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Abstract

In a recent paper devoted to the study of longitudinal optical forces
exerted by off-axis Bessel beams in the Rayleigh regime in generalized
Lorenz-Mie theory, new kind of optical forces are discovered. They are
different than the well established scattering and gradient forces, and
called axicon forces. In the present paper, within the same framework,
we demonstrate the existence of a new kind of axicon terms, associated
with gradient forces, which are zero both when the axicon angle is zero
and when an on-axis configuration is considered.

Keywords : generalized Lorenz-Mie theory; Bessel beams; optical forces;
scattering forces; gradient forces; axicon forces.

1 Introduction.

This paper is the continuation of a previous paper [1] which was devoted to
the study of longitudinal optical forces exerted by off-axis Bessel beams in the
Rayleigh regime in the framework of generalized Lorenz-Mie theory, see [2], [3],
[4], [5], [6], [7], [8], [9] for a collection of reviews devoted to optical forces, and
[10] for a recent review written on the occasion of Arthur Ashkin’s receipt of
the 2018 Nobel prize in physics for his pioneering work in optical levitation and
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manipulation. In [1], beside classical scattering and gradient forces, a new kind
of optical forces associated with scattering forces, named axicon (scattering)
forces, has been discovered. Concerning gradient forces, they have been found
to be zero in agreement with the fact the longitudinal gradients of (i) the electric
intensity (ii) the energy density and (iii) the longitudinal component of the
Poynting vector are zero for Bessel beams. In the present paper, we proceed to
a refined investigation of the gradient forces identified in [1] and demonstrate
that they are actually accompanied by axicon terms which are zero if the axicon
angle is zero and/or if the configuration is an on-axis configuration.
Before proceeding further, it is important to insist on the meaning of new

expressions introduced in the present paper and in the previous paper [1]. The
new terminology introduces "axicon forces" and "axicon terms". Axicon forces
are forces which are deduced from the expressions for pressure radiation cross-
sections (or forces) but which have no counterpart in expressions dealing with
scattering expressions, e.g. such as expressed by the Poynting vector, which may
be called axicon scattering forces as examined in [1]. Conversely, axicon terms
are extra-terms which do not arise from the expressions for pressure radiation
cross-sections (or forces) but which arise from gradient expressions. Axicon
terms associated with gradient expressions are examined in the present paper. .
The paper is organized as follows. Section 2 presents a background already

presented in [1] but which is repeated here for the convenience of the reader,
complemented by recalling a few results taken from [1] but useful for the present
paper. Section 3 deals with the longitudinal gradient of the electric intensity. Sec-
tion 4 deals with the longitudinal gradient of the time averaged energy density.
Section 5 deals with the longitudinal gradient of the longitudinal component of
the Poynting vector. In these sections 3, 4, and 5, it is demonstrated that some
axicon terms must be associated with the gradient force. Section 6 provides an
extra-discussion of some issues enlightening the results obtained in the present
paper and in the previous paper [1]. Section 7 is a conclusion.

2 Physical and mathematical background.

The GLMT stricto sensu describes the interaction between an arbitrary
(structured) shaped beam and a homogeneous spherical particle defined by its
diameter and its complex refractive index, e.g. [11], [12], [13], and references
therein. Also, see reviews [14], [15], in particular for other GLMTs devoted to
the interaction between laser beams and other kinds of scatterers. In the present
paper, we consider a Rayleigh particle located at the origin OP of a Cartesian
coordinate system OPxyz illuminated by an off-axis Bessel beam propagating
along the z-direction.
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2.1 Optical forces.

In the GLMT framework, we express the optical force components Fi by
using (unnormalized) pressure radiation cross-section components Cpr,i (i =
x, y, z). In the present paper, we deal only with the longitudinal cross-section
(along z−direction) reading as:

Cpr,z = E0H
∗
0

λ2

2π

∞∑
n=1

n∑
m=−n

{ 1

(n+ 1)2
(n+ 1 + |m|)!

(n− |m|)! (1)

Re[(an + a∗n+1 − 2ana
∗
n+1)g

m
n,TMg

m∗
n+1,TM

+(bn + b∗n+1 − 2bnb
∗
n+1)g

m
n,TEg

m∗
n+1,TE ]

+m
2n+ 1

n2(n+ 1)2
(n+ |m|)!
(n− |m|)!

Re[i(2anb
∗
n − an − b∗n)gmn,TMg

m∗
n,TE)]}

with notations being the ones of [11]. However, note that, strictly speaking,
Cpr,z of Eq.1 would be a pressure radiation cross-section, i.e. would be homoge-
neous to an area, if we used the normalization condition E0H∗0/2 =1 (which was
used in original works, e.g. Eq.(3.106) in [13]) . Here, we did not use this condi-
tion for the sake of consistency with later expressions concerning the Poynting
vector. When using the normalization condition, the forces are related to the
cross-sections according to Fi = Cpr,i/c ([16], p.14). The time-dependence of
the wave is exp(+iωt) which is the usual choice in GLMT. Also, note that the
denominator 1/(2π) was missprinted to 1/(4π) in [1].
Furthermore, specifically, an and bn are the usual Mie coeffi cients of the usual

Lorenz-Mie theory, gmn,TM and gm,,TE , with TM and TE standing for "Transverse
Magnetic" and "Transverse Electric" respectively, are the beam shape coeffi -
cients (BSCs) encoding the description of the beam, either in terms of scalar
potentials, e.g. [13] or in terms of vector spherical wave functions [17], the star
denotes a complex conjugation and λ is the wavelength. In the present paper,
we shall consider only the longitudinal force of Eq.1 because it will lead to sim-
pler computations than for the two other force components along x and y, and,
more important, because we expect a natural separation between gradient and
scattering forces along the z-direction.

2.2 Poynting vector.

For the same reasons, we shall only consider the z−component Sz of the
Poynting vector defined as:
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Sz =
1

2
Re(ExH

∗
y − EyH∗x) (2)

which has already been evaluated to [18], [19]:

Sz =
−E0H∗0

2r2
Re

∞∑
n=1

+n∑
m=−n

∞∑
p=1

+p∑
q=−p

icpwn cpw∗p ei(m−q)ϕ (3)

(sin θSmqnp + cos θCmqnp )

in which (r, θ, ϕ) are spherical coordinates attached to the Cartesian coordi-
nates (x, y, z), cpwn are prefactors appearing in the Bromwich formulation of the
Lorenz-Mie theory [20], reading as:

cpwn =
1

ik
(−i)n 2n+ 1

n(n+ 1)
(4)

and :

Smqnp = kr[−gmn,TMg
q∗
p,TMψp(ψn + ψ

′′

n)P |m|n τ |q|p (5)

+gmn,TEg
q∗
p,TEψn(ψp + ψ

′′

p )P |q|p τ |m|n

+qgmn,TMg
q∗
p,TEψ

′

p(ψn + ψ
′′

n)P |m|n π|q|p

+mgmn,TMg
q∗
p,TEψ

′

n(ψp + ψ
′′

p )P |q|p π|m|n ]

Cmqnp = −gmn,TMg
q∗
p,TMψpψ

′

n(τ |m|n τ |q|p +mqπ|m|n π|q|p ) (6)

+gmn,TMg
q∗
p,TEψ

′

nψ
′

p(mπ
|m|
n τ |q|p + qπ|q|p τ

|m|
n )

−gmn,TEg
q∗
p,TMψpψn(mπ|m|n τ |q|p + qπ|q|p τ

|m|
n )

+gmn,TEg
q∗
p,TEψnψ

′

p(mqπ
|m|
n π|q|p + τ |m|n τ |q|p )

in which k is the wavenumber, P |m|n = P
|m|
n (cos θ) are associated Legendre

functions, τ |m|n = τ
|m|
n (cos θ) and π|m|n = π

|m|
n (cos θ) are generalized Legendre

functions, and ψn = ψn(kr) are Ricatti-Bessel functions, while a prime denotes
a derivative with respect to the argument (and a double prime a second deriv-
ative). In Eqs.5-6, arguments are omitted for convenience. The omission of
arguments will be recurrent in the sequel whenever we find it convenient.
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2.3 Mathematical background.

Associated Legendre functions are defined according to Hobson’s notation
[21]:

P |m|n (cos θ) = (−1)|m|(sin θ)|m|
d|m|Pn(cos θ)

(d cos θ)|m|
(7)

in which Pn(cos θ) are the usual Legendre polynomials. Generalized Legen-
dre functions may then be evaluated according to:

τmn (cos θ) =
dPmn (cos θ)

dθ
(8)

πmn (cos θ) =
Pmn (cos θ)

sin θ
(9)

Ricatti-Bessel functions ψn(kr) may be expressed in terms of spherical
Bessel functions jn(kr) according to:

ψn(x) = xjn(x) (10)

Furthermore, we have [22]:

j1(x) =
sinx

x2
− cosx

x
(11)

2.4 Bessel beams.

Bessel beams have been introduced by Durnin and co-workers [23], [24].
They possess the appealing property of being self-healing and non diffracting,
and, more important in the context of the present paper, they furthermore
possess a propagation invariance property, namely the intensity of the beam is
constant along the direction of propagation. There exist an infinity of kinds
of Bessel beams, in particular depending on the value given to an arbitrary
function g(α0), in which α0 is the axicon angle (or half-cone angle) of the beam,
with different linear and circular polarizations [25], [26], [27], [28]. All of them
generically exhibit the following structure:
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Ki = ki(x, y)e−ikzz, i = x, y, z, K = E or H (12)

in which kz = k cosα0 is the longitudinal wavenumber. Among all of them,
we shall pay a particular attention to circularly symmetric Bessel beams of
arbitrary order whose BSCs in an off-axis configuration read as [28]:

gmn,TM = −g(α0)e
ikzz0 [il−m+1ei(l−m+1)φ0Amn + il−m−1ei(l−m−1)φ0Bmn ] (13)

gmn,TE = ig(α0)e
ikzz0 [il−m+1ei(l−m+1)φ0Amn − il−m−1ei(l−m−1)φ0Bmn ] (14)

in which:

Amn = (−1)(m−|m|)/2
(n−m)!

(n+ |m|)!Jl−m+1(σ0)[τ
m
n (cosα0) +mπmn (cosα0)] (15)

Bmn = (−1)(m−|m|)/2
(n−m)!

(n+ |m|)!Jl−m−1(σ0)[τ
m
n (cosα0)−mπmn (cosα0)] (16)

in which l is the order of the Bessel beam under consideration, σ0 = ktρ0,
kt = k sinα0 is the transverse wavenumber, ρ0 = (x20+y

2
0)1/2, φ0 = tan−1(y0/x0),

(x0, y0, z0) denotes the location of the beam origin with respect to the origin of
the particle coordinate system at which the scatterer is located, and therefore
specifies the off-axis location of the beam, and Jk(.) is the k-order Bessel func-
tion of the first kind. When g(α0) = (1+cosα0)/4, the beam reduces to a Davis
circularly symmetric Bessel beam as discussed in [25], [29]. When g(α0) = 1/2,
the beam reduces to another kind of Bessel beam discussed in [30], [31], [32].
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2.5 Summary of some previous results.

In this subsection, we recall a few results obtained in [1] related to gra-
dient forces. In the Rayleigh regime which was considered in [1] and which is
still considered in the present paper, only the (n = 1)-partial waves are to be
considered and we only have to retain, in the expansions, the Mie coeffi cient a1
which simplifies to :

a1 =
2i

3

m2 − 1

m2 + 2
α3 +O(iα5) +

4

9
(
m2 − 1

m2 + 2
)2α6 (17)

b1 = O(iα5) (18)

in which m is the refractive index (here taken to be real) with respect to the
surrounding medium and α the size parameter πd/λ. The other coeffi cients an
and bn (n > 1) involves still higher powers of α. Real parts are then propor-
tional to α6 and imaginary parts are proportional to α3 while higher powers are
discarded and we therefore retain only:

Im(a1) =
2

3

m2 − 1

m2 + 2
α3 (19)

Re(a1) =
4

9
(
m2 − 1

m2 + 2
)2α6 (20)

The scattering force represented by Cspr,z and the gradient force repre-
sented by Cgpr,z are proportional to α

6 and α3 respectively. It is then demon-
strated that, by evaluating Cgpr,z with the proviso that the Rayleigh particle is
only sensitive to the (n = 1)- partial waves, we have:

Cgpr,z = 0 (21)

The nullity of this term identified as a gradient term is consistent with
the fact that, due to Eq.12, the longitudinal gradients of the electric inten-
sity E.E∗, of the time-averaged energy density (ε0E.E

∗ + µ0H.H
∗) and of the

z−component of the Poynting vector are zero. However, the Rayleigh particle
does not perceive all the partial waves involved in Eq.12 but only the (n = 1)-
partial waves. This implies that a refinement of the analysis is required in which
the electric intensity, the time-averaged energy density and the z−component
of the Poynting vector would be evaluated by only considering the contributions
of the (n = 1)-partial waves. The aim of the present paper is to proceed to this
refined analysis. Quantities restricted to (n = 1) partial waves are decorated
with a tilde.
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3 Electric intensity.

When restricted to the (n = 1)-partial waves, the electric components in
spherical coordinates read as (e.g. [13], pp.55-56):

Ẽr = kE0c
pw
1 (ψ

′′

1 + ψ1)

+1∑
m=−1

gm1,TMP
|m|
1 eimϕ (22)

Ẽθ =
E0
r
cpw1

+1∑
m=−1

[gm1,TMψ
′

1τ
|m|
1 +mgm1,TEψ1π

|m|
1 ]eimϕ (23)

Ẽϕ =
iE0
r
cpw1

+1∑
m=−1

[mgm1,TMψ
′

1π
|m|
1 + gm1,TEψ1τ

|m|
1 ]eimϕ (24)

From these equations, we may evaluate:

ẼrE∗r =
9

4

|E0|2

k2
k2(ψ

′′

1 + ψ1)
2[e−2iϕg−11,TMg

1∗
1,TMP

1
1P

1
1 (25)

+e−iϕ(g−11,TMg
0∗
1,TM + g01,TMg

1∗
1,TM )P 11P

0
1

+e0ϕ(g−11,TMg
−1∗
1,TMP

1
1P

1
1 + g01,TMg

0∗
1,TMP

0
1P

0
1 + g11,TMg

1∗
1,TMP

1
1P

1
1 ]

+eiϕ(g01,TMg
−1∗
1,TM + g11,TMg

0∗
1,TM )P 11P

0
1

+e2iϕg11,TMg
−1∗
1,TMP

1
1P

1
1 ]

in which we have used:

cpw1 cpw∗1 =
9

4k2
(26)

and:
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ẼθE∗θ =
9

4

|E0|2

k2
{ψ

′

1ψ
′

1

r2
[e−2iϕg−11,TMg

1∗
1,TMτ

1
1τ
1
1 (27)

+e−iϕ(g−11,TMg
0∗
1,TM + g01,TMg

1∗
1,TM )τ11τ

0
1

+e0ϕ(g−11,TMg
−1∗
1,TMτ

1
1τ
1
1 + g01,TMg

0∗
1,TMτ

0
1τ
0
1 + g11,TMg

1∗
1,TMτ

1
1τ
1
1)

+eiϕ(g−1∗1,TMg
0
1,TM + g0∗1,TMg

1
1,TM )τ11τ

0
1

+e2iϕg−1∗1,TMg
1
1,TMτ

1
1τ
1
1]

+
ψ
′

1ψ1
r2

[e−2iϕ(g−11,TMg
1∗
1,TE − g−11,TEg

1∗
1,TM )π11τ

1
1

+e−iϕ(g01,TMg
1∗
1,TE − g−11,TEg

0∗
1,TM )π11τ

0
1

+e0ϕ(g11,TEg
1∗
1,TM − g−11,TMg

−1∗
1,TE + g11,TMg

1∗
1,TE − g−11,TEg

−1∗
1,TM )π11τ

1
1

+eiϕ(g11,TEg
0∗
1,TM − g01,TMg−1∗1,TE)π11τ

0
1

+e2iϕ(g11,TEg
−1∗
1,TM − g

1
1,TMg

−1∗
1,TE)π11τ

1
1

−ψ1ψ1
r2

[e−2iϕg−11,TEg
1∗
1,TE − e0ϕ(g−11,TEg

−1∗
1,TE + g11,TEg

1∗
1,TE) + e2iϕg11,TEg

−1∗
1,TE ]π11π

1
1

ẼϕE∗ϕ =
9

4

|E0|2

k2
{ψ

′

1ψ
′

1

r2
[−e−2iϕg−11,TMg

1∗
1,TMπ

1
1π

1
1 (28)

+e0ϕ(g−11,TMg
−1∗
1,TM + g11,TMg

1∗
1,TM )π11π

1
1

−e2iϕg11,TMg−1∗1,TMπ
1
1π

1
1]

+
ψ
′

1ψ1
r2

[e−2iϕ(g−11,TEg
1∗
1,TM − g−11,TMg

1∗
1,TE)π11τ

1
1

+e−iϕ(g01,TEg
1∗
1,TM − g−11,TMg

0∗
1,TE)π11τ

0
1

+e0ϕ(g1∗1,TEg
1
1,TM − g−11,TMg

−1∗
1,TE + g11,TEg

1∗
1,TM − g−11,TEg

−1∗
1,TM )π11τ

1
1

+eiϕ(g11,TMg
0∗
1,TE − g01,TEg−1∗1,TM )π11τ

0
1

+e2iϕ(g11,TMg
−1∗
1,TE − g

1
1,TEg

−1∗
1,TM )π11τ

1
1

+
ψ1ψ1
r2

[e−2iϕg−11,TEg
1∗
1,TEτ

1
1τ
1
1 + e−iϕ(g−11,TEg

0∗
1,TE + g01,TEg

1∗
1,TE)τ11τ

0
1

+e0ϕ(g−11,TEg
−1∗
1,TEτ

1
1τ
1
1 + g01,TEg

0∗
1,TEτ

0
1τ
0
1 + g11,TEg

1∗
1,TEτ

1
1τ
1
1)

+eiϕ(g01,TEg
−1∗
1,TE + g11,TEg

0∗
1,TE)τ11τ

0
1) + e2iϕg11,TEg

−1∗
1,TEτ

1
1τ
1
1]

We may then evaluate the corresponding electric intensity according to:

ĨE = ẼrE∗r + ẼθE∗θ + ẼϕE∗ϕ (29)
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which is found to read as:

ĨE =

+2∑
k=−2

ĨkE (30)

Specifying the values of associated Legendre functions and of generalized
Legendre functions according to:

P 00 = P 00 (cos θ) = 1 (31)

P 01 = P 01 (cos θ) = −τ11(cos θ) = cos θ (32)

P 11 = P 11 (cos θ) = τ01(cos θ) = − sin θ (33)

π11 = π11(cos θ) = −1 (34)

we obtain:

Ĩ−2E = Ĩ2E
∗

=
9

4

|E0|2

k2
e−2iϕ sin2 θ{[k2(ψ

′′

1+ψ1)
2−ψ

′

1ψ
′

1

r2
]g−11,TMg

1∗
1,TM+

ψ1ψ1
r2

g−11,TEg
1∗
1,TE}

(35)

Ĩ−1E = Ĩ1E
∗

=
9

4

|E0|2

k2
e−iϕ sin θ{cos θ[

ψ
′

1ψ
′

1

r2
− k2(ψ

′′

1 + ψ1)
2](g−11,TMg

0∗
1,TM + g01,TMg

1∗
1,TM )

+
ψ
′

1ψ1
r2

(g01,TMg
1∗
1,TE − g−11,TEg

0∗
1,TM − g−11,TMg

0∗
1,TE + g01,TEg

1∗
1,TM ) (36)

+ cos θ
ψ1ψ1
r2

(g−11,TEg
0∗
1,TE + g01,TEg

1∗
1,TE)}
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Ĩ0E =
9

4

|E0|2

k2
e0ϕ{[k2 sin2 θ(ψ

′′

1 + ψ1)
2 + cos2 θ

ψ
′

1ψ
′

1

r2
](g−11,TMg

−1∗
1,TM + g11,TMg

1∗
1;TM )

+[k2 cos2 θ(ψ
′′

1 + ψ1)
2 + sin2 θ

ψ
′

1ψ
′

1

r2
]g01,TMg

0∗
1,TM (37)

2 cos θ
ψ
′

1ψ1
r2

(g11,TMg
1∗
1,TE − g−11,TMg

−1∗
1,TE + g11,TEg

1∗
1,TM − g−11,TEg

−1∗
1,TM )

(cos2 θ + 1)
ψ1ψ1
r2

(g11,TEg
1∗
1,TE + g−11,TEg

−1∗
1;TE)

+ sin2 θ
ψ1ψ1
r2

g01,TEg
0∗
1,TE +

ψ
′

1ψ
′

1

r2
(g−11,TMg

−1∗
1,TM + g11,TMg

1∗
1;TM )}

We are now interested in the calculation of the derivative of the (re-
stricted) electric intensity with respect to z, taken at z = 0, i.e. at the place
where the particle is located. This requires in a first step to express cos θ,
sin θ and the radial coordinate r in terms of Cartesian coordinates, a trivial
task indeed. Furthermore, in evaluating these derivatives, and other deriva-
tives in subsequent subsections, derivatives with respect to ϕ may be omit-
ted. In a few words, this comes from the fact that z−dependence is only
encoded in the spherical coordinates r and θ, but not in ϕ. The suspicious
reader may have a direct check by using the equation ∂f(r, θ) exp(±ikϕ)/∂z
= exp(±ikϕ)∂f(r, θ)/∂z + f(r, θ)∂ exp(±ikϕ)/∂z, leaving the derivatives eval-
uated below unchanged.

Then, we consider Ĩ−2E and Ĩ2E , and evaluate:

{ ∂
∂z

sin2 θ[k2(ψ
′′

1 + ψ1)
2 − ψ

′

1ψ
′

1

r2
]}z=0 = 0 (38)

(
∂

∂z
sin2 θ

ψ1ψ1
r2

)z=0 = 0 (39)

in which we expressed the terms dependent on r and θ in terms of x, y, z
and recalled that, using Eqs.10 and 11:

ψ1(kr) = kr[
sin(kr)

(kr)2
− cos(kr)

kr
] (40)

Hence:

(
∂Ĩ−2E
∂z

)z=0 = (
∂Ĩ2E
∂z

)z=0 = 0 (41)
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For Ĩ−1E and Ĩ−1E , we have:

Ω1 = { ∂
∂z

sin θ cos θ[
ψ
′

1ψ
′

1

r2
− k2(ψ

′′

1 + ψ1)
2]}z=0 6= 0 (42)

(
∂

∂z
sin θ

ψ
′

1ψ1
r2

)z=0 = 0 (43)

Ω2 = (
∂

∂z
sin θ cos θ

ψ1ψ1
r2

)z=0 6= 0 (44)

so that we obtain:

(
∂Ĩ−1E
∂z

)z=0 = [(
∂Ĩ1E
∂z

)z=0]
∗ =

9

4

|E0|2

k2
e−iϕ(αΩ1 + βΩ2) (45)

in which α (not to be confused with the size parameter) and β are given by:

α = g−11,TMg
0∗
1,TM + g01,TMg

1∗
1,TM (46)

β = g−11,TEg
0∗
1,TE + g01,TEg

1∗
1,TE (47)

For (∂Ĩ0E/∂z)z=0, all derivatives with respect to z, taken at z = 0, of
the different terms involved in Eq.37 are found to be 0, excepted one of them,
namely:

Ω3 = (
∂

∂z
cos θ

ψ
′

1ψ1
r2

)z=0 6= 0 (48)

leading to:

(
∂Ĩ0E
∂z

)z=0 =
9

2

|E0|2

k2
γΩ3 (49)

in which:
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γ = g11,TMg
1∗
1,TE − g−11,TMg

−1∗
1,TE + g11,TEg

1∗
1,TM − g−11,TEg

−1∗
1,TM (50)

= 2 Re(g11,TMg
1∗
1,TE − g−11,TMg

−1∗
1,TE)

We may then evaluate α, β and γ using Eqs.(15)-(18) of [1]. In terms
of Amn and Bmn , we obtain:

α = i |g(α0)|2 {eiφ0 [A01(A−11 +A11) +B01(B−11 +B11)] (51)

−e−iφ0(B−11 A01 +B01A
1
1)− e3iφ0(A−11 B01 +A01B

1
1)}

β = i |g(α0)|2 {eiφ0 [A01(A−11 +A11) +B01(B−11 +B11)] (52)

+e−iφ0(B−11 A01 +B01A
1
1) + e3iφ0(A−11 B01 +A01B

1
1)}

γ = 2 Re{i |g(α0)|2 [(A11)
2 + (B−11 )2 − (B11)2 − (A−11 )2 (53)

+e2iφ0(A11B
1
1 −A−11 B−11 ) + e−2iφ0(A−11 B−11 −A11B11)]

Recalling that the Amn ’s and B
m
n ’s are real numbers, Eq.53 simplifies to:

γ = −4 |g(α0)|2 sin(2φ0)(A
1
1B

1
1 −A−11 B−11 ) (54)

Next, we express the Amn ’s and Bmn ’s using expressions (17)-(18) of [1],
in terms of generalized Legendre functions πmn and τmn , and, expressing these
Legendre functions themselves, we obtain:

A−11 = −Jl+2(τ−11 − π−11 ) = −1

2
Jl+2(C − 1) (55)

A01 = Jl+1τ
0
1 = −Jl+1S (56)

A11 =
1

2
Jl(τ

1
1 + π11) =

−1

2
Jl(C + 1) (57)
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B−11 = −Jl(τ−11 + π−11 ) =
−1

2
Jl(C + 1) (58)

B01 = Jl−1τ
0
1 = −Jl−1S (59)

B11 =
1

2
Jl−2(τ

1
1 − π11) =

−1

2
Jl−2(C − 1) (60)

in which C = cosα0, S = sinα0 and in which we have used τ
−1
1 = C/2,

τ01 = −S, τ11 = −C, π−11 = 1/2 and π11 = −1. Furthermore the argument σ0 of
the Bessel functions is omitted. We then obtain:

α =
iS

2
|g(α0|2 {eiφ0 [(C − 1)(Jl+1Jl+2 + Jl−2Jl−1) + (C + 1)(Jl−1Jl + JlJl+1)]

−e−iφ0(C + 1)(JlJl+1 + Jl−1Jl) (61)

−e3iφ0(C − 1)(Jl−1Jl+2 + Jl−2Jl+1)}

β =
iS

2
|g(α0|2 {eiφ0 [(C − 1)(Jl+1Jl+2 + Jl−2Jl−1) + (C + 1)(Jl−1Jl + JlJl+1)]

+e−iφ0(C + 1)(JlJl+1 + Jl−1Jl) (62)

+e3iφ0(C − 1)(Jl−1Jl+2 + Jl−2Jl+1)}

γ = − |g(α0)|2 (C − 1)(C + 1)(Jl−2Jl − JlJl+2) sin 2φ0 (63)

Therefore, although (∂IE/∂z)z=0 = 0, it happens that (∂ĨE/∂z)z=0 6= 0
and contains extra axicon terms. However these extra-terms are zero whevener
(i) the axicon angle is zero, i.e. C = 1 and S = 0 (ii) the configuration is an
on-axis configuration. The fact that the extra-terms are zero for an on-axis con-
figuration results from the mathematical property that Jk(0) = 0 excepted for
k = 0, and from the physical property that σ0 = 0 for an on-axis configuration.
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4 Energy density.

To deal with the energy density ˜ε0E.E
∗ + µ0H.H

∗, we have to evaluate the

magnetic intensity ĨH = H̃.H∗. Instead of Eqs.22-24, we now have to deal with
(see again [13], pp.55-56):

H̃r = kH0c
pw
1 (ψ

′′

1 + ψ1)

+1∑
m=−1

gm1,TEP
|m|
1 eimϕ (64)

H̃θ =
H0

r
cpw1

+1∑
m=−1

[gm1,TEψ
′

1τ
|m|
1 −mgm1,TMψ1π

|m|
1 ]eimϕ (65)

H̃ϕ =
iH0

r
cpw1

+1∑
m=−1

[mgm1,TEψ
′

1π
|m|
1 − gm1,TMψ1τ

|m|
1 ]eimϕ (66)

We then observe that the magnetic intensity is deduced directly from
the electric intensity by carrying out the following changes:

E0 → H0, gm1,TM → gm1,TE , g
m
1,TE → −gm1,TM (67)

so that we directly obtain:

(
∂Ĩ−2H
∂z

)z=0 = (
∂Ĩ2H
∂z

)z=0 = 0 (68)

(
∂Ĩ−1H
∂z

)z=0 = [(
∂Ĩ1H
∂z

)z=0]
∗ =

9

4

|H0|2

k2
e−iϕ(βΩ1 + αΩ2) (69)

(
∂Ĩ0H
∂z

)z=0 =
−9

2

|H0|2

k2
γΩ3 (70)

Therefore, although (∂IH/∂z)z=0 = 0, it happens that (∂ĨH/∂z)z=0 6= 0
and contains extra axicon terms. However, once again, these extra-terms are zero
whevener (i) the axicon angle is zero, i.e. C = 1 and S = 0 (ii) the configuration
is an on-axis configuration. Because this is the same conclusion that for the

15



electric intensity, it immediately extends to the time averaged energy density
˜ε0E.E
∗ + µ0H.H

∗.

More specifically, adding ˜ε0E.E∗ and ˜µ0H.H
∗, and using H0/E0 =√

ε0/µ0, we may establish that, after simplifying and rearranging:

[
∂

∂z
( ˜ε0E.E

∗ + µ0H.H
∗)]z=0 = 2 Re(Γe−iϕ)Ω4 (71)

in which:

Ω4 = Ω1 + Ω2 = { ∂
∂z

sin θ cos θ[
(ψ1)

2 + (ψ
′

1)
2

r2
− k2(ψ

′′

1 + ψ1)
2]}z=0 6= 0 (72)

and:

Γ = α+β = iS |g(α0)|2 eiφ0 [(C−1)(Jl+1Jl+2+Jl−2Jl−1)+(C+1)((Jl−1Jl)+JlJl+1)]
(73)

to which the above comments still apply.

5 Poynting vector.

Finally, we have to evaluate and discuss (∂S̃z/∂z)z=0. We start from Eq.(3)
in [1] and specify it to the Rayleigh situation when only the partial waves with
n = 1 are to be retained, that is to say we now consider:

(
∂S̃z
∂z

)z=0 =
−9E0H

∗
0

8k2
Re

+1∑
m=−1

+1∑
q=−1

iei(m−q)ϕ[
∂

∂z

1

r2
(sin θSmq11 + cos θCmq11 )]z=0

(74)

in which we have used Eq.26. The coeffi cients Smq11 and Cmq11 are given
by Eqs.5-6. Each of them contains four terms. Therefore we have 9x2x4=72
derivatives to evaluate with the fortunate fact, however, that there are many
redundant terms. Once these derivatives are done, the only nonzero derivatives
are found to be:
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[
∂

∂z

1

r
sin θψ1(ψ

′′

1 + ψ1)P
1
1 τ

1
1]z=0 = [

∂

∂z

1

r
sin2 θ cos θψ1(ψ

′′

1 + ψ1)]z=0 (75)

[
∂

∂z

1

r
sin θψ

′

1(ψ
′′

1 + ψ1)P
1
1 π

0
1]z=0 = −[

∂

∂z

1

r
sin θ cos θψ

′

1(ψ
′′

1 + ψ1)]z=0 (76)

[
∂

∂z

1

r
sin θψ

′

1(ψ
′′

1 + ψ1)P
0
1 π

1
1]z=0 = −[

∂

∂z

1

r
sin θ cos θψ

′

1(ψ
′′

1 + ψ1)]z=0 (77)

[
∂

∂z

1

r2
cos θψ1ψ

′

1)(τ
1
1τ
1
1 + π11π

1
1)]z=0 = [

∂

∂z

1

r2
cos θ(cos2 θ + 1)ψ1ψ

′

1]z=0 (78)

[
∂

∂z

1

r2
cos θψ1ψ

′

1)(τ
1
1τ
1
1 − π11π11)]z=0 = [

∂

∂z

1

r2
cos θ(cos2 θ − 1)ψ1ψ

′

1]z=0 (79)

[
∂

∂z

1

r2
cos θψ

′

1ψ
′

1π
1
1τ
0
1]z=0 = [

∂

∂z

1

r2
sin θ cos θψ

′

1ψ
′

1]z=0 (80)

[
∂

∂z

1

r2
cos θψ1ψ1π

1
1τ
0
1]z=0 = [

∂

∂z

1

r2
sin θ cos θψ1ψ1]z=0 (81)

[
∂

∂z

1

r2
cos θψ1ψ

′

1τ
0
1τ
0
1]z=0 = [

∂

∂z

1

r2
sin2 θ cos θψ1ψ

′

1]z=0 (82)

These quantities appear in Smq11 with mq = −1− 1, 11, −11, 1− 1, −10, 10,
0 − 1, 01, 00 and in Cmq11 with the same values of mq. Inserting these nonzero
values in Eq.74 and rearranging we obtain, after a fairly lengthy and tedious
computation:

(
∂S̃z
∂z

)z=0 =
−9E0H

∗
0

8k2
Re i{(cosϕG1 + i sinϕG2) (83)

[
∂

∂z

1

r2
sin θ cos θ(krψ

′

1(ψ
′′

1 + ψ1)− ψ
′

1ψ
′

1)]z=0

+(cosϕG∗1 − i sinϕG∗2)

[
∂

∂z

1

r2
sin θ cos θψ1ψ1]z=0
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in which we used the fact that Re i(z + z∗) = 0, and in which:

G1 = g0∗1,TE(g−11,TM − g
1
1,TM ) + g01,TM (g−1∗1,TE − g

1∗
1,TE) (84)

G2 = −g0∗1,TE(g11,TM + g−11,TM ) + g01,TM (g−1∗1,TE + g1∗1,TE) (85)

G1 and G2 are now evaluated using the now usual manner, leading to:

G1 = |g(α0)|2 (G−11 e−iφ0 −G11eiφ0 −G−31 e−3iφ0 −G31e3iφ0) (86)

in which:

G−11 = S[
C − 1

2
(Jl+1Jl+2 + Jl−2Jl−1)− (C + 1)Jl−1Jl] (87)

G11 = S[
C − 1

2
(Jl+1Jl+2 + Jl−2Jl−1)− (C + 1)JlJl+1] (88)

G−31 = G31 =
S(C − 1)

2
(Jl−1Jl+2 − Jl−2Jl+1) (89)

Therefore, G1 = 0 if (i) the axicon angle is zero (S = 0, C = 1) and
(ii) if the off-axis configuration becomes an on-axis configuration. As for G2, we
find:

G2 = |g(α0)|2 (G−12 e−iφ0 −G12eiφ0 −G−32 e−3iφ0 +G32e
3iφ0) (90)

in which:

G−12 = G11, G
1
2 = −G−11 , G−32 = G−31 , G32 = G31 (91)

which is commented similarly as G1.
Therefore, as a whole, although (∂Sz/∂z)z=0 is equal to zero, it happens

that (∂S̃z/∂z)z=0 is in general not equal to 0, although it is zero (i) if the axicon
angle is zero (ii) for an on-axis configuration.

18



6 Discussions related to axicon forces and axi-
con terms.

The contents of this section arises from reviewer comments and from mail
exchanges with Pr. James Lock from Cleveland University, USA.

6.1 Relationship with the standard theory of scatter-
ing and optical forces.

The previous paper [1] introduces new axicon forces which have no counterpart
in the usual standard theory of optical forces expressed in terms of scattering and
of gradient forces. We begin with axicon forces discussed in [1]. We may then
observe that the newly discussed axicon forces indeed arise from higher-order
multipole contributions. Such high-order contributions arise from the structure
of Eq.(1) in [1] which expresses the longitudinal radiation pressure cross-section
Cpr,z. BSCs then occur in a coupled way in terms reading as gmn,TMg

m∗
n+1,TM ,

gmn,TEg
m∗
n+1,TE and g

m
n,TMg

m∗
n,TE (m = −n, ...,+n). In the Rayleigh limit of the

GLMT, we only retain (n = 1)- partial waves so that we have to deal with
BSCs coupling terms of the form gm1,TMg

m∗
2,TM , g

m
1,TEg

m∗
2,TE and g

m
1,TMg

m∗
1,TE (m =

−1, 0,+1). The standard scattering force Cs11pr,z is expressed by Eq.(67) of [1]
containing couplings of the form g−11,TMg

−1∗
1,TE and g11,TMg

1∗
1,TE which therefore

do not involve any higher-order multipole contributions. Conversely, the new
axicon forces Cs12pr,z and C

s0
pr,z are expressed by Eqs.(49) and (50) of [1], which

are expressed in terms of quantities denoted G12 and G0 given by Eqs.(45) and
(46) of [1]. We then observe that G12 involves couplings of the form g−11,TMg

−1∗
2,TM

and g11,TMg
1∗
2,TM while G0 involves g01,TMg

0∗
2,TM , that is to say involves coupling

with higher-order multipole contributions, namely between (n = 1)− and (n =
2)−multipoles. In other words, the Rayleigh limit of the GLMT does not exactly
identify with the Rayleigh dipole theory of optical forces.

6.2 Relationship with the localization principle of van
de Hulst.

A plane wave of infinite extent may be thought of as being made up of separate
rays of light each independently pursuing its own path. According to the van
de Hulst principle of localization, e.g. p.208 of [16], a partial wave of order n in
the electromagnetic description of the plane wave corresponds to a ray passing
at a distance from the origin equal to (n + 1/2)(λ/2π). Here, the partial wave
of order n refers to a term in the classical Lorenz-Mie theory which contains
Bessel functions and spherical harmonics, with the integer n ranging from 1 to
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∞. This van de Hulst principle of localization has been successfully extended
from the case of plane waves to the case of structured beams and has been at
the origin of the localized approximation to the evaluation of BSCs, e.g. [33],
[34], see [35] for a review.
Let us first consider an on-axis location of the particle or, equivalently, in

the present context, a coordinate system centered on the beam, and let us call
zon its axis which is as well the direction of propagation of the beam (and which
is parallel to the z-axis considered in the off-axis configuration studied in the
present paper). The GLMT expands the on-axis wave in terms of partial waves
characterized by two subscripts non (the order of the partial wave) andmon (the
azimuthal mode). The van de Hulst principle then associates the partial wave
non with a ray passing at a distance (non + 1/2)(λ/2π) from the axis zon. Note
however that the value of this distance is questionable because its derivation,
using the method of stationary phase —not available from van de Hulst’s book
— requires that n >> 1 (James Lock, private communication), but this feature
does not change the gist of the argument discussed in this subsection. In the
Rayleigh limit, only the non = 1 partial wave interacts with the particle because
only the Mie coeffi cient a1 is to be retained. This corresponds to a ray passing
at a distance equal to don = 3λ/(4π) ≈ λ/4 from the zon-axis.
The off-axis coordinate system is the one used in the present paper, with

Cartesian coordinates (x, y, z) and partial waves characterized by the order noff
and the azimuthal mode moff (more simply denoted as n and m in the present
paper). The off-axis description of the beam is more complicated than the
on-axis description of the beam, but such a complication is required in order
to express the light scattered by the particle in terms of spherical coordinates
(r, θ, ϕ) centered on the particle which is located at the origin of the Cartesian
coordinates of the off-axis beam configuration. We now consider the van de
Hulst principle of localization in the off-axis coordinate system. Similarly as
above, in the Rayleigh regime, only the noff = 1 partial wave interacts with
the particle, corresponding to a ray passing at a distance doff = λ/4 from the
zoff -axis which may be at a distance don/off which is large with respect to the
zon-axis.
The fact that only non = 1 and noff = 1 are to be retained in the on-axis

and off-axis configurations respectively does not depend on the respective values
of BSCs associated with these particular partial waves, but results from the fact
that only the Mie scattering coeffi cient a1 is to be retained in the calculation.
But the fact that optical forces generated by rays passing at don from zon in the
on-axis configuration or by rays passing at don/off from the same axis in the
off-axis configuration is linked to the specific values taken by the BSCs in these
different configurations.
Furthermore, in both cases, a large enough particle would interact with all

partial waves, whether it is in an on-axis or in an off-axis configuration, and
therefore the gradient force would be zero insofar as there is no longitudinal
gradient of E.E∗ associated in the whole beam, in agreement with the standard
theory of optical forces expressed in terms of scattering and gradient forces.
Conversely, a Rayleigh particle interacting only with the n = 1 partial waves
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does not interact with the whole beam but only with a part of the whole beam.
The axicon terms revealed in the present paper then indeed show that the longi-
tudinal gradient of Ẽ.E∗ is not zero, from which we could expect a longitudinal
gradient force which would be non zero as well. The fact that, nevertheless we
have Cgpr,z = 0, see Eq.(42) in [1], that is to say that the longitudinal gradient
force is still zero may then be surprising. This is to be viewed as a coincidence or
as a significant result requiring an explanation still to be revealed. In particular,
the evaluation of Cgpr,z accounts for higher-order multipoles with n = 2 which

does not occur in the gradient of Ẽ.E∗ and which are not included in the use
of the van de Hulst principle. Whatever the future of this story, our calculation
exhibits a case when there is a zero longitudinal gradient force although the lon-
gitudinal gradients "felt" by the particle are not zero, but are indeed expressed
by what we have called axicon terms.

6.3 Further works.

Further works are required to complement what is already known and un-
derstood. The next step should be a study of transverse optical forces similar to
the previous work [1] and to the present work, both of them devoted to longitu-
dinal optical forces [36]. Next, the on-axis configuration of Bessel beams should
be studied (i) to confirm in a simplified framework that axicon forces and terms
indeed cancel in such a configuration and (ii) to provide a comparison between
the cases of dark and non dark beams which exhibit structural different features
[19], [37]. We may anticipate that specific departures from the standard theory
could occur for dark beams, although the anticipation could be deceived. Also,
the case of off-axis Gaussian beams which can be analytically handled using a
localized beam model [38] should be investigated in order to check whether the
newly axicon forces and terms are specific of axicon beams, or whether they
occur in more general situations. Our current anticipation, which could again
be deceived, is that indeed the newly studied terms occur in other situations
than the one of axicon beams.

7 Conclusion.

Since the work of Ashkin, see [39] for a compilation, we are used to think
of optical forces in terms of gradient and scattering forces. However, in a recent
paper studying longitudinal optical forces in the case of off-axis Bessel beams in
the Rayleigh regime, a new unexpected kind of optical forces, associated with
the scattering force procedure, named axicon forces have been uncovered. In
the present paper, we demonstrated the existence of axicon terms associated
with gradient forces. These axicon terms are zero if the axicon angle is zero
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and/or if we are facing an on-axis configuration. It is expected that such axicon
forces and terms would occur whenever axicon angles are involved in the beam
description. This would encompass Bessel beams whatever the polarization, all
kinds of beams obtained from Bessel beam superpositions, e.g. frozen waves,
Mathieu and Lommel beams [40], [41], [42], [43], [44], [45], [46], [47], [48][49],
[50], or Laguerre-Gauss beams focused by a lens [51], [52], [53], [54], [55].
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