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The study of optical forces exerted by o¤-axis Bessel beams on Rayleigh particles in the framework of generalized Lorenz-Mie theory demonstrated the existence of extra-forces named axicon forces, complementing the classical scattering and gradient forces already discussed extensively in the literature. The present paper revisits the same issue but in the more restricted case of on-axis beams. Results obtained in the case of o¤-axis beams are then con…rmed but, computations being carried out in an easier framework, their meaning is displayed more clearly. Beside, we may easily distinguish between dark and non dark beams, a distinction which was not carried out in the o¤-axis study. It is concluded that the generalized Lorenz-Mie theory for Rayleigh particle does not identify with the usual dipole theory.

devoted to optical forces, the reader may refer to [START_REF] Furst | Interactions, structure, and microscopic response : complex ‡uid rheology using laser tweezers[END_REF], [START_REF] Soifer | Optical microparticle manipulation : Advances and new possibilities created by di¤ractive optics[END_REF], [START_REF] Neuman | Optical trapping[END_REF], [START_REF] Nieminen | Physics of optical tweezers[END_REF], [START_REF] Dienerowitz | Optical manipulation of nanoparticles: a review[END_REF], [START_REF] Jonas | Light at work: The use of optical forces for particle manipulation, sorting and analysis[END_REF], [START_REF] Nieminen | Optical tweezers: Theory and modelling[END_REF], [START_REF] Bunea | Strategies for optical trapping in biological samples: Aiming at microrobotic surgeons[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories and mechanical e¤ects of laser light, on the occasion of Arthur Ashkin's receipt ot the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review[END_REF]. In particular, we are told from the dipole theory that optical forces maybe decomposed into two kinds of forces, namely scattering and gradient forces that we shall name standard forces, e.g. [START_REF] Ashkin | Observation of a single beam gradient force optical trap for dielectric particles[END_REF], [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF]. In contrast, the aforementioned works devoted to o¤-axis Bessel beams revealed the existence of a new kind of forces that have been named axicon forces, which may also be called non-standard forces. The present paper is devoted to a complementary investigation of the issue in which an on-axis con…guration is investigated rather than an o¤-axis con…guration. Because on-axis computations are far more easier than o¤-axis computations, the present paper provides complementary insights on the origin and behavior of non-standard forces. Furthermore, it provides the opportunity to compare the behaviors of dark and non dark beams. It is for the sake of providing such complementary insights in the framework of easier computations that calculations on the on-axis con…guration presented in this paper are obtained by starting again from the beginning rather than taking the on-axis limit of the o¤-axis results.

The paper is organized as follows. Section 2 deals with prerequisites to the next sections, namely the description of the illuminating Bessel beams considered in the paper and the way to handle Rayleigh particles, complemented with a few mathematical expressions required in the sequel. Section 3 deals with longitudinal forces. Section 4 deals with transverse forces. Section 5 is devoted to a complementary discussion. Section 6 is a conclusion.

Within the context of such an organization of the paper, the main results are as follows. In section 3.3., we exhibit on-axis longitudinal optical forces which are proportional to 6 (in which is the size parameter), some of them being genuine scattering forces as expected while others, although they could have been expected to be scattering forces as well, are actually non standard forces called axicon forces. In section 3.4, it is found that the on-axis longitudinal gradient optical forces, which are proportional to 3 are zero. In section 4.1, it is demonstrated that both scattering and gradient transverse forces are zero, as we may have expected for on-axis axisymmetric beams. The fact that transverse scattering forces are zero is in agreement with results concerning the transverse components of the Poynting vector, which are found to be zero as well, derived in section 4.2, while the fact that transverse gradient forces are zero is in agreement with results concerning the transverse gradients of the electric intensity, which are found to be zero as well, derived in section 4.3.

2 Prerequisites: Bessel beams and Rayleigh particles.

2.1 Bessel beams.

Bessel beams have been introduced by Durnin and co-workers [START_REF] Durnin | Di¤raction-free beams[END_REF], [START_REF] Durnin | Exact solutions for nondi¤racting beams. I. The scalar theory[END_REF]. They possess the appealing properties of being self-healing and non di¤racting and, more important in the context of the present paper, they furthermore possess a propagation invariance property, namely the intensity of the beam is constant along the direction of propagation. There exist an in…nity of kinds of Bessel beams, in particular depending on the value given to an arbitrary function g( 0 ), in which 0 is the axicon angle (or half-cone angle) of the beam, with di¤erent linear and circular polarizations [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF], [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF]. Let us assume that we are considering beams propagating along the z-direction toward the positive z's, then all of these Bessel beams generically exhibit the following structure:

K i = k i (x; y)e ikzz , i = x; y; z, K = E or H (1) 
in which k z = k cos 0 is the longitudinal wave number. Among them, we shall speci…cally consider circularly symmetric Bessel beams, e.g. [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF], [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF]. By de…nition of the expression "circularly symmetric", the longitudinal component S z and the transverse component S t = (S 2

x + S 2 y ) 1=2 of the Poynting vector of such beams do not depend on the azimuthal angle '. In the terminology of [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF], they are axisymmetric beams as well in the sense that the longitudinal component S z of the Poynting vector does not depend on ' (this de…nition of axisymmetric beams does not say anything concerning the properties of the transverse component S t ).

In the present work, these beams are encoded by their beam shape coe¢ cients (BSCs) g m n;T M and g m n;T E (TM for "Transverse Magnetic", TE for "Transverse Electric"), the encoding being carried out either in terms of scalar potentials, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF] or in terms of vector spherical wave functions [START_REF] Gouesbet | T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates[END_REF]. In an o¤-axis con…guration, the BSCs read as [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF]:

g m n;T M = g( 0 )e ikzz0 [i l m+1 e i(l m+1) 0 A m n + i l m 1 e i(l m 1) 0 B m n ] (2) g m n;T E = ig( 0 )e ikzz0 [i l m+1 e i(l m+1) 0 A m n i l m 1 e i(l m 1) 0 B m n ] (3) 
in which we isolated coe¢ cients A m n and B m n which are real numbers according to:

A m n = ( 1) (m jmj)=2 (n m)! (n + jmj)! J l m+1 ( 0 )[ m n (cos 0 ) + m m n (cos 0 )] (4) B m n = ( 1) (m jmj)=2 (n m)! (n + jmj)! J l m 1 ( 0 )[ m n (cos 0 ) m m n (cos 0 )] (5)
in which l is the order of the Bessel beam under consideration, 0 = k t 0 , k t = k sin 0 is the transverse wave number, 0 = (x 2 0 +y 2 0 ) 1=2 , 0 = tan 1 (y 0 =x 0 ), (x 0 ; y 0 ; z 0 ) denotes the location of the beam origin with respect to the origin of the particle coordinate system at which the scatterer is located, and therefore speci…es the o¤-axis location of the beam, and J k (:) is the k-order Bessel function of the …rst kind. When g( 0 ) = (1+ cos 0 )=4, the beam reduces to a Davis circularly symmetric Bessel beam as discussed in [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Mishra | A vector wave analysis of a Bessel beam[END_REF]. When g( 0 ) = 1=2, the beam reduces to another kind of Bessel beam discussed in [START_REF] Cizmar | Sub-micron particle organization by self-imaging of non-di¤racting beams[END_REF], [START_REF] Taylor | Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations[END_REF], [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF]. Furthermore m n and m n are generalized Legendre functions de…ned as:

m n (cos ) = dP m n (cos ) d (6) 
m n (cos ) = P m n (cos ) sin [START_REF] Van De Hulst | Essay: A review on generalized Lorenz-Mie theories with wow stories and epistemological discussion[END_REF] in which P m n are associated Legendre functions here de…ned according to Hobson's notation [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]:

P jmj n (cos ) = ( 1) jmj (sin ) jmj d jmj P n (cos ) (d cos ) jmj (8) 
in which P n (cos ) are the usual Legendre polynomials. Also, for negative superscripts, we may use [START_REF] Wang | Special functions[END_REF]:

P m n (cos ) = ( 1) m (n m)! (n + m)! P m n (cos ) (9) 
More speci…cally, we shall restrict our attention to the case of on-axis con-…gurations for which 0 = 0. Then, because J k (0) = k0 [START_REF] Arfken | Mathematical methods for physicists[END_REF], the coe¢ cients A m n and B m n are zero excepted for m = l 1. Therefore, the non zero BSCs are those for which m = l 1. They are readily found to read as:

g l+1 n;T M = g( 0 ) exp(ik z z 0 )A l+1 n ( 10 
)
g l 1 n;T M = g( 0 ) exp(ik z z 0 )B l 1 n ( 11 
)
g l+1 n;T E = ig( 0 ) exp(ik z z 0 )A l+1 n ( 12 
)
g l 1 n;T E = ig( 0 ) exp(ik z z 0 )B l 1 n ( 13 
)
in which:

A l+1 n = ( 1) (l+1 jl+1j)=2 (n l 1)! (n + jl + 1j)! [ l+1 n (cos 0 ) + (l + 1) l+1 n (cos 0 )] (14) 
B l 1 n = ( 1) (l 1 jl 1j)=2 (n l + 1)! (n + jl 1j)! [ l 1 n (cos 0 ) (l 1) l 1 n (cos 0 )] (15) 
When dealing with Rayleigh particles, as we do in the present paper, only terms associated with partial waves for which n = 1 have to be retained. Furthermore, as indicated by the GLMT framework, the superscript m ranges from ( n) to (+n), that is to say from ( 1) to (+1). The fact that for on-axis situations, the only acceptable values of m are l 1 then has a few consequences as follows.

For l = 0; the values m = 1 have to be retained. They both satisfy m = l 1 and indeed pertain to the range [ 1; +1]. For l = 1; among the values m = 2; 0, only m = 0 is to be retained. For l = 1; among the values m = 0; 2, only m = 0 is again to be retained. For l = +2; among the values m = 3; 1, only m = 1 is to be retained. For l = 2; among the values m = 1; 3, only m = 1 is to be retained. For jlj > 2, all BSCs have to be discarded since the corresponding values of m lie outside of the range [ 1; +1]. Therefore, this case jlj > 2, being trivial, is not discussed in the present paper.

We now recall that a beam is called dark (on the z axis) i¤ (if and only if) the longitudinal component S z ( = 0) of the Poynting vector S taken on the axis, i.e. for = 0 is zero, e.g. [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF], [START_REF] Gouesbet | A darkness theorem for the beam shape coe¢cients and its relationship to higher-order non vortex Bessel beams[END_REF]. This component S z ( = 0) reads as, e.g. Eq.( 33) in [START_REF] Gouesbet | A darkness theorem for the beam shape coe¢cients and its relationship to higher-order non vortex Bessel beams[END_REF]:

(S z ) =0 = E 0 H 0 r 2 Re 1 X n=1 1 X p=1 ic pw n c pw p n p (16 
)

f[g 1 n;T M 0 n (kr) + g 1 n;T E n (kr)][g 1 p;T E 0 p (kr) g 1 p;T M p (kr)] [g 1 n;T M 0 n (kr) g 1 n;T E n (kr)][g 1 p;T M p (kr) + g 1 p;T E 0 p (kr)]g,
in which n = n(n+1)=2 and the coe¢ cients c pw n are typical of the classical Lorenz-Mie theory expressed in the Bromwich method, e.g. [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF], and read as:

c pw n = 1 ik ( i) n 2n + 1 n(n + 1) (17) 
We then observe that the cases l = 0 and 2 correspond to non dark beams while l = 1 (and jlj > 2) are dark beams. We know that such dark beams for l = 1 (and jlj > 2 are vortex beams, i.e. the wave front has a helical structure and the phase is indeterminate on the beam axis producing a phase singularity and implying the darkness of the beam. A contrario, the beams for l = 0 and 2 are not vortex beams. The fact that beams with l = 0 are non vortex beams is known since a long time. The fact that the beams with l = 2 are non vortex beams as well is fairly new and has been extensively discussed in [START_REF] Gouesbet | A darkness theorem for the beam shape coe¢cients and its relationship to higher-order non vortex Bessel beams[END_REF], together with a discussion of these beams expressed in terms of coordinates instead of being expressed only in terms of BSCs as done in the present paper.

On the one hand, BSCs of dark beams, whether axisymmetric or not, must satisfy, e.g. Eq.(96) in [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

g 1 T M = g 1 T E = 0 (18) 
which is indeed the case for l = 1 (and jlj > 2). On the other hand, BSCs of axisymmetric non dark beams in which all BSCs g 1 T M and g 1 T E are di¤erent from zero must satisfy, e.g. Eq.(101) in [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

g n 2 = g 1 n;T M = 1 K g 1 n;T M = i"g 1 n;T E = i" K g 1 n;T E (19) 
in which " = 1, and which introduces a set of uni-index BSCs g n . Using Eqs.10-13, this equation is found to be satis…ed for l = 0 with:

g n = 2g( 0 ) exp(ik z z 0 ) 1 n (cos 0 ) + 1 n (cos 0 ) n(n + 1) (20) 
K = n(n + 1) 1 n (cos 0 ) + 1 n (cos 0 ) 1 n (cos 0 ) + 1 n (cos 0 ) (21) 
" = 1 (22) 
Eq.19 is not satis…ed for the other axisymmetric non dark beams with l = 2 because some of the BSCs g 1 T M and g 1 T E are zero, e.g. the remark between Eqs.(65) and (66) in [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF] in association with the fact that, under such circumstances, G 1 np in Eq.( 64) and G 2 np in Eq.( 65) become identical to 0:

Rayleigh particles.

The GLMT formalism involves Mie coe¢ cients a n and b n which are exactly those of the classical Lorenz-Mie theory. In the case of Rayleigh particles, these Mie coe¢ cients read as, see [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF] and [START_REF] Van De Hulst | Light scattering by small particles[END_REF], pp. 143-144:

a 1 = 2i 3 m 2 1 m 2 + 2 3 + O(i 5 ) + 4 9 ( m 2 1 m 2 + 2 ) 2 6 (23) b 1 = O(i 5 ) (24) 
in which m is the refractive index (here taken to be real, not to be confused with the superscript m used in the BSCs) with respect to the surrounding medium and the size parameter d= . The other coe¢ cients a n and b n (n > 1) involves still higher powers of : Real parts are then proportional to 6 and imaginary parts are proportional to 3 while higher powers are discarded and we therefore retain only:

Im(a 1 ) = 2 3 m 2 1 m 2 + 2 3 (25) Re(a 1 ) = 4 9 ( m 2 1 m 2 + 2 ) 2 6 (26) 
In other words, only partial waves with n = 1 are to be retained in the GLMT formulation. However, due to the existence of coupling terms in the GLMT formulation, as we shall see, this does not mean that the only BSCs which intervene in the computations have n = 1. This remark will appear to be a key point to understand some results which will be obtained in the present paper (and which has been obtained in previous papers in the same series).

2.3

Mathematical expressions.

Ricatti-Bessel functions n (kr) may be expressed in terms of spherical Bessel functions j n (kr) according to [START_REF] Arfken | Mathematical methods for physicists[END_REF]:

n (x) = xj n (x) (27) 
Furthermore, we may establish, see again [START_REF] Arfken | Mathematical methods for physicists[END_REF]:

0 n (x) = (n + 1)j n (x) xj n+1 (x) (28) 
and we have [START_REF] Arfken | Mathematical methods for physicists[END_REF]:

lim x!0 j n (x) = x n (2n + 1)!! (29) 
We may then establish:

[ n (kr) kr ] r=0 = 0 (30) [ 0 n (kr) kr ] r=0 = 2 3 n1 (31) 
Furthermore, we have [START_REF] Arfken | Mathematical methods for physicists[END_REF]:

j 1 (x) = sin x x 2 cos x x (32) 
Also, using:

( d 2 dr 2 + k 2 )rj n (kr) = n(n + 1) r j n (kr) (33) 
and Eq.27, and again Eq.(11.144) from [START_REF] Arfken | Mathematical methods for physicists[END_REF], we establish:

[ 00 1 (kr) + 1 (kr)] kr=0 = 2 3 ( 34 
)
3 Longitudinal optical forces.

3.1 Cross-section.

In the GLMT framework, we express the optical force components F i by using pressure radiation cross-section components C pr;i (i = x; y; z). In the present section, we deal with the longitudinal cross-section (along z direction) reading as:

C pr;z = 2 1 X n=1 n X m= n f 1 (n + 1) 2 (n + 1 + jmj)! (n jmj)! (35) Re[(a n + a n+1 2a n a n+1 )g m n;T M g m n+1;T M +(b n + b n+1 2b n b n+1 )g m n;T E g m n+1;T E ] +m 2n + 1 n 2 (n + 1) 2 (n + jmj)! (n jmj)! Re[i(2a n b n a n b n )g m n;T M g m n;T E )]g
with notations being the ones of [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF]. We used the normalization condition E 0 H 0 =2 =1, which was used in original works, e.g. Eq.(3.106) in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. When using this normalization condition, the forces are related to the cross-sections according to F i = C pr;i =c ([37], p.14). The time-dependence of the wave is exp(+i!t) which is the usual choice in GLMT. Also, note that the denominator 1= was missprinted to 1=2 ) in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. Furthermore, a n and b n are the usual Mie coe¢ cients of the usual Lorenz-Mie theory, the star denotes a complex conjugation and is the wavelength. In the sequel, we may possibly use a metonymic abuse of language in which cross-sections will be called forces.

For Rayleigh particles, when we retain only the (n = 1)-partial waves and the Mie coe¢ cient a 1 , the longitudinal cross-section C pr;z reduces to:

] C pr;z = 3 2 2 Re(a 1 G) (36) 
in which the tilde denotes the restriction to (n = 1)-partial waves and:

G = g 1 1;T M (g 1 2;T M + ig 1 1;T E ) + g 1 1;T M (g 1 2;T M ig 1 1;T E ) + 1 3 g 0 1;T M g 0 2;T M (37) 
As previously announced, the expression for C pr;z not only contains BSCs with a subscript n = 1 associated with (n = 1) partial waves, but it contains as well BSCs with a subscript n = 2. The occurrence of such highermultipole terms is the consequence of the coupling terms g m n;T M g m n+1;T M and g m n;T E g m n+1;T E in Eq.35. They will generate what can be called axicon forces. For use in the sequel, we now use Eqs.25-26 to separate in Eq.36 the term depending on Re(G) from the one depending on Im(G), leading to:

] C Re pr;z = 2 2 3 ( m 2 1 m 2 + 2 ) 2 6 Re(G) (38) 
] C Im pr;z = 2 m 2 1 m 2 + 2 3 Im(G) (39) 
We recall that, according to the literature, e.g. [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF], [START_REF] Harada | Radiation forces on a dielectric sphere in the Rayleigh scattering regime[END_REF], [START_REF] Dufresne | Optical tweezer arrays and optical substrates created with di¤ractive optics[END_REF], [START_REF] Chen | Bottle beam from a bare laser for single-beam trapping[END_REF], [START_REF] Chen | Analytical calculation of axial optical force on a Rayleigh particle illuminated by Gaussian beams beyond the paraxial approximation[END_REF], and many other papers including my three recent papers on longitudinal and transverse optical forces in an o¤-axis con…guration [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | Axicon terms associated with gradient optical forces in generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], the 6 -term and the 3 -term should correspond to the scattering and the gradient forces respectively. This expectation will not be perfectly ful…lled. Now, depending on the order l of the beam, due to the facts that m = l 1 and that m pertains to the range [ 1; +1], only certain BSCs have to be retained in the expression of G: Here is the resulting list of the expressions of G depending on the value of m:

G 0 = g 1 1;T M (g 1 2;T M + ig 1 1;T E ) + g 1 1;T M (g 1 2;T M ig 1 1;T E ), l = 0 G 1 = 1 3 g 0 1;T M g 0 2;T M , l = 1 G +2 = g 1 1;T M (g 1 2;T M ig 1 1;T E ), l = +2 G 2 = g 1 1;T M (g 1 2;T M + ig 1 1;T E ), l = 2 9 > > = > > ; (40) 
Next, replacing the BSCs by their values from Eqs.10-13, being careful with the fact that the meaning of BSCs depend on the order, the expressions of G l are found to be:

G 0 = jg( 0 )j 2 [A 1 1 (A 1 1 + A 1 2 ) + B 1 1 (B 1 1 + B 1 2 )] G +1 = 1 3 jg( 0 )j 2 B 0 1 B 0 2 G 1 = 1 3 jg( 0 )j 2 A 0 1 A 0 2 G +2 = jg( 0 )j 2 B 1 1 (B 1 2 B 1 1 ) G 2 = jg( 0 )j 2 A 1 1 (A 1 2 A 1 1 ) 9 > > > > > = > > > > > ; (41) 

Poynting vector.

To interpret the cross sections ] C Re pr;z , i.e. the associated G i 's, we need to express the longitudinal component of the Poynting restricted to (n = 1) partial waves, taken at the location of the particle. The longitudinal component S z in general reads as, e.g. Eqs.( 35)-( 37) in [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

S z = E 0 H 0 2r 2 Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p ic pw n c pw p e i(m q)' (42) 
(sin S mq np + cos C mq np )
in which (r; ; ') are spherical coordinates attached to the Cartesian coordinates (x; y; z), and :

S mq np = kr[ g m n;T M g q p;T M p ( n + 00 n )P jmj n jqj p ( 43 
)
+g m n;T E g q p;T E n ( p + 00 p )P jqj p jmj n +qg m n;T M g q p;T E 0 p ( n + 00 n )P jmj n jqj p +mg m n;T M g q p;T E 0 n ( p + 00 p )P jqj p jmj n ] C mq np = g m n;T M g q p;T M p 0 n ( jmj n jqj p + mq jmj n jqj p ) (44) +g m n;T M g q p;T E 0 n 0 p (m jmj n jqj p + q jqj p jmj n ) g m n;T E g q p;T M p n (m jmj n jqj p + q jqj p jmj n ) +g m n;T E g q p;T E n 0 p (mq jmj n jqj p + jmj n jqj p )
in which k is the wave number, n = n (kr) are Ricatti-Bessel functions, and a prime denotes a derivative with respect to the argument (and a double prime a second derivative). In Eqs.42-44, and many other equations in the sequel, arguments are omitted for convenience. The location of the particle may be implemented by taking = 0 and, thereafter, r = 0. Furthermore, we have to retain only (n = 1) partial waves in the summations of Eq.42. Denoting again (with a tilde) f S z the component S z restricted to (n = 1) partial waves, we may deal with the following equation, valid whatever the order of the beam:

( f S z ) =0 = 9 4 Re +1 X m= 1 +1 X q= 1 i exp[i(m q)']( C mq 11 k 2 r 2 ) =0 (45) 
Let us consider the case l = 0. From Eq.44, we may establish C 1 1 11 = C 11 11 = 0, so that Eq.45 leads to:

( f S z ) P = 9 4 Re i( C 11 + C 1 1 k 2 r 2 ) P (46) 
in which the subscript P means that f S z is now evaluated at the particle location ( = 0; r = 0). Using Eqs.30-31, we then evaluate:

( C 11 11 k 2 r 2 ) P = 8 9 g 1 1;T M g 1 1;T E (47) ( C 1 1 11 k 2 r 2 ) P = 8 9 g 1 1;T M g 1 1;T E (48) 
Then, evaluating the BSCs using Eqs10-15, we obtain, for l = 0:

( f S z ) P;l=0 = jg( 0 )j 2 (C + 1) 2 (49) 
We similarly obtain:

( f S z ) P;l=+1 = ( f S z ) P;l= 1 = 0 (50) ( f S z ) P;l=+2 = ( f S z ) P;l= 2 = 1 2 jg( 0 )j 2 (C 1) 2 (51)

3.3

Scattering forces.

To deal with the scattering forces, it is more convenient to split G 0 as the sum of two terms according to:

G 0 = G 01 + G 02 ( 52 
)
G 01 = i(g 1 1;T M g 1 1;T E g 1 1;T M g 1 1;T E ) (53) 
G 02 = g 1 1;T M g 1 2;T M + g 1 1;T M g +1 2;T M (54) 
in which G 01 only contains (n = 1)-BSCs while G 2 0 involves coupling terms between (n = 1) and (n = 2)-BSCs. Similarly, we express G +2 and G 2 as the sum of two terms, according to:

G 2 = G 21 + G 22 (55) 
G 21 = ig 1 1;T M g 1 1;T E (56) 
G 22 = g 1 1;T M g 1 2;T M (57) 
G 2 = G 21 + G 22 (58) 
G 21 = ig 1 1;T M g 1 1;T E (59) 
G 22 = g 1 1;T M g 1 2;T M (60) 
Expressing the BSCs of Eqs.53-54 in terms of A m n 's and B m n 's using Eqs.10-13, we obtain:

G 01 = jg( 0 )j 2 [(B 1 1 ) 2 + (A 1 1 ) 2 ] (61) 
G 02 = jg( 0 )j 2 (B 1 1 B 1 2 + A 1 1 A 1 2 ) (62) 
G 21 = jg( 0 )j 2 (B 1 1 ) 2 (63) 
G 22 = jg( 0 )j 2 B 1 1 B 1 2 (64) 
G 21 = jg( 0 )j 2 (A 1 1 ) 2 (65) 
G 22 = jg( 0 )j 2 A 1 1 A 1 2 (66) 
allowing one to complement Eq.41. Expressing the A m n 's and B m n 's using Eqs.14-15, evaluating the involved generalized Legendre functions m n and m n using Eqs.6-9, and introducing the notations C = cos 0 and S = sin 0 , we then may explicitly express the G i 's as:

G 01 = 1 2 jg( 0 )j 2 (C + 1) 2 G 02 = 1 2 jg( 0 )j 2 (C + 1)(2C 2 + C 1) G +1 = jg( 0 )j 2 CS 2 G 1 = jg( 0 )j 2 CS 2 G 21 = 1 4 jg( 0 )j 2 (C 1) 2 G 22 = 1 4 jg( 0 )j 2 (C 1)(2C 2 C 1) G 21 = 1 4 jg( 0 )j 2 (C 1) 2 G 22 = 1 4 jg( 0 )j 2 (C 1)(2C 2 C 1) 9 > > > > > > > > > > > = > > > > > > > > > > > ; (67) 
from which we may readily express the corresponding optical forces using Eq.38, noting again that all G i 's are real numbers (the list of such cross sections, proportional to 6 , is not provided because it is obtained in a quite trivial way using Eq.38 and would add nothing signi…cant to the present paper).

The interpretation of the corresponding optical forces is now carried out using the expressions for the Poynting vector given previously in the previous subsection. We then observe that the optical forces associated with the dark beams l = 1 are proportional to CS 2 , see lines 3 and 4 in Eq.67. Comparing with Eq.50 for ( f S z ) P;l=+1 and( f S z ) P;l= 1 , we then conclude that these optical forces are not scattering forces. They are axicon forces, i.e. non standard forces. They however disappear if the axicon angle is zero (S = 0) then justifying the name of axicon forces.

For non dark beams, we observe (…rst line of 67 and Eq.49) that G 01 for l = 0 is associated with scattering forces. Comparing lines 5 and 7 of Eq.67 and Eq.51, we similarly observe that G 21 and G 21 for l = 2 are associated with scattering forces as well. Therefore optical forces associated with G 02 , G 22 and G 22 are not scattering forces but non standard forces which may be called axicon forces as well. The behavior of these forces is however di¤erent whether l = 0 or l = 2. For l = 2, the axicon forces of G 22 and G 22 vanish if the axicon angle is zero (then C = 1), but the scattering forces of G 21 and G 21 vanish as well. Conversely, for l = 0, both the axicon force and the scattering force do not vanish when the axicon angle is zero, but they become equal to 2 jg( 0 )j 2 , that is to say the axicon force becomes a scattering force in the limit 0 = 0. The same may actually be said for l = 2 with however the di¤erence that the axicon forces and the scattering forces both vanish in this limit.

3.4

Gradient forces.

Since all the G i 's in Eq.41 are real numbers, Eq.39 implies that ] C Im pr;z is zero, in all cases, i.e. that gradient forces are zero. This is coherent with Eq.1 which immediately implies that E:E does not depend on z, i.e. 5 z ( E:E ) is zero. Let us interestingly note that [" 0 E:E + 0 H:H ] and the Poynting vector (E H ) do not depend as well on z; meaning that their z gradient components are both 0 as well, i.e. the time-averaged energy density and the Poynting vector as well have no gradient in the z-direction.

However, the Rayleigh particle is sensitive only to (n = 1)-partial waves. We must then check whether the above comments are still valid for the restricted tilde-values. Let us then examine the longitudinal gradient 5 z ( ] E:E ) in which the tilde again denotes a restriction to (n = 1)-partial waves. When restricted to the (n = 1)-partial waves, the electric components in spherical coordinates read as (e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], pp.55-56):

f E r = kE 0 c pw 1 ( 00 1 + 1 ) +1 X m= 1 g m 1;T M P jmj 1 e im' (68) 
f E = E 0 r c pw 1 +1 X m= 1 [g m 1;T M 0 1 jmj 1 + mg m 1;T E 1 jmj 1 ]e im' ( 69 
) f E ' = iE 0 r c pw 1 +1 X m= 1 [mg m 1;T M 0 1 jmj 1 + g m 1;T E 1 jmj 1 ]e im' (70) 
in which, once again, arguments are conveniently omitted. For l = 0, we only have to retain m = 1, leading to:

f E r = kE 0 c pw 1 ( 00 1 + 1 )(g 1 1;T M e i' + g 1 1;T M e i' )P 1 1 (71) f E = E 0 r c pw 1 [(g 1 1T M 0 1 1 1 g 1 1;T E 1 1 
1 )e i' +(g

1 1;T M 0 1 1 1 +g 1 1;T E 1 1 1 )e i' ] (72) f E ' = iE 0 r c pw 1 [( g 1 1;T M 0 1 1 1 + g 1 1;T E 1 1 1 ]e i' + (g 1 1;T M 0 1 1 1 + g 1 1;T E 1 1 1 ]e i'] (73) 
From these equations, we evaluate the electric intensity f

I E = ] E:E = Êr E r + Ê E + Ê' E '
which, after a signi…cant amount of calculations, becomes:

f I E = g I 2 E + f I 0 E + f I 2 E ( 74 
)
in which:

g I 2 E = f I 2 E = 9 jE 0 j 2 4k 2 e 2i' sin 2 f[k 2 ( 00 1 + 1 ) 2 0 1 0 1 r 2 ]g 1 1;T M g 1 1;T M (75) 1 1 r 2 g 1 1;T E g 1 1;T E g f I 0 E = 9 4 jE 0 j 2 k 2 e 0' f[k 2 sin 2 ( 00 1 + 1 ) 2 + cos 2 0 1 0 1 r 2 ] ( 76 
) (g 1 1;T M g 1 1;T M + g 1 1;T M g 1 1;T M ) +2 cos 0 1 1 r 2 (g 1 1;T M g 1 1;T E g 1 1;T M g 1 1;T E + g 1 1;T E g 1 1;T M g 1 1;T E g 1 1;T M ) +(cos 2 + 1) 1 1 r 2 (g 1 1;T E g 1 1;T E + g 1 1;T E g 1 1;T E ) + 0 1 0 1 r 2 (g 1 1;T M g 1 1;T M + g 1 1;T M g 1 1;T M )g
We are now interested in the calculation of the derivative of the (restricted) electric intensity with respect to z, taken at z = 0, i.e. at the place where the particle is located. This requires in a …rst step to express cos , sin and the radial coordinate r in terms of Cartesian coordinates, a trivial task indeed. Furthermore, in evaluating these derivatives, and other derivatives in subsequent subsections, derivatives with respect to ' may be omitted. In a few words, this comes from the fact that z dependence is only encoded in the spherical coordinates r and , but not in ': The suspicious reader may have a direct check by using the equation @f (r; ) exp( ik')=@z = exp( ik')[@f (r; )=@z] + f (r; )[@ exp( ik')=@z], leaving the derivatives evaluated below unchanged since f (r; ) is proportional to sin which is 0 at the particle location ( = 0).

Then, we consider g I 2 E and f I 2 E , and evaluate:

f @ @z sin 2 [k 2 ( 00 1 + 1 ) 2 0 1 0 1 r 2 ]g z=0 = 0 (77) ( @ @z sin 2 1 1 r 2 ) z=0 = 0 (78)
in which we expressed the terms dependent on r and in terms of x; y; z and recalled that, using Eqs.27 and 32:

1 (kr) = kr[ sin(kr) (kr) 2 cos(kr) kr ] (79) 
Hence:

( @ g I 2 E @z ) z=0 = ( @ f I 2 E @z ) z=0 = 0 (80) 
For (@ f I 0 E =@z) z=0 , all derivatives with respect to z, taken at z = 0, of the di¤erent terms involved in Eq.76 are found to be 0, excepted one of them, namely:

= ( @ @z cos 0 1 1 r 2 ) z=0 6 = 0 (81)
leading to:

( @ f I 0 E @z ) z=0 = 9 2 jE 0 j 2 k 2 (82)
in which:

= g 1 1;T M g 1 1;T E g 1 1;T M g 1 1;T E + g 1 1;T E g 1 1;T M g 1 1;T E g 1 1;T M (83) = 2 Re(g 1 1;T M g 1 1;T E g 1 1;T M g 1 1;T E )
We then evaluate in terms of A m n 's and B m n 's using Eqs10-13, and we obtain, remembering that A m n 's and B m n 's are real quantities:

= 2 jg( 0 )j 2 Re i[(A 1 1 ) 2 + (B 1 1 ) 2 ] = 0 (84)
so that the derivative of the electric intensity taken at the location of the particle is indeed zero, coherently with the fact that longitudinal gradient forces have been found to be 0. Since, gradient forces are expressed in terms of the gradient of the electric intensity, we do not need to examine the gradient of the magnetic intensity (which would be similarly found to be zero) nor the gradient of the Poynting vector. This result for on-axis gradient forces is however in contrast with we have found for the o¤-axis case in which the gradient for the restricted electric intensity was not zero but contains what has been called axicon terms [START_REF] Gouesbet | Axicon terms associated with gradient optical forces in generalized Lorenz-Mie theory[END_REF].

We proceed similar for the other orders l still to be investigated. For l = 1, when only the value m = 0 is to be retained in Eqs.68-70, we obtain:

f I E = 9 jE 0 j 2 4k 2 f[k 2 cos 2 ( 00 1 + 1 ) 2 + sin 2 0 1 0 1 r 2 ]g 0 1;T M g 0 1;T M (85) + sin 2 1 1 r 2 g 0 1;T E g 0 1;T E g
whose derivative with respect to z taken at the location of the particle is found to be 0 (without having to specify the values of the BSCs).

For l = +2, when only the value m = 1 is to be retained in Eqs.68-70, we obtain:

f I E = 9 jE 0 j 2 4k 2 f[k 2 sin 2 ( 00 1 + 1 ) 2 + cos 2 0 1 0 1 r 2 ]g 1 1;T M g 1 1;T M (86) +2 cos 0 1 1 r 2 (g 1 1;T M g 1 1;T E + g 1 1;T E g 1 1;T M ) +(cos 2 + 1) 1 1 r 2 g 1 1;T E g 1 1;T E + 0 1 0 1 r 2 g 1 1;T M g 1 1;T M g
Among the various derivatives with respect to z, taken at the particle location, involved in Eq.86, only the term of Eq.81 is non zero, so that we obtain:

( @ f I E @z ) z=0 = 9 jE 0 j 2 2k 2 Re(g 1 1;T M g 1 1;T E ) = 0 (87) 
which is zero because g 1 1;T M g 1 1;T E is found to be imaginary. For l = 2, when only the value m = 1 is to be retained in Eqs.68-70, we obtain:

f I E = 9 jE 0 j 2 4k 2 f[k 2 sin 2 ( 00 1 + 1 ) 2 + cos 2 0 1 0 1 r 2 ]g 1 1;T M g 1 1;T M (88) 2 cos 0 1 1 r 2 (g 1 1;T M g 1 1;T E + g 1 1;T E g 1 1;T M ) +(cos 2 + 1) 1 1 r 2 g 1 1;T E g 1 1;T E + 0 1 0 1 r 2 g 1 1;T M g 1 1;T M g
which, similarly as for l = 2 leads to:

( @ f I E @z ) z=0 = 9 jE 0 j 2 2k 2 Re(g 1 1;T M g 1 1;T E ) = 0 (89) 
Therefore, in all cases, we …nd that the derivative of f I E with respect to z, taken at the particle location is zero, which was already the case for the derivative of I E . This is in deep contrast with the case of o¤-axis con…gurations where, although @I E =@z for z = 0 was still 0, it was not the case for @ f I E =@z which was not 0. These non zero terms were called axicon terms [START_REF] Gouesbet | Axicon terms associated with gradient optical forces in generalized Lorenz-Mie theory[END_REF].

4 Transverse optical forces.

4.1

Cross-sections.

In the present section, we deal with the transverse cross-sections (along x and y directions) reading as, e.g. Eqs.(3.181) and (3.185) in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], with an "obvious" typo in Eq. (3.178) in which the last term should involve g p n;T E g p+1 m;T M instead of g p n;T E g p+1 m;T E :

2 1 X p=1 1 X n=p 1 X m=p 16 =0 (n + p)! (n p)! (90) 
[Re(S p 1 mn + S p nm

2U p 1 mn 2U p nm )( m;n+1 m 2 n;m+1 n 2 ) + 2n + 1 n 2 (n + 1) 2 nm Re(T p 1 mn T p nm 2V p 1 mn + 2V p nm )]
in which:

S p nm = (a n + a m )g p n;T M g p+1 m;T M + (b n + b m )g p n;T E g p+1 m;T E (91) 
T p nm = i(a n + b m )g p n;T M g p+1 m;T E + i(b n + a m )g p n;T E g p+1 m;T M (92) 
U p nm = a n a m g p n;T M g p+1 m;T M + b n b m g p n;T E g p+1 m;T E (93) 
V p nm = ib n a m g p n;T E g p+1 m;T M ia n b m g p n;T M g p+1 m;T E (94) 
The y-component C pr;y is obtained from the x component by changing Re to Im : To achieve the calculations, we recommend to split C pr;x into three terms according to C pr;x = C pr;x + C pr;x + C pr;x in which:

C pr;x = 2 2 1 X p=1 1 X n=p 1 X m=p 16 =0 (n + p)! (n p)! Re(S p 1 mn + S p nm 2U p 1 mn 2U p nm ) m;n+1 m 2 (95) 
C pr;x = 2 2 1 X p=1 1 X n=p 1 X m=p 16 =0 (n + p)! (n p)! Re(S p 1 mn + S p nm 2U p 1 mn 2U p nm ) n;m+1 n 2 (96) 
C pr;x = 2 2 1 X p=1 1 X n=p 1 X m=p 16 =0 (n + p)! (n p)! 2n + 1 n 2 (n + 1) 2 nm Re(T p 1 mn T p nm 2V p 1 mn +2V p nm ) (97) 
The corresponding reduced partial pressure radiation cross sections along the x-direction, retaining only the (n = 1)-partial waves, i.e. the Mie coe¢ cient a 1 , then read as.

] C pr;x = 2 4
Re[a 1 g 0 2;T M (g

1 1;T M + g 1 1;T M )] (98) 
]

C pr;x = 3 2 4 
Re[a 1 (g 0 1;T M g 1 2;T M + g 0 1;T M g 1 2;T M (99)

+4g 1 1;T M g 2 2;T M + 4g 1 1;T M g 2 2;T M )] ] C pr;x = 3 2 4 Refia 1 [g 0 1;T M (g 1 1;T E g 1 1;T E ) (100) +g 0 1;T E (g 1 1;T M g 1 1;T M )]g
Assembling everything, we then obtain:

] C pr;x = 2 4 Re(a 1 H) (101) 
in which:

H = g 0 2;T M (g 1 1;T M + g 1 1;T M ) 3g 0 1;T M (g 1 2;T M + g 1 2;T M ) (102) 12(g 1 1;T M g 2 2;T M + g 1 1;T M g 2 2;T M ) +3i[g 0 1;T M (g 1 1;T E g 1 1;T E ) + g 0 1;T E (g 1 1;T M g 1 1;T M )]
Similarly, the reduced y-component reads as: 

] C pr;y = 2 4 Im(a 1 H) (103) 
Similarly, ] C pr;y of Eq.103 may be rewritten as the sum of two terms reading as:

] C Re pr;y = 2 6 m 2 1 m 2 + 2 3 Re(H) (106) 
] C Im pr;y = 2 9 ( m 2 1 m 2 + 2 ) 2 6 Im(H) (107) 
We now recall (e.g. previous section) that the 6 -term and the 3 -term should correspond to the scattering and the gradient forces respectively.

For l = 0; we only retain m = 1 meaning that all BSCs of the kind g 0 n and of the kind g 2 n have to be discarded. Therefore, we have (H) l=0 = 0 and :

] C Re pr;x = ] C Im pr;x = ] C Re pr;y = ] C Im pr;y = 0 (108) 
meaning that transverse scattering and gradient forces are zero. With similar arguments, it is found as well that H = 0 and therefore that Eq.108 still holds for l = 1 and l = 2. Therefore we conclude that, whatever the order l, scattering and gradient forces are zero which is actually what we should have expected for axisymmetric (actually circularly symmetric) beams, whether it is dark or not dark.

4.2

Poynting vector.

The transverse components of the Poynting vector are found to read as [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]: 

S x = 1 2 E 0 H 0 Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p c pw n c pw p e i(m q)' (109) 
[ k sin ' r ( 00 n + n )A nmpq + ik cos cos ' r ( 00 n + n )B nmpq + i sin cos ' r 2 C nmpq ] S y = 1 2 E 0 H 0 Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p c pw n c pw p e i(m q)' (110) 
We now evaluate the reduced Poynting vector components, at the location of the particle (which is located at the origin of the coordinates), starting from Eqs.109-110. The location of the particle is going to be implemented using two steps (i) considering a location on the axis = 0 and (ii) considering the origin of the coordinates on the axis z = r = 0. The x component of the reduced Poynting vector on the axis then reads as:

[ f S x ] =0 = 9 4 00 1 + 1 kr Re +1 X m= 1 +1 X q= 1 e i(m q)' [sin 'A 1m1q + i cos 'B 1m1q ] (116)
in which we have used c pw 1 c pw 1 = 9=(4k 2 ). This may be expanded as:

[ f S x ] =0 = 9 8 00 1 + 1 kr Re i +3 X j= 3 a j e ij' (117) 
in which: 

a 3 = A 1 111 + B 1 111 ( 
a 3 = A 111 1 + B 111 1 (124) 
Coe¢ cients A nmpq and B nmpq involved in Eqs.118-124 are afterward evaluated using Eqs.111-112 and expressing generalized Legendre functions and associated Legendre functions using Eqs.6-9 leading to:

a 3 = a 2 = a 1 = 0 (125)
and to:

a 0 = 2[ 0 1 ( 1011 101 1 ) + 1 ( 1011 + 101 1 )] (126) 
The reduced x component of the Poynting vector on the axis then becomes:

[ f S x ] =0 = 9 4 00 1 + 1 kr [ 0 1 Re i( 1011 101 1 ) + 1 Re i( 1011 + 101 1 )] (127)
in which the coe¢ cients nmpq and nmpq do not depend on the radial coordinate (see Eqs.114-115). When evaluating the component S x of the Poynting vector, the terms ( 00 1 + 1 ) on the one hand and 0 1 =(kr), 1 =(kr) on the other hand came from di¤erent components of the electric and magnetic …elds as we can see by using S x = Re(E y H z E z H y )=2 and referring to Eqs.(3.39)-(3-50) in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. We may therefore consider separately the limits of these terms when z = r = 0. We may then use Eqs.30, 31, and 34 to convert Eq.127 to:

[ f S x ] =r=0 = Re i( 1011 101 1 ) (128) 
Using Eq.114, [ f S x ] =r=0 may be eventually expressed in terms of BSCs as:

[ f S x ] =r=0 = Re i[g 0 1;T M (g 1 1;T E g 1 1;T E ) + g 0 1;T E (g 1 1;T M g 1 1;T M )] (129) 
Let us then start with l = 0 for which m = 1, so that the BSCs g 0 n have to be discarded. Then, we have [ f S x ] =r=0 = 0: The same result is obtained for l = 1 and l = 2. The component [ f S y ] =r=0 is treated similarly with the same null result. This is coherent with the fact that the transverse scattering forces have been found to be 0: It is however in contrast with the case of an o¤-axis con…guration in which non-standard axicon scattering forces were complementing the usual scattering forces [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF].

4.3

On transverse gradient forces.

We now return to Eqs.75-76 and evaluate the derivatives of various x and ydependent quantities involved in these expressions, taken at the location of the particle. In doing so, we do not take into account the '-dependent terms occurring in g I 2 E . Again, being however said in a slightly di¤erent way, the reason why is that the terms to be derived are of the form sin f (r; )g(') whose derivative may be written as [@ sin f (r; )=@x]g(') + sin f (r; )@g(')=@x. Having to take the derivative at the location of the particle, the second term of the summation sin f (r; )@g(')=@x is always zero because the particle is located at = 0, so that we are left with the derivative of the …rst term. Another point of view might be to say that the derivative with respect to x is taken along the x-axis, i.e. for a …xed value of ' = 0 (and similarly for the derivative with respect to y taken along the y-axis, i.e. for ' = 90 ). We obtain: This implies @ f I E =@x = @ f I E =@y = 0 (as we should have expected for the symmetric beams under study) and therefore that the gradient forces along the x and y-directions should be expected to be zero. This is indeed what we found in subsection 4.1. This is again in deep contrast with the case of an o¤-axis con…guration in which non standard axicon gradient forces were complementing the usual gradient forces.

f @ @x sin 2 [k 2 ( 00 1 + 1 ) 2 0 1 0 1 r 2 ]g x=y=0 = f @ @y sin 2 [k 2 ( 00 1 + 1 ) 2 0 1 0 1 r 2 ]g x=y=0 = 0 (130) ( @ @x sin 2 1 1 r 2 ) x=y=0 = ( @ @y sin 2 1 1 r 2 ) x=y=0 = 0 (131) f @ @x [k 2

Complementary discussion.

The results obtained in the present paper and in previous papers on the same issue ask the question to know what is the relationship between the Rayleigh limit of the GLMT and the classical dipole theory of forces. In a …rst attempt to state about this question, we might say that both approaches do not exactly identify, insofar as the axicon forces occurring in the former are not expressed in terms of scattering or gradient forces expressed in the latter. However, recent extensive comparisons between these approaches have been numerically achieved and it has been found that they agree up to 1,000 decimal places for o¤-axis longitudinal forces in the case of illuminating circularly symmetric Bessel beams [START_REF] Ambrosio | On longitudinal radiation pressure cross section in the generalized Lorenz-Mie theory and its relationship with the dipole theory of forces[END_REF] and up to 3,000 decimal places in the case of o¤-axis transverse forces [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their relationship with the dipole theory of forces[END_REF]. From these results, we may put forward a very strong conjecture that the Rayleigh limit of the GLMT actually identi…es with the dipole theory of forces, but that some kind of dictionary between both approaches is required to examine how the vocabulary "axicon forces" in the GLMT approach matches the vocabulary "scattering/gradient" forces in the dipole theory approach. This conjecture, and the construction of a dictionary, are currently under examination from a formal point of view.

Conclusion.

The present paper is in the continuation of a series of papers [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | Axicon terms associated with gradient optical forces in generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] which, when studying optical forces exerted by Bessel beams on Rayleigh particles in the generalized Lorenz-Mie theory framework in an o¤-axis con…guration, exhibited the occurrence of non standard forces, named axicon forces, which were complementing the usual scattering and gradient optical forces put forward by Ashkin. In order to gain a better understanding of the situation, the present paper has been devoted to a similar study however carried out in the case of an on-axis con…guration. On-axis calculations being much simpler than o¤-axis calculations, it was intended that it would be possible to gain a better understanding of the origin of the non standard forces. In an on-axis con…guration, non standard transverse forces do not occur, a fact which may be viewed as the result of the symmetries displayed by the beam under study (they are both axisymmetric and circularly symmetry). However, non standard longitudinal forces do occur. Their origin is due to the fact that the Rayleigh limit of the generalized Lorenz-Mie theory is more general than the Rayleigh dipole theory, because it exhibits coupling terms between BSCs of order n = 1 and BSCs of order n = 2;i.e. with higher-multipole BSCs.

sin 2 ( 00 1 + 1 ) 1 r 2 )

 1112 x=y=0 = 0 (135)

  118)a 2 = A 1 110 + B 1 110 + A 1011 + B 1011 (119)a 1 = A 1 11 1 + B 1 11 1 A 1 111 + B 1 111 + A 1010 + B 1010 + A 1111 + B 1111 (120)a 0 = A 1110 +B 1 110 +A 101 1 +B 101 1 A 1011 +B 1011 +A 1110 +B 1110 (121)
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(123)