In-depth analysis of InAlN/GaN HEMT heterostructure after annealing using angle-resolved X-ray photoelectron spectroscopy - Archive ouverte HAL Access content directly
Journal Articles Surface and Interface Analysis Year : 2020

In-depth analysis of InAlN/GaN HEMT heterostructure after annealing using angle-resolved X-ray photoelectron spectroscopy

Abstract

During high-electron-mobility transistor elaboration process, a thermal treatment of In0.2Al0.8N (InAlN) barrier layer is performed in order to improve electrical performances. We showed previously that In0.2Al0.8N/GaN heterostructures, annealed at 850°C under O2 partial pressure, present a specific in-depth organization. Angle-resolved X-ray photoelectron spectroscopy is a powerful tool to precisely determine the spatial localization and relative position of the different interfaces, from InAlN until buried GaN layer. The proposed in-depth model of the stack evidences (1) an Al-rich surface oxide with embedded N2 molecules, (2) an interlayer of InAlN<1 governed by nitrogen lattice defects, (3) a stable In0.2Al0.8N matrix, and finally (4) the GaN buffer layer underneath.
No file

Dates and versions

hal-03109152 , version 1 (13-01-2021)

Identifiers

Cite

Yoan Bourlier, Muriel Bouttemy, Mathieu Frégnaux, Olivier Patard, Piero Gamarra, et al.. In-depth analysis of InAlN/GaN HEMT heterostructure after annealing using angle-resolved X-ray photoelectron spectroscopy. Surface and Interface Analysis, 2020, 52 (12), pp.914-918. ⟨10.1002/sia.6857⟩. ⟨hal-03109152⟩
28 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More