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In a recent paper devoted to the study of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in generalized Lorenz-Mie theory, new kind of optical forces are discovered. They are di¤erent than the well established scattering and gradient forces, and called axicon forces. In the present paper, within the same framework, we demonstrate the existence of a new kind of axicon terms, associated with gradient forces, which are zero both when the axicon angle is zero and when an on-axis con…guration is considered.

manipulation. In [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], beside classical scattering and gradient forces, a new kind of optical forces associated with scattering forces, named axicon (scattering) forces, has been discovered. Concerning gradient forces, they have been found to be zero in agreement with the fact the longitudinal gradients of (i) the electric intensity (ii) the energy density and (iii) the longitudinal component of the Poynting vector are zero for Bessel beams. In the present paper, we proceed to a re…ned investigation of the gradient forces identi…ed in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and demonstrate that they are actually accompanied by axicon terms which are zero if the axicon angle is zero and/or if the con…guration is an on-axis con…guration.

Before proceeding further, it is important to insist on the meaning of new expressions introduced in the present paper and in the previous paper [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. The new terminology introduces "axicon forces" and "axicon terms". Axicon forces are forces which are deduced from the expressions for pressure radiation crosssections (or forces) but which have no counterpart in expressions dealing with scattering expressions, e.g. such as expressed by the Poynting vector, which may be called axicon scattering forces as examined in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. Conversely, axicon terms are extra-terms which do not arise from the expressions for pressure radiation cross-sections (or forces) but which arise from gradient expressions. Axicon terms associated with gradient expressions are examined in the present paper. . The paper is organized as follows. Section 2 presents a background already presented in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] but which is repeated here for the convenience of the reader, complemented by recalling a few results taken from [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] but useful for the present paper. Section 3 deals with the longitudinal gradient of the electric intensity. Section 4 deals with the longitudinal gradient of the time averaged energy density. Section 5 deals with the longitudinal gradient of the longitudinal component of the Poynting vector. In these sections 3, 4, and 5, it is demonstrated that some axicon terms must be associated with the gradient force. Section 6 provides an extra-discussion of some issues enlightening the results obtained in the present paper and in the previous paper [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. Section 7 is a conclusion.

Physical and mathematical background.

The GLMT stricto sensu describes the interaction between an arbitrary (structured) shaped beam and a homogeneous spherical particle de…ned by its diameter and its complex refractive index, e.g. [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Gouesbet | Combustion measurements[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], and references therein. Also, see reviews [START_REF] Gouesbet | Latest achievements in generalized Lorenz-Mie theories: A commented reference database[END_REF], [START_REF] Gouesbet | T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2014-2018[END_REF], in particular for other GLMTs devoted to the interaction between laser beams and other kinds of scatterers. In the present paper, we consider a Rayleigh particle located at the origin O P of a Cartesian coordinate system O P xyz illuminated by an o¤-axis Bessel beam propagating along the z-direction.

Optical forces.

In the GLMT framework, we express the optical force components F i by using (unnormalized) pressure radiation cross-section components C pr;i (i = x; y; z). In the present paper, we deal only with the longitudinal cross-section (along z direction) reading as:

C pr;z = E 0 H 0 2 2 1 X n=1 n X m= n f 1 (n + 1) 2 (n + 1 + jmj)! (n jmj)! (1) 
Re

[(a n + a n+1 2a n a n+1 )g m n;T M g m n+1;T M +(b n + b n+1 2b n b n+1 )g m n;T E g m n+1;T E ] +m 2n + 1 n 2 (n + 1) 2 (n + jmj)! (n jmj)! Re[i(2a n b n a n b n )g m n;T M g m n;T E )]g
with notations being the ones of [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF]. However, note that, strictly speaking, C pr;z of Eq.1 would be a pressure radiation cross-section, i.e. would be homogeneous to an area, if we used the normalization condition E 0 H 0 =2 =1 (which was used in original works, e.g. Eq.(3.106) in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]) . Here, we did not use this condition for the sake of consistency with later expressions concerning the Poynting vector. When using the normalization condition, the forces are related to the cross-sections according to F i = C pr;i =c ( [START_REF] Van De Hulst | Light scattering by small particles[END_REF], p.14). The time-dependence of the wave is exp(+i!t) which is the usual choice in GLMT. Also, note that the denominator 1=(2 ) was missprinted to 1=(4 ) in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF].

Furthermore, speci…cally, a n and b n are the usual Mie coe¢ cients of the usual Lorenz-Mie theory, g m n;T M and g m ;;T E , with TM and TE standing for "Transverse Magnetic" and "Transverse Electric" respectively, are the beam shape coe¢cients (BSCs) encoding the description of the beam, either in terms of scalar potentials, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF] or in terms of vector spherical wave functions [START_REF] Gouesbet | T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates[END_REF], the star denotes a complex conjugation and is the wavelength. In the present paper, we shall consider only the longitudinal force of Eq.1 because it will lead to simpler computations than for the two other force components along x and y, and, more important, because we expect a natural separation between gradient and scattering forces along the z-direction.

2.2

Poynting vector.

For the same reasons, we shall only consider the z component S z of the Poynting vector de…ned as:

S z = 1 2 Re(E x H y E y H x ) (2) 
which has already been evaluated to [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

S z = E 0 H 0 2r 2 Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p ic pw n c pw p e i(m q)' (3) 
(sin S mq np + cos C mq np )
in which (r; ; ') are spherical coordinates attached to the Cartesian coordinates (x; y; z), c pw n are prefactors appearing in the Bromwich formulation of the Lorenz-Mie theory [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF], reading as:

c pw n = 1 ik ( i) n 2n + 1 n(n + 1) (4) and : 
S 

+g m n;T M g q p;T E 0 n 0 p (m jmj n jqj p + q jqj p jmj n ) g m n;T E g q p;T M p n (m jmj n jqj p + q jqj p jmj n ) +g m n;T E g q p;T E n 0 p (mq jmj n jqj p + jmj n jqj p ) (6) 
in which k is the wavenumber, P = jmj n (cos ) are generalized Legendre functions, and n = n (kr) are Ricatti-Bessel functions, while a prime denotes a derivative with respect to the argument (and a double prime a second derivative). In Eqs.5-6, arguments are omitted for convenience. The omission of arguments will be recurrent in the sequel whenever we …nd it convenient.

Mathematical background.

Associated Legendre functions are de…ned according to Hobson's notation [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]:

P jmj n (cos ) = ( 1) jmj (sin ) jmj d jmj P n (cos ) (d cos ) jmj (7) 
in which P n (cos ) are the usual Legendre polynomials. Generalized Legendre functions may then be evaluated according to:

m n (cos ) = dP m n (cos ) d (8) m n (cos ) = P m n (cos ) sin (9) 
Ricatti-Bessel functions n (kr) may be expressed in terms of spherical Bessel functions j n (kr) according to:

n (x) = xj n (x) (10) 
Furthermore, we have [START_REF] Arfken | Mathematical methods for physicists[END_REF]:

j 1 (x) = sin x x 2 cos x x (11) 
2.4 Bessel beams.

Bessel beams have been introduced by Durnin and co-workers [START_REF] Durnin | Di¤raction-free beams[END_REF], [START_REF] Durnin | Exact solutions for nondi¤racting beams. I. The scalar theory[END_REF]. They possess the appealing property of being self-healing and non di¤racting, and, more important in the context of the present paper, they furthermore possess a propagation invariance property, namely the intensity of the beam is constant along the direction of propagation. There exist an in…nity of kinds of Bessel beams, in particular depending on the value given to an arbitrary function g( 0 ), in which 0 is the axicon angle (or half-cone angle) of the beam, with di¤erent linear and circular polarizations [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF], [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF]. All of them generically exhibit the following structure:

K i = k i (x; y)e ikzz , i = x; y; z, K = E or H (12)
in which k z = k cos 0 is the longitudinal wavenumber. Among all of them, we shall pay a particular attention to circularly symmetric Bessel beams of arbitrary order whose BSCs in an o¤-axis con…guration read as [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF]:

g m n;T M = g( 0 )e ikzz0 [i l m+1 e i(l m+1) 0 A m n + i l m 1 e i(l m 1) 0 B m n ] ( 13 
)
g m n;T E = ig( 0 )e ikzz0 [i l m+1 e i(l m+1) 0 A m n i l m 1 e i(l m 1) 0 B m n ] (14) 
in which:

A m n = ( 1) (m jmj)=2 (n m)! (n + jmj)! J l m+1 ( 0 )[ m n (cos 0 ) + m m n (cos 0 )] (15) 
B m n = ( 1) (m jmj)=2 (n m)! (n + jmj)! J l m 1 ( 0 )[ m n (cos 0 ) m m n (cos 0 )] (16)
in which l is the order of the Bessel beam under consideration, 0 = k t 0 , k t = k sin 0 is the transverse wavenumber, 0 = (x 2 0 +y 2 0 ) 1=2 , 0 = tan 1 (y 0 =x 0 ), (x 0 ; y 0 ; z 0 ) denotes the location of the beam origin with respect to the origin of the particle coordinate system at which the scatterer is located, and therefore speci…es the o¤-axis location of the beam, and J k (:) is the k-order Bessel function of the …rst kind. When g( 0 ) = (1+ cos 0 )=4, the beam reduces to a Davis circularly symmetric Bessel beam as discussed in [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Mishra | A vector wave analysis of a Bessel beam[END_REF]. When g( 0 ) = 1=2, the beam reduces to another kind of Bessel beam discussed in [START_REF] Cizmar | Sub-micron particle organization by self-imaging of non-di¤racting beams[END_REF], [START_REF] Taylor | Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations[END_REF], [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF].

2.5

Summary of some previous results.

In this subsection, we recall a few results obtained in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] related to gradient forces. In the Rayleigh regime which was considered in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and which is still considered in the present paper, only the (n = 1)-partial waves are to be considered and we only have to retain, in the expansions, the Mie coe¢ cient a 1 which simpli…es to :

a 1 = 2i 3 m 2 1 m 2 + 2 3 + O(i 5 ) + 4 9 ( m 2 1 m 2 + 2 ) 2 6 (17) b 1 = O(i 5 ) (18) 
in which m is the refractive index (here taken to be real) with respect to the surrounding medium and the size parameter d= . The other coe¢ cients a n and b n (n > 1) involves still higher powers of : Real parts are then proportional to 6 and imaginary parts are proportional to 3 while higher powers are discarded and we therefore retain only:

Im(a 1 ) = 2 3 m 2 1 m 2 + 2 3 (19) Re(a 1 ) = 4 9 ( m 2 1 m 2 + 2 ) 2 6 (20) 
The scattering force represented by C s pr;z and the gradient force represented by C g pr;z are proportional to 6 and 3 respectively. It is then demonstrated that, by evaluating C g pr;z with the proviso that the Rayleigh particle is only sensitive to the (n = 1)-partial waves, we have:

C g pr;z = 0 (21) 
The nullity of this term identi…ed as a gradient term is consistent with the fact that, due to Eq.12, the longitudinal gradients of the electric intensity E:E , of the time-averaged energy density (" 0 E:E + 0 H:H ) and of the z component of the Poynting vector are zero. However, the Rayleigh particle does not perceive all the partial waves involved in Eq.12 but only the (n = 1)partial waves. This implies that a re…nement of the analysis is required in which the electric intensity, the time-averaged energy density and the z component of the Poynting vector would be evaluated by only considering the contributions of the (n = 1)-partial waves. The aim of the present paper is to proceed to this re…ned analysis. Quantities restricted to (n = 1) partial waves are decorated with a tilde.

Electric intensity.

When restricted to the (n = 1)-partial waves, the electric components in spherical coordinates read as (e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], pp. [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF][56]:

f E r = kE 0 c pw 1 ( 00 1 + 1 ) +1 X m= 1 g m 1;T M P jmj 1 e im' (22) 
f E = E 0 r c pw 1 +1 X m= 1 [g m 1;T M 0 1 jmj 1 + mg m 1;T E 1 jmj 1 ]e im' (23) 
f E ' = iE 0 r c pw 1 +1 X m= 1 [mg m 1;T M 0 1 jmj 1 + g m 1;T E 1 jmj 1 ]e im' (24) 
From these equations, we may evaluate:

Êr E r = 9 4 jE 0 j 2 k 2 k 2 ( 00 1 + 1 ) 2 [e 2i' g 1 1;T M g 1 1;T M P 1 1 P 1 1 ( 25 
)
+e i' (g 1 1;T M g 0 1;T M + g 0 1;T M g 1 1;T M )P 1 1 P 0 1 +e 0' (g 1 1;T M g 1 1;T M P 1 1 P 1 1 + g 0 1;T M g 0 1;T M P 0 1 P 0 1 + g 1 1;T M g 1 1;T M P 1 1 P 1 1 ] +e i' (g 0 1;T M g 1 1;T M + g 1 1;T M g 0 1;T M )P 1 1 P 0 1 +e 2i' g 1 1;T M g 1 1;T M P 1 1 P 1 1 ]
in which we have used:

c pw 1 c pw 1 = 9 4k 2 (26) 
and:

Ê E = 9 4 jE 0 j 2 k 2 f 0 1 0 1 r 2 [e 2i' g 1 1;T M g 1 1;T M 1 1 1 1 ( 27 
)
+e i' (g 1 1;T M g 0 1;T M + g 0 1;T M g 1 1;T M ) 1 1 0 1 +e 0' (g 1 1;T M g 1 1;T M 1 1 1 1 + g 0 1;T M g 0 1;T M 0 1 0 1 + g 1 1;T M g 1 1;T M 1 1 1 1 ) +e i' (g 1 1;T M g 0 1;T M + g 0 1;T M g 1 1;T M ) 1 1 0 1 +e 2i' g 1 1;T M g 1 1;T M 1 1 1 1 ] + 0 1 1 r 2 [e 2i' (g 1 1;T M g 1 1;T E g 1 1;T E g 1 1;T M ) 1 1 1 1 +e i' (g 0 1;T M g 1 1;T E g 1 1;T E g 0 1;T M ) 1 1 0 1 +e 0' (g 1 1;T E g 1 1;T M g 1 1;T M g 1 1;T E + g 1 1;T M g 1 1;T E g 1 1;T E g 1 1;T M ) 1 1 1 1 +e i' (g 1 1;T E g 0 1;T M g 0 1;T M g 1 1;T E ) 1 1 0 1 +e 2i' (g 1 1;T E g 1 1;T M g 1 1;T M g 1 1;T E ) 1 1 1 1 1 1 r 2 [e 2i' g 1 1;T E g 1 1;T E e 0' (g 1 1;T E g 1 1;T E + g 1 1;T E g 1 1;T E ) + e 2i' g 1 1;T E g 1 1;T E ] 1 1 1 1 Ê' E ' = 9 4 jE 0 j 2 k 2 f 0 1 0 1 r 2 [ e 2i' g 1 1;T M g 1 1;T M 1 1 1 1 (28) +e 0' (g 1 1;T M g 1 1;T M + g 1 1;T M g 1 1;T M ) 1 1 1 1 e 2i' g 1 1;T M g 1 1;T M 1 1 1 1 ] + 0 1 1 r 2 [e 2i' (g 1 1;T E g 1 1;T M g 1 1;T M g 1 1;T E ) 1 1 1 1 +e i' (g 0 1;T E g 1 1;T M g 1 1;T M g 0 1;T E ) 1 1 0 1 +e 0' (g 1 1;T E g 1 1;T M g 1 1;T M g 1 1;T E + g 1 1;T E g 1 1;T M g 1 1;T E g 1 1;T M ) 1 1 1 1 +e i' (g 1 1;T M g 0 1;T E g 0 1;T E g 1 1;T M ) 1 1 0 1 +e 2i' (g 1 1;T M g 1 1;T E g 1 1;T E g 1 1;T M ) 1 1 1 1 + 1 1 r 2 [e 2i' g 1 1;T E g 1 1;T E 1 1 1 1 + e i' (g 1 1;T E g 0 1;T E + g 0 1;T E g 1 1;T E ) 1 1 0 1 +e 0' (g 1 1;T E g 1 1;T E 1 1 1 1 + g 0 1;T E g 0 1;T E 0 1 0 1 + g 1 1;T E g 1 1;T E 1 1 1 1 ) +e i' (g 0 1;T E g 1 1;T E + g 1 1;T E g 0 1;T E ) 1 1 0 1 ) + e 2i' g 1 1;T E g 1 1;T E 1 1 1 1 ]
We may then evaluate the corresponding electric intensity according to:

f I E = Êr E r + Ê E + Ê' E ' (29) 
which is found to read as:

f I E = +2 X k= 2 f I k E ( 30 
)
Specifying the values of associated Legendre functions and of generalized Legendre functions according to:

P 0 0 = P 0 0 (cos ) = 1 (31) 
P 0 1 = P 0 1 (cos ) = 1 1 (cos ) = cos (32) 
P 1 1 = P 1 1 (cos ) = 0 1 (cos ) = sin (33) 
1 1 = 1 1 (cos ) = 1 (34) 
we obtain:

g I 2 E = f I 2 E = 9 4 jE 0 j 2 k 2 e 2i' sin 2 f[k 2 ( 00 1 + 1 ) 2 0 1 0 1 r 2 ]g 1 1;T M g 1 1;T M + 1 1 r 2 g 1 1;T E g 1 1;T E g (35) g I 1 E = f I 1 E = 9 4 jE 0 j 2 k 2 e i' sin fcos [ 0 1 0 1 r 2 k 2 ( 00 1 + 1 ) 2 ](g 1 1;T M g 0 1;T M + g 0 1;T M g 1 1;T M ) + 0 1 1 r 2 (g 0 1;T M g 1 1;T E g 1 1;T E g 0 1;T M g 1 1;T M g 0 1;T E + g 0 1;T E g 1 1;T M ) (36) 
+ cos 1 1 r 2 (g 1 1;T E g 0 1;T E + g 0 1;T E g 1 1;T E )g f I 0 E = 9 4 jE 0 j 2 k 2 e 0' f[k 2 sin 2 ( 00 1 + 1 ) 2 + cos 2 0 1 0 1 r 2 ](g 1 1;T M g 1 1;T M + g 1 1;T M g 1 1;T M ) +[k 2 cos 2 ( 00 1 + 1 ) 2 + sin 2 0 1 0 1 r 2 ]g 0 1;T M g 0 1;T M ( 37 
)
2 cos 0 1 1 r 2 (g 1 1;T M g 1 1;T E g 1 1;T M g 1 1;T E + g 1 1;T E g 1 1;T M g 1 1;T E g 1 1;T M ) (cos 2 + 1) 1 1 r 2 (g 1 1;T E g 1 1;T E + g 1 1;T E g 1 1;T E ) + sin 2 1 1 r 2 g 0 1;T E g 0 1;T E + 0 1 0 1 r 2 (g 1 1;T M g 1 1;T M + g 1 1;T M g 1 1;T M )g
We are now interested in the calculation of the derivative of the (restricted) electric intensity with respect to z, taken at z = 0, i.e. at the place where the particle is located. This requires in a …rst step to express cos , sin and the radial coordinate r in terms of Cartesian coordinates, a trivial task indeed. Furthermore, in evaluating these derivatives, and other derivatives in subsequent subsections, derivatives with respect to ' may be omitted. In a few words, this comes from the fact that z dependence is only encoded in the spherical coordinates r and , but not in ': The suspicious reader may have a direct check by using the equation @f (r; ) exp( ik')=@z = exp( ik')@f (r; )=@z + f (r; )@ exp( ik')=@z, leaving the derivatives evaluated below unchanged.

Then, we consider g I 2 E and f I 2 E , and evaluate:

f @ @z sin 2 [k 2 ( 00 1 + 1 ) 2 0 1 0 1 r 2 ]g z=0 = 0 (38) 
( @ @z sin 2 1 1 r 2 ) z=0 = 0 (39) 
in which we expressed the terms dependent on r and in terms of x; y; z and recalled that, using Eqs.10 and 11:

1 (kr) = kr[ sin(kr) (kr) 2 cos(kr) kr ] (40) 
Hence:

( @ g I 2 E @z ) z=0 = ( @ f I 2 E @z ) z=0 = 0 (41) 
For g I 1 E and g I 1 E , we have:

1 = f @ @z sin cos [ 0 1 0 1 r 2 k 2 ( 00 1 + 1 ) 2 ]g z=0 6 = 0 (42) 
( @ @z sin 0 1 1 r 2 ) z=0 = 0 (43) 2 = ( @ @z sin cos 1 1 r 2 ) z=0 6 = 0 (44) 
so that we obtain:

( @ g I 1 E @z ) z=0 = [( @ f I 1 E @z ) z=0 ] = 9 4 jE 0 j 2 k 2 e i' ( 1 + 2 ) (45) 
in which (not to be confused with the size parameter) and are given by:

= g 1 1;T M g 0 1;T M + g 0 1;T M g 1 1;T M (46) = g 1 1;T E g 0 1;T E + g 0 1;T E g 1 1;T E (47) 
For (@ f I 0 E =@z) z=0 , all derivatives with respect to z, taken at z = 0, of the di¤erent terms involved in Eq.37 are found to be 0, excepted one of them, namely:

3 = ( @ @z cos 0 1 1 r 2 ) z=0 6 = 0 (48) 
leading to:

( @ f I 0 E @z ) z=0 = 9 2 jE 0 j 2 k 2 3 ( 49 
)
in which:

B 1 1 = J l ( 1 1 + 1 1 ) = 1 2 J l (C + 1) (58) 
B 0 1 = J l 1 0 1 = J l 1 S (59) 
B 1 1 = 1 2 J l 2 ( 1 1 1 1 ) = 1 2 J l 2 (C 1) (60) 
in which C = cos 0 , S = sin 0 and in which we have used

1 1 = C=2, 0 1 = S, 1 1 = C, 1 1 = 1=2 and 1 1 = 1.
Furthermore the argument 0 of the Bessel functions is omitted. We then obtain:

= iS 2 jg( 0 j 2 fe i 0 [(C 1)(J l+1 J l+2 + J l 2 J l 1 ) + (C + 1)(J l 1 J l + J l J l+1 )] e i 0 (C + 1)(J l J l+1 + J l 1 J l ) (61) 
e 3i 0 (C 1)(J l 1 J l+2 + J l 2 J l+1 )g = iS 2 jg( 0 j 2 fe i 0 [(C 1)(J l+1 J l+2 + J l 2 J l 1 ) + (C + 1)(J l 1 J l + J l J l+1 )] +e i 0 (C + 1)(J l J l+1 + J l 1 J l ) ( 62 
)
+e 3i 0 (C 1)(J l 1 J l+2 + J l 2 J l+1 )g = jg( 0 )j 2 (C 1)(C + 1)(J l 2 J l J l J l+2 ) sin 2 0 (63) 
Therefore, although (@I E =@z) z=0 = 0, it happens that (@ e I E =@z) z=0 6 = 0 and contains extra axicon terms. However these extra-terms are zero whevener (i) the axicon angle is zero, i.e. C = 1 and S = 0 (ii) the con…guration is an on-axis con…guration. The fact that the extra-terms are zero for an on-axis con-…guration results from the mathematical property that J k (0) = 0 excepted for k = 0, and from the physical property that 0 = 0 for an on-axis con…guration.

Energy density.

To deal with the energy density "0 E:E + 0 H:H , we have to evaluate the magnetic intensity f I H = Ĥ:H . Instead of Eqs.22-24, we now have to deal with (see again [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], pp.55-56):

f H r = kH 0 c pw 1 ( 00 1 + 1 ) +1 X m= 1 g m 1;T E P jmj 1 e im' (64) 
f H = H 0 r c pw 1 +1 X m= 1 [g m 1;T E 0 1 jmj 1 mg m 1;T M 1 jmj 1 ]e im' ( 65 
) f H ' = iH 0 r c pw 1 +1 X m= 1 [mg m 1;T E 0 1 jmj 1 g m 1;T M 1 jmj 1 ]e im' (66) 
We then observe that the magnetic intensity is deduced directly from the electric intensity by carrying out the following changes:

E 0 ! H 0 , g m 1;T M ! g m 1;T E , g m 1;T E ! g m 1;T M ( 67 
)
so that we directly obtain:

( @ g I 2 H @z ) z=0 = ( @ f I 2 H @z ) z=0 = 0 (68) ( @ g I 1 H @z ) z=0 = [( @ f I 1 H @z ) z=0 ] = 9 4 jH 0 j 2 k 2 e i' ( 1 + 2 ) (69) ( @ f I 0 H @z ) z=0 = 9 2 jH 0 j 2 k 2 3 (70)
Therefore, although (@I H =@z) z=0 = 0, it happens that (@ e I H =@z) z=0 6 = 0 and contains extra axicon terms. However, once again, these extra-terms are zero whevener (i) the axicon angle is zero, i.e. C = 1 and S = 0 (ii) the con…guration is an on-axis con…guration. Because this is the same conclusion that for the electric intensity, it immediately extends to the time averaged energy density "0 E:E + 0 H:H . More speci…cally, adding " 0 E:E and ^ 0 H:H , and using H 0 =E 0 = p " 0 = 0 , we may establish that, after simplifying and rearranging:

[ @ @z ( "0 E:E + 0 H:H )] z=0 = 2 Re( e i' ) 4 ( 71 
)
in which:

4 = 1 + 2 = f @ @z sin cos [ ( 1 ) 2 + ( 0 1 ) 2 r 2 k 2 ( 00 1 + 1 ) 2 ]g z=0 6 = 0 (72)
and:

= + = iS jg( 0 )j 2 e i 0 [(C 1)(J l+1 J l+2 +J l 2 J l 1 )+(C+1)((J l 1 J l )+J l J l+1 )] (73) 
to which the above comments still apply.

5 Poynting vector.

Finally, we have to evaluate and discuss (@ f S z =@z) z=0 . We start from Eq.( 3) in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and specify it to the Rayleigh situation when only the partial waves with n = 1 are to be retained, that is to say we now consider:

( @ f S z @z ) z=0 = 9E 0 H 0 8k 2 Re +1 X m= 1 +1 X q= 1 ie i(m q)' [ @ @z 1 r 2 (sin S mq 11 + cos C mq 11 )] z=0 (74) 
in which we have used Eq.26. The coe¢ cients S mq 11 and C mq 11 are given by Eqs.5-6. Each of them contains four terms. Therefore we have 9x2x4=72 derivatives to evaluate with the fortunate fact, however, that there are many redundant terms. Once these derivatives are done, the only nonzero derivatives are found to be:

[ @ @z 1 r sin 1 ( 00 1 + 1 )P 1 1 1 1 ] z=0 = [ @ @z 1 r sin 2 cos 1 ( 00 1 + 1 )] z=0 (75) [ @ @z 1 r sin 0 1 ( 00 1 + 1 )P 1 1 0 1 ] z=0 = [ @ @z 1 r sin cos 0 1 ( 00 1 + 1 )] z=0 (76) [ @ @z 1 r sin 0 1 ( 00 1 + 1 )P 0 1 1 1 ] z=0 = [ @ @z 1 r sin cos 0 1 ( 00 1 + 1 )] z=0 (77) [ @ @z 1 r 2 cos 1 0 1 )( 1 1 1 1 + 1 1 1 1 )] z=0 = [ @ @z 1 r 2 cos (cos 2 + 1) 1 0 1 ] z=0 (78) [ @ @z 1 r 2 cos 1 0 1 )( 1 1 1 1 1 1 1 1 )] z=0 = [ @ @z 1 r 2 cos (cos 2 1) 1 0 1 ] z=0 (79) [ @ @z 1 r 2 cos 0 1 0 1 1 1 0 1 ] z=0 = [ @ @z 1 r 2 sin cos 0 1 0 1 ] z=0 (80) 
[ @ @z 1 r 2 cos 1 1 1 1 0 1 ] z=0 = [ @ @z 1 r 2 sin cos 1 1 ] z=0 (81) 
[ @ @z 1 r 2 cos 1 0 1 0 1 0 1 ] z=0 = [ @ @z 1 r 2 sin 2 cos 1 0 1 ] z=0 (82) 
These quantities appear in S mq 11 with mq = 1 1, 11; 11, 1 1, 10, 10, 0 1, 01, 00 and in C mq 11 with the same values of mq. Inserting these nonzero values in Eq.74 and rearranging we obtain, after a fairly lengthy and tedious computation:

( @ f S z @z ) z=0 = 9E 0 H 0 8k 2 Re if(cos 'G 1 + i sin 'G 2 ) (83) 
[ @ @z 1 r 2 sin cos (kr

0 1 ( 00 1 + 1 ) 0 1 0 1 )] z=0 +(cos 'G 1 i sin 'G 2 ) [ @ @z 1 r 2 sin cos 1 1 ] z=0
in which we used the fact that Re i(z + z ) = 0, and in which:

G 1 = g 0 1;T E (g 1 1;T M g 1 1;T M ) + g 0 1;T M (g 1 1;T E g 1 1;T E ) (84) 
G 2 = g 0 1;T E (g 1 1;T M + g 1 1;T M ) + g 0 1;T M (g 1 1;T E + g 1 1;T E ) (85) 
G 1 and G 2 are now evaluated using the now usual manner, leading to:

G 1 = jg( 0 )j 2 (G 1 1 e i 0 G 1 1 e i 0 G 3 1 e 3i 0 G 3 1 e 3i 0 ) (86) 
in which:

G 1 1 = S[ C 1 2 (J l+1 J l+2 + J l 2 J l 1 ) (C + 1)J l 1 J l ] (87) 
G 1 1 = S[ C 1 2 (J l+1 J l+2 + J l 2 J l 1 ) (C + 1)J l J l+1 ] (88) 
G 3 1 = G 3 1 = S(C 1) 2 (J l 1 J l+2 J l 2 J l+1 ) (89) 
Therefore, G 1 = 0 if (i) the axicon angle is zero (S = 0, C = 1) and (ii) if the o¤-axis con…guration becomes an on-axis con…guration. As for G 2 , we …nd:

G 2 = jg( 0 )j 2 (G 1 2 e i 0 G 1 2 e i 0 G 3 2 e 3i 0 + G 3 2 e 3i 0 ) (90) 
in which:

G 1 2 = G 1 1 , G 1 2 = G 1 1 , G 3 2 = G 3 1 , G 3 2 = G 3 1 (91) 
which is commented similarly as G 1 . Therefore, as a whole, although (@S z =@z) z=0 is equal to zero, it happens that (@ f S z =@z) z=0 is in general not equal to 0, although it is zero (i) if the axicon angle is zero (ii) for an on-axis con…guration.

6 Discussions related to axicon forces and axicon terms.

The contents of this section arises from reviewer comments and from mail exchanges with Pr. James Lock from Cleveland University, USA.

6.1

Relationship with the standard theory of scattering and optical forces.

The previous paper [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] introduces new axicon forces which have no counterpart in the usual standard theory of optical forces expressed in terms of scattering and of gradient forces. We begin with axicon forces discussed in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. We may then observe that the newly discussed axicon forces indeed arise from higher-order multipole contributions. Such high-order contributions arise from the structure of Eq.( 1) in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] which expresses the longitudinal radiation pressure cross-section C pr;z . BSCs then occur in a coupled way in terms reading as g m n;T M g m n+1;T M , g m n;T E g m n+1;T E and g m n;T M g m n;T E (m = n; :::; +n). In the Rayleigh limit of the GLMT, we only retain (n = 1)-partial waves so that we have to deal with BSCs coupling terms of the form g m 1;T M g m 2;T M , g m 1;T E g m 2;T E and g m 1;T M g m 1;T E (m = 1; 0; +1). The standard scattering force C s11 pr;z is expressed by Eq.(67) of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] containing couplings of the form g 1 1;T M g 1 1;T E and g 1 1;T M g 1 1;T E which therefore do not involve any higher-order multipole contributions. Conversely, the new axicon forces C s12 pr;z and C s0 pr;z are expressed by Eqs.( 49) and ( 50) of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], which are expressed in terms of quantities denoted G 12 and G 0 given by Eqs.( 45) and ( 46) of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. We then observe that G 12 involves couplings of the form g 1 1;T M g 1 2;T M and g 1 1;T M g 1 2;T M while G 0 involves g 0 1;T M g 0 2;T M , that is to say involves coupling with higher-order multipole contributions, namely between (n = 1) and (n = 2) multipoles. In other words, the Rayleigh limit of the GLMT does not exactly identify with the Rayleigh dipole theory of optical forces.

6.2

Relationship with the localization principle of van de Hulst.

A plane wave of in…nite extent may be thought of as being made up of separate rays of light each independently pursuing its own path. According to the van de Hulst principle of localization, e.g. p.208 of [START_REF] Van De Hulst | Light scattering by small particles[END_REF], a partial wave of order n in the electromagnetic description of the plane wave corresponds to a ray passing at a distance from the origin equal to (n + 1=2)( =2 ). Here, the partial wave of order n refers to a term in the classical Lorenz-Mie theory which contains Bessel functions and spherical harmonics, with the integer n ranging from 1 to 1. This van de Hulst principle of localization has been successfully extended from the case of plane waves to the case of structured beams and has been at the origin of the localized approximation to the evaluation of BSCs, e.g. [START_REF] Gréhan | Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation[END_REF], [START_REF] Maheu | Generalized Lorenz-Mie theory: …rst exact values and comparisons with the localized approximation[END_REF], see [START_REF] Gouesbet | Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[END_REF] for a review.

Let us …rst consider an on-axis location of the particle or, equivalently, in the present context, a coordinate system centered on the beam, and let us call z on its axis which is as well the direction of propagation of the beam (and which is parallel to the z-axis considered in the o¤-axis con…guration studied in the present paper). The GLMT expands the on-axis wave in terms of partial waves characterized by two subscripts n on (the order of the partial wave) and m on (the azimuthal mode). The van de Hulst principle then associates the partial wave n on with a ray passing at a distance (n on + 1=2)( =2 ) from the axis z on . Note however that the value of this distance is questionable because its derivation, using the method of stationary phase -not available from van de Hulst's book -requires that n >> 1 (James Lock, private communication), but this feature does not change the gist of the argument discussed in this subsection. In the Rayleigh limit, only the n on = 1 partial wave interacts with the particle because only the Mie coe¢ cient a 1 is to be retained. This corresponds to a ray passing at a distance equal to d on = 3 =(4 )

=4 from the z on -axis. The o¤-axis coordinate system is the one used in the present paper, with Cartesian coordinates (x; y; z) and partial waves characterized by the order n of f and the azimuthal mode m of f (more simply denoted as n and m in the present paper). The o¤-axis description of the beam is more complicated than the on-axis description of the beam, but such a complication is required in order to express the light scattered by the particle in terms of spherical coordinates (r; ; ') centered on the particle which is located at the origin of the Cartesian coordinates of the o¤-axis beam con…guration. We now consider the van de Hulst principle of localization in the o¤-axis coordinate system. Similarly as above, in the Rayleigh regime, only the n of f = 1 partial wave interacts with the particle, corresponding to a ray passing at a distance d of f = =4 from the z of f -axis which may be at a distance d on=of f which is large with respect to the z on -axis.

The fact that only n on = 1 and n of f = 1 are to be retained in the on-axis and o¤-axis con…gurations respectively does not depend on the respective values of BSCs associated with these particular partial waves, but results from the fact that only the Mie scattering coe¢ cient a 1 is to be retained in the calculation. But the fact that optical forces generated by rays passing at d on from z on in the on-axis con…guration or by rays passing at d on=of f from the same axis in the o¤-axis con…guration is linked to the speci…c values taken by the BSCs in these di¤erent con…gurations.

Furthermore, in both cases, a large enough particle would interact with all partial waves, whether it is in an on-axis or in an o¤-axis con…guration, and therefore the gradient force would be zero insofar as there is no longitudinal gradient of E:E associated in the whole beam, in agreement with the standard theory of optical forces expressed in terms of scattering and gradient forces. Conversely, a Rayleigh particle interacting only with the n = 1 partial waves does not interact with the whole beam but only with a part of the whole beam. The axicon terms revealed in the present paper then indeed show that the longitudinal gradient of ] E:E is not zero, from which we could expect a longitudinal gradient force which would be non zero as well. The fact that, nevertheless we have C g pr;z = 0, see Eq.( 42) in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], that is to say that the longitudinal gradient force is still zero may then be surprising. This is to be viewed as a coincidence or as a signi…cant result requiring an explanation still to be revealed. In particular, the evaluation of C g pr;z accounts for higher-order multipoles with n = 2 which does not occur in the gradient of ] E:E and which are not included in the use of the van de Hulst principle. Whatever the future of this story, our calculation exhibits a case when there is a zero longitudinal gradient force although the longitudinal gradients "felt" by the particle are not zero, but are indeed expressed by what we have called axicon terms.

6.3

Further works.

Further works are required to complement what is already known and understood. The next step should be a study of transverse optical forces similar to the previous work [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and to the present work, both of them devoted to longitudinal optical forces [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. Next, the on-axis con…guration of Bessel beams should be studied (i) to con…rm in a simpli…ed framework that axicon forces and terms indeed cancel in such a con…guration and (ii) to provide a comparison between the cases of dark and non dark beams which exhibit structural di¤erent features [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF], [START_REF] Gouesbet | A darkness theorem for the beam shape coe¢cients and its relationship to higher-order non vortex Bessel beams[END_REF]. We may anticipate that speci…c departures from the standard theory could occur for dark beams, although the anticipation could be deceived. Also, the case of o¤-axis Gaussian beams which can be analytically handled using a localized beam model [START_REF] Gouesbet | Rigorous justi…cation of the localized approximation to the beam shape coe¢ cients in generalized Lorenz-Mie theory. II. O¤-axis beams[END_REF] should be investigated in order to check whether the newly axicon forces and terms are speci…c of axicon beams, or whether they occur in more general situations. Our current anticipation, which could again be deceived, is that indeed the newly studied terms occur in other situations than the one of axicon beams.

Conclusion.

Since the work of Ashkin, see [START_REF] Ashkin | Optical trapping and manipulations of neutral particles using lasers: A reprint volume with commentaries[END_REF] for a compilation, we are used to think of optical forces in terms of gradient and scattering forces. However, in a recent paper studying longitudinal optical forces in the case of o¤-axis Bessel beams in the Rayleigh regime, a new unexpected kind of optical forces, associated with the scattering force procedure, named axicon forces have been uncovered. In the present paper, we demonstrated the existence of axicon terms associated with gradient forces. These axicon terms are zero if the axicon angle is zero and/or if we are facing an on-axis con…guration. It is expected that such axicon forces and terms would occur whenever axicon angles are involved in the beam description. This would encompass Bessel beams whatever the polarization, all kinds of beams obtained from Bessel beam superpositions, e.g. frozen waves, Mathieu and Lommel beams [START_REF] Zamboni-Rached | Stationary optical wave …elds with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen waves[END_REF], [START_REF] Ambrosio | Analytical approach of ordinary frozen waves for optical trapping and micromanipulation[END_REF], [START_REF] Ambrosio | Optical forces experienced by arbitrary-sized spherical scatterers from superpositions of equal-frequency Bessel beams[END_REF], [START_REF] Ambrosio | Circularly symmetric frozen waves: Vector approach for light scattering calculations[END_REF], [START_REF] Ambrosio | Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal and radial polarization[END_REF], [START_REF] Ambrosio | Assessing the validity of the localized approximation for discrete superposition of Bessel beams[END_REF], [START_REF] Ambrosio | Zeroth-order continuous vector frozen waves for light scattering: exact multipole expansion in the generalized Lorenz-Mie theory[END_REF], [START_REF] Cha…q | Paraxial approximation of Mathieu beams through an apertured ABCD optical system[END_REF], [START_REF] Cha…q | Radiation pressure cross section exerted on homogeneous dielectric spherical particle by zeroth order Mathieu beams[END_REF][49], [START_REF] Cha…q | Scattering of Lommel beams by homogeneous spherical particle in generalized Lorenz-Mie theory[END_REF], or Laguerre-Gauss beams focused by a lens [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF], [START_REF] Van De Nes | Rigorous analysis of spheres in Gauss-Laguerre beams[END_REF], [START_REF] Török | The use of Gauss-Laguerre vector beams in STED microscopy[END_REF], [START_REF] Ambrosio | On localized approximations for Laguerre-Gauss beams focused by a lens[END_REF], [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF].
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We may then evaluate , and using Eqs.( 15)-( 18) of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. In terms of A m n and B m n , we obtain:

Recalling that the A m n 's and B m n 's are real numbers, Eq.53 simpli…es to:

Next, we express the A m n 's and B m n 's using expressions ( 17)-( 18) of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], in terms of generalized Legendre functions m n and m n , and, expressing these Legendre functions themselves, we obtain:

A 0 1 = J l+1 0 1 = J l+1 S (56)