = 2 µ (λ) 23 R 2 λ 16 1 -ν λ 2   6 2 ν λ -1 q 2
λ a λ e λ + 6 q 6 λ e 2 λ 5 -6 ν λ +12 q 4 λ e λ d λ + 8 (3 -4 ν λ )a λ e λ +4 q 6 λ b λ e λ 6 ν λ -5 + 12 1 -2 ν λ q 2 λ d λ e λ + 2 a λ c λ q 2 λ (3 -2 ν λ ) -4 q 4 λ b λ c λ + 6 (2 ν λ -1)q 2 λ e λ c λ   (C.29)

Z λ 24 = 2 µ (λ ) 23 R 2 λ 16 1 -ν λ 2   12 (ν λ -2)q 2
λ a λ e λ -12 q 6 λ e 2 λ 2 -3 ν λ -24 q 4 λ d λ e λ + 16 ν λ a λ e λ + 8 2 -3 ν λ q 6 λ e λ b λ +24 q 2 λ e λ d λ ν λ -4 ν λ a λ c λ q 2 λ + 8 q 4 λ b λ c λ -12 ν λ q 2 λ e λ c λ  18 q 2 λ a λ e λ -18 q 6 λ e 2 λ + 36 q 4 λ e λ d λ -24 a λ e λ +12 q 6 λ e λ b λ -36 q 2 λ e λ d λ + 6 a λ c λ q 2 λ -12 q 4 λ b λ c λ + 18 q 2 λ e λ c λ + (1 -f ) µ

α (i) R λ def = α (i) λ R 2 λ A R λ def = A λ R 2 2 λ B R λ def = B λ R 2 2 λ C R λ def = C λ R 2 2 λ                          (C.
(2) 23 6 α

(2)

R 1 µ eff 23 + β (2) 1 A R 1 µ eff 23 2 + B R 1 µ eff 23 + C R 1 + (1 -m) f µ (1) 23 6 α (1)
R 2 µ eff 23 + β

(1) 2

+ (1 -f ) µ

(2) 23 6 α

(2)

R 2 µ eff 23 + β (2) 2 A R 2 µ eff 23 2 + B R 2 µ eff 23 + C R 2 {A 2 } ⊆µ eff 23 = m f 6 α (1)
R 1 µ eff 23 + β

(1) 1

+ (1 -f ) 6 α (2) R 1 µ eff 23 + β (2) 1 A R 1 µ eff 23 2 + B R 1 µ eff 23 + C R 1 + (1 -m) f 6 α (1)
R 2 µ eff 23 + β

(1) 2

+ (1 -f ) 6 α (2) R 2 µ eff 23 + β (2) 2 A R 2 µ eff 23 2 + B R 2 µ eff 23 + C R 2                                          (C.34)
It is worth noticing that we have used the fact that A R λ , B R λ and C R λ only depend on pattern λ but not on phase (i) in Eq. (C.33).

We can now get the final expressions of the eight terms α because Q (0) λ = I, an identity array, and because Q (1) λ can be determined by the help of Eq. 95 (69) in [START_REF] Hervé | Elastic behaviour of multiply coated fibrer-reinforced composites[END_REF]:

Q (1) λ 14 = 0 Q (1) λ 11 = a λ 4 1 -ν λ q 2 λ Q (1) λ 44
leading finally to:

α ( λ ) R λ = 2 4 1 -ν λ   a λ q 2 λ (3 -4 ν λ ) + q 4 λ (2 b λ -3 e λ )   α ( λ ) R λ = 2 16 1 -ν λ 2   3 a λ e λ 1 -q 2 λ +c λ q 4 λ (2 b λ -3 e λ ) + a λ c λ q 2 λ (3 -4 ν λ )                              (C.36)
and to:

β ( λ ) λ = 12 µ (λ ) 23 4 1 -ν λ   a λ q 2 λ -2 q 4 λ b λ + 3 q 4 λ e λ   β ( λ ) λ = 12 µ (λ) 23 16 1 -ν λ 2 
 -2 c λ b λ q 4 λ + 3 a λ e λ q 4 λ +3 a λ e λ (q 2 λ -1) + 6 e λ d λ q 4 λ +

a λ c λ q 2 λ                                  (C.37)
We can also get the final expressions of A R λ , B R λ , C R λ .

A R λ is given by:

A R λ def = {A 1 } ⊆A R λ + {A 2 } ⊆A R λ k eff 23 (C.38)
where

{A 1 } ⊆A R λ = 12 Z λ 12 R 2 2 λ = 12 4 1 -ν λ 2 
 -6 q 2 λ a λ e λ -6 q 2 λ e λ c λ + 12 q 2 λ d λ e λ +4 q 6 λ b λ e λ 3 -4 ν λ + 6 q 6 λ e 2 λ 4 ν λ -3 + 4 q 4 λ b λ c λ  18 q 2 λ a λ e λ -18 q 6 λ e 2 λ + 36 q 4 λ e λ d λ -24 a λ e λ + 12 q 6 λ e λ b λ -36 q 2 λ e λ d λ + 6 a λ c λ q 2 λ -12 q 4 λ b λ c λ + 18 q 2 λ e λ c λ  18 q 2 λ a λ e λ -18 q 6 λ e 2 λ + q 4 λ e λ d λ -24 a λ e λ + 12 q 6 λ e λ b λ -q 2 λ e λ d λ + 6 a λ c λ q 2 λ -12 q 4 λ b λ c λ + q 2 λ e λ c λ   (C.44)

•x

  λ or • λ Identity transformation defined for two patterns and two phases, λ ≡ Id (λ) with 1 = 1 and 2 = 2 • λ or • λ Complementary transformation defined for two patterns and two phases, λ ≡ Cp (λ) with 1 = 2 and 2 = 1 • Ω Average volume fraction of any • expression over the domain Ω {A p } ⊆• When • needs to be expanded, • can be, partially or completely, split into several parts: {A 1 } ⊆• , {A 2 } ⊆• , . . . ; {A p } ⊆• , p ∈ N, represents all these parts. When • can be written in different forms, {B p } Position vector, i.e. x = x 1 e 1 + x 2 e 2 + x 3 e 3 or x = re r + x 1 e 1 e 1 , e 2 , e 3 Cartesian orthonormal basis set e r , e θ , e 1 Cylindrical orthonormal basis set (x 1 , x 2 , x 3 ) Cartesian coordinates of x in the basis e 1 , e 2 , e 3 (r, θ, x 1 ) Cylindrical coordinates of x in the basis e r , e θ , e 1 Ω Domain of material whose effective properties are sought Ω λ Domain of the pattern λ, partition of Ω Ω i Domain of phase (i), partition of Ω Ω i λ Domain of phase (i) inside the pattern λ, partition of Ω i n Number of phases N λ Number of "Morphological Representative Pattern" families n λ Number of phases inside pattern λ f Volume fraction of phase (1), in the case N λ = 2 and n λ = 2 for each pattern; i.e. f = f 1 f i Volume fraction of phase (i) m λ Volume fraction of pattern λ m Volume fraction of the "direct" pattern, in the case N λ = 2 and n λ = 2 for each pattern; i.e. m = m 1 c i λ Volume fraction of phase (i) inside pattern λ c i λ Volume fraction of the "ith" phase inside pattern λ c Volume fraction of phase (1) inside the "direct" pattern, in the case N λ = 2 and n λ = 2 for each pattern; i.e. c = c 1 1 = c 1 1R i Outer radius of phase (i) lying within the radii R i-1 and R i

Figure 1 :

 1 Figure 1: One single elementary pattern made of a n-layered cylindrical inclusion embedded in an infinite matrix, i.e. phase (n + 1).

Figure 2 :

 2 Figure2: MRP approach with N λ patterns made of a n λ -layered cylindrical inclusion embedded in an infinite medium, i.e. phase (n + 1), also corresponding to the Equivalent Homogeneous Medium (EHM).

Figure 3 :

 3 Figure 3: Two morphologically representative patterns.

  ) where coefficients {C p } ⊆k eff 23 for p ∈ 1, 4 are known in terms of the three independent parameters f , m, and c and in terms of moduli of each phase inside the two patterns (see Eq. (C.18)). With more tedious calculations the effective transverse shear modulus has been determined in Appendix C.2 as the solution of the following equation:

Figure 4 :

 4 Figure 4: Recursive algorithm to get the effective transverse behaviour.

Figure 5 :

 5 Figure 5: Effective shear modulus of a fibre-reinforced composite yielded by an iterative algorithm and normalized by the shear modulus of the matrix (phase (2)). The fibre (phase (1)) volume fraction, f , is equal to 0.5, as to m and c. Shear moduli are µ (1) = 6 and µ (2) = 1 with the Poisson's coefficients ν (1) = 0 and ν (2) = 0.45.

  only five different values for m with c = f = 0.49. This is also the case for the response domain plotted in Figure 7, even if, for this figure more values of m and c are necessary to draw the envelop curves.

Figure 7 Figure 6 :

 76 Figure 7 requires some explanations; the values of k eff 23 or µ eff 23 are placed on the y-axis and evolve as a function of c (placed on the x-axis) and of m

Figure 7 :

 7 Figure 7: Analytical results, obtained with the present model, are compared to Zimmer and Cost's experimental data (1970).

Figure 7 andFigure 8 :

 78 Figure 7 and Figure 8 clearly show that the introduction of an inverse pattern makes it possible to considerably extend the prediction range of the three phase model. The reference values considered in the two comparison steps are reached without any difficulty by varying m and c. These last two figures provide a wealth of results and other analyzes can be drawn from them:

Figure 9 :

 9 Figure 9: Example of a transverse cross-section microstructure of a unidirectional composite taken from Gusev et al. (2000). Glass fibres appears in black and the epoxy matrix in white, trapped matrix regions are clearly visible.

  24) It is worth remembering that Eq. (B.23) is an implicit equation depending both on µ eff 23 and on k eff 23 through A λ and B λ . In the different applications we will use the following expressions to take into account the fact that the different radii and the matrices Q and Q * present in Eq. (B.23) depend on the pattern λ they are attached to:

  24) The different Q * λ matrices are calculated from Eq. (C.22) with the help 748 58 of Eq. (C.23) and Eq. (C.24):

  ν λ + 8 a λ e λ 3 -6 ν λ + 4 ν 2

  λ , B λ , and C λ , which can be factorized by respect to the radius R 2 λ . Let us introduce α(i) R λ , A R λ , B R λ , C R λ definedas:

  ν λ + 8 a λ e λ 3 -6 ν λ + 4 ν 2 q 2 λ a λ e λ + 12 q 6 λ e 2 λ -24 q 4 λ d λ e λ +16 ν λ a λ e λ -8 q 6 λ b λ e λ + 24 q 2 λ d λ e λ + 4 a λ c λ q 2 λ 3 -4 ν λ + 8 q 4 λ b λ c λ -12 q 2 λ e λ c λ

Table 1 :

 1 Materials data as provided by[START_REF] Zimmer | Determination of the elastic constants of an unidirectional fiber composite using ultrasonic velocity measurements[END_REF] (referred as ZC, E-glass fibre and Scotchply TM 1002 epoxy matrix) and by[START_REF] Gusev | Fiber packing and elastic properties of transversely random unidirectional glass/epoxy composite[END_REF] (referred as GHW, E-glass fibre and 913 epoxy matrix).

	& Notation		ZC	GHW Units
	Overall volume fraction of fibres . . . . . .	f	0.49	0.54	-
	Young's modulus of the fibre . . . . . . . . .	E f	72.4	72.5	GPa
	Poisson's ratio of the fibre . . . . . . . . . . . .	ν f	0.20	0.20	-
	Young's modulus of the matrix . . . . . . .	E m	4.34	5.32	GPa
	Poisson's ratio of the matrix . . . . . . . . . .	ν m	0.36	0.365	-

  20) Replacing A i λ /D n λ +1 and D i λ /D n λ +1 respectively with the expressions given by Eq. (B.17) and by Eq. (B.19) in Eq. (B.1), µ eff 23 becomes:

The two-dimensional models dealt with in the present investigation are nevertheless far more simple than the three-dimensional ones require in the case of macroscopically isotropic particulate composites, such as in[START_REF] Bardella | Failure of glass-microballoons/thermoset-matrix syntactic foams subject to hydrostatic loading[END_REF].

For instance 1 2 , designating phase (1) in pattern 2.

As Q * is only written for n λ and n λ being perfectly defined for each pattern, Q * (n λ ) will be equivalently written Q * λ .

A work in progress will complement the illustrative nature of this section and will offer to scan, different morphologies and fibre volume fractions for validation and parameter calibration purposes.

A similar micrograph is presented inZimmer and Cost's publication (1970).

This analysis, dealing with the uniqueness of solution pairs, constitutes a work in progress that goes beyond the scope of the present paper.
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Appendix C. Details of the calculations made in the particular case of 2 patterns with 2 inverted phases

In this section a configuration with two patterns is considered, one is a "direct" pattern and the other is an "inverse" one, each one being made of two phases (n = 2, N λ = 2 and n λ = 2 for each pattern) see description in section 3 and Figure 3.

In the following, we will use the functions and parameters defined below: