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Shape of the surface of a liquid under indentation by a

flat punch - effect of surface tension for a semi-infinite

axisymmetric media in the presence of gravity

Christophe Fond

Laboratoire ICube, 2 rue Boussingault, F67000 Strasbourg

Résumé

The contact between a cylindrical flat indenter and an incompressible, non-
viscous liquid is considered. The behaviour is totally controlled by the as-
sumed constant surface tension and gravity. An analytical approach and a
numerical solution are developed to describe the shape of the surface as a
function of the applied force. In the absence of an exact solution, an approx-
imate solution is proposed.

Keywords: nanomechanics, indentation, surface tension, contact, liquid,
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1. Preamble

This article follows two articles, in English and French, concerning the
indentation of an elastic medium for which surface tension acts considerably.
In the situation where the elasticity of the medium disappears in front of the
surface tension, as is the case for microscopic indenters and compressible soft
media, the problem tends towards the indentation of a stretched membrane
(Fond, 2018c), (Fond, 2018d). In the situation where the medium is almost
incompressible and very soft in shear, the problem tends towards that of
a liquid. In finite medium the solutions are analyzed and it is shown in
(Fond, 2018a) et (Fond, 2018b) that gravity can be neglected, always in
the case of microscopic indenters. For semi-infinite environments, it will
be shown further on that the effect of gravity can no longer be neglected.
Considering a semi-infinite media and the attempt to superimpose the effects
of the response of the bulk (Boussinesq, 1885) and that of the surface, it is
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therefore necessary to know the solution for these two situations considered
independently. It has been shown that the insertion of the punch into a liquid
tends towards infinity when gravity is neglected. The aim here is to provide
a suitable solution with consideration of gravity, a case that does not admit
an analytical solution. Many articles have been dedicated to this subject of
indentation, for example (Chakrabarti and Chaudhury, 2013), (Cortat and
Miklavcic, 2003), (Cortat and Miklavcic, 2004), (Butt et al., 2005), (Colchero
et al., 1998), (Cappella and Dietler, 1999), (Forcada et al., 1991), the article
closest to the present analysis being that of (Chan et al., 2001).

2. Introduction

The liquid is supposed to be incompressible. The static situation is con-
sidered, i.e. there is no inertial effect. An established and stable state is
considered so that the viscosity of the fluid is neglected. The surface tension
γ, assumed constant, balances a local pressure p−ρgδ exerted on the surface
at a horizontal distance r from the center of the flat punch (Fond, 2018b).
The static equation of equilibrium in Fig. 1 is therefore formulated by :

p− ρgδ = −γ(
sin (atanδ′)

r
+

δ”

(1 + δ′2)3/2
) (1)

where p is the pressure under the indenter, ρ the density of the liquid, g the
acceleration of gravity and δ the height of the surface at the distance r. For
a classic free surface problem, the maximum height δasympt. corresponds to
an infinite radius from where p = ρgδasympt.. This equation can be rewritten
p− ρgδ = −γ( δ′

r
√
1+δ′2

+ δ′

(1+δ′2)3/2
). For calculation convenience it was chosen

δ = 0 at the base of the punch. If the zero height reference is the free surface
then the punch base will be at the depth corresponding to −δasympt.. This
change of origin will lead to the depth δ(r)− δasympt.. The equilibrium of the
flat punch is given by (see Fig. 2) :

F = 2πaf + πa2p (2)

where f denotes the Laplace’s tension at the corner of the punch given by
f = γsin(β(a)).

3. Numerical integration of the equilibrium equation

Since the equilibrium equation 1 does not admit an analytical solution,
a calculation by numerical integration has been developed. A distance must
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Figure 1: Pressures and curvatures for an axisymmetric model (left) and gravity-related
pressure variation (right).
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Figure 2: Laplace’s tension (left) and flat punch equilibrium (right).

be chosen D >> a that ensures to be on the numerical asymptote 1. The
line segment defined by the two points a and D at z = 0, i. e. (a, 0)− (D, 0),
is discretized into sub-segments (ri, 0)− (ri+1, 0), i ranging from 0 to n with
r0 = a and rn = D. Noticing ba = log10(a) and bD = log10(D), the spatial
discretization is done so that ri = 10ba+(i/n)(bD−ba). The surface is composed
of line segments (ri, δi)− (ri+1, δi+1). Given an angle β(a), the first segment
is given by (r0, 0)− (r1, δ1) where δ1 denotes (r1 − a)(tan(β(a))). In order to
know the following points (r2, δ2) then (ri, δi) a dichotomy procedure looks
for the value of δi which respects the equation. 1 with a precision based on

the value abs(
δmi −δm−1

i

δi−1−δi−2

) where m denotes the iteration by dichotomy to find

δi. For the calculations presented here the precision chosen is 10−6 and n =
1000 for the number of segments. The curves δ′ and δ” are calculated from
the second degree polynomial which passes through the three points (ri, δi),
(ri+1, δi+1) and (ri+2, δi+2i+ 2). The slope δ′ is the slope of the polynomial

1for the results presented here in double precision, i. e. to the nearest 10−15
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Figure 3: Normalized surface profiles for γ = 0.07d/m2, ρ = 1000kg/m3, g = 9.81m/s2,
a = 10nm and sinβ(a) = 0.1, 0.5, 07 and 0.9. At the top left is a zoom on the fairly
non-linear part for which typically sinβ(r) 6≈ β(r).

function in the middle of the segment.2

Whatever the force exerted on the object, as long as β(a) < π/2 3, the
surface disturbance is typically exerted at a distance of 1cm as shown in Fig. 3
for γ = 0.07d/m2, ρ = 1000kg/m3, g = 9.81m/s2, a = 10nm. For values of
r large enough that sinβ(r) ≈ sinβ(r) we find the values predicted by the
approximate analytical solutions and the curves normalized by sinβ(a)4 are
superimposed.

Fig. 4 shows that the reaction force to indentation varies almost lin-
early with the indentation depth. Indeed, less than 6% error is made on
the prediction of force by considering that the original slope is kept up to

2The procedure can also do the "reverse path" from D to a from a perturbation defined
in D by (rn, δn) and (rn−1, δn−1) but in this direction it is not possible to predict a priori
sinβ(a).

3for β(a) → π/2, the contribution of surface tension can no longer increase and the
object would sink into the liquid until the pressure under the punch can balance the force
exerted. This situation is discussed below.

4remind us that normalizing by sinβ(a) amounts to normalizing by the applied force
since the contribution of surface tension to equilibrium is f = 2πγsinβ(a) and that F ≈ f
if πa2p << f .
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Figure 4: Force versus indentation depth for γ = 0.07d/m2, ρ = 1000kg/m3, g =
9.81m/s2, a = 10nm. The dotted line shows the slope at the origin. The relative er-
ror is calculated with the values of this line.

sinβ(a) = 0.9999, i. e.β(a) = π/2.02. For the parameters chosen for the
illustration, the contribution of hydrostatic pressure under the punch, term
πto2p of the equation 2 where p = ρgδasympt., is negligible.

A dimensional analysis allows to adimension by introducing the capillary

length λ =
√

γ
ρg

(see Appendix A). The Fig. 5 provides the results of the

numerical integration described above for sinβ(a) = 0.5 5. Around r = λ the
effect of gravity is felt and it goes from a trend δ(r) = asinβ(a)log(r/a) to
the asymptote δ ≈ 0 for r > 6

5
λ. Whatever the force exerted on the object,

the surface disturbance is typically less than 10λ.
For the intended use, essentially the maximum depression is sought. From

the previous equations it comes:

δasympt. ≈ a sinβ(a) log(6λ/5a) (3)

or even:

δasympt. ≈
F

2πγ
log(6λ/5a) (4)

5the maximum force will be reached for sinβ(a) → 1
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Figure 5: Results of numerical integration and normalization by λ =
√

γ

ρg
: indentation

depth (δ(r) − δasympt.) as a function of distance r for sinβ(a) = 0.5.

so that:
δasympt. max < a log(6λ/5a) (5)

for a microscopic flat punch floating on a liquid of similar property to water
on earth, the contribution to the pressure balance under the punch is always
negligible compared to the contribution of surface tension.

3.1. Approximative function

The analysis of the solutions of the second order differential equation
in Annex Appendix A provides information to find a suitable approximate

function. In addition, a dimensional analysis highlights the term
√

ρg
γ

com-

monly referred to as capillary length. For the intended use, essentially the
maximum depression is sought and a slight error in the shape of the surface
will be tolerated.

δ(r) ≈ asinβ(a)
2e−r/Λ

1 + e−r/Λ
log(r/Λ) (6)

où Λ ≈ 6
5

√

γ
ρg

. Rappelons que F = 2πγa sinβ(a). The approximate function

given by the eq. 6 and illustrated in Fig. 6 shows an underestimation of the
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Figure 6: Approximate function to describe the indentation depth −δ as a function of
distance r for sinβ(a) = 0.5 and λ = 1.8mm.

sink in the vicinity of the asymptotic value and it should be considered that
the depth −δ(r) < 0 ∀r. Note that Λ should be chosen slightly higher than
λ for a better approximation.

3.2. Case β = π/2

3.2.1. Non-submerged object

Fig. 7 illustrates the limit case for the angle at the corner of the punch.
Let’s first consider the case where no part is submerged, i.e. δimm. = 0.
When β = π/2, the contribution to the equilibrium of the surface tension is
saturated and is worth f = 2πaγ. One of the two radii of curvature is exactly
a, the other is at least a if p ≥ 0. If the pressure p under the flat punch is
negligible then the sum of the curves must cancel each other out. Hence, the
two radii of curvature are worth a. For the above numerical calculations for
which the object is microscopic, i.e. a << λ, and sinβ = 0.9999, a simple
geometrical calculation shows that the difference for δasympt. to the sinβ = 1
situation is about 0.014a. In view of the results shown in Fig. 5, this value
appears negligible.
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Figure 7: Flat punch equilibrium.

3.2.2. Submerged object

When δimm. > 0, if the object has been immersed monotonously I assume
that β(a) = π/2, then the maximum force that can be balanced is worth:

F = 2πaγ + πa2ρg(δasympt. + δimm.) (7)

At the limit of immersion, using the eq. 5 valid for typically a < λ
10

, we get:

F = 2πaγ + πa3ρglog(6λ/5a) (8)

Fig. 8 is a numerical computation for microscopic objects such as a < λ for
water at room temperature, i. e. ρ = 1000kg/m3, g = 9.81m/s2 and γ = 0.07
hence λ = 2.67mm. It is clear that the contribution of the pressure under
the punch is always negligible compared to that of the surface tension. On
the other hand, the pressure related to gravity is used to calculate δasympt.

and renders finite the depth considering an infinitely large liquid surface.

3.3. Objects with a size greater than the capillary length λ

The objective was achieved for objects of microscopic size for values of ρg
typically in the order of 10+4Pa and surface tensions typically in the order
of 5 10−2N/m. Nevertheless, for a better understanding let’s analyze the
situation where the object has a dimension greater than λ. It is obvious
that the approximate solution provided in eq. 6 can no longer be satisfactory
for objects larger than λ. Let’s illustrate this situation in cases where ρ =
10+3kg/m3, g = 9.81m/s2 and γ = 0.07N/m6, i. e. λ = 2.67mm for a =

6typically the case of water at room temperature on earth
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Figure 8: Reaction force versus punch radius. The dotted lines indicate the contributions
of surface tension and pressure under the punch.

8mm ≈ 3λ and a = 1dm ≈ 37λ in Fig. 9. To ensure proper integration of
the differential equation, an angle of β(D) to the horizontal, very small, i. e.
β(D) << 1, is given at a distance of D far enough from the edge of the punch,
located at r = a, to be considered on the horizontal asymptote. Given this
perturbation, integration is processed from D to a. When the depth δ(a) and
the angle β(a) have been determined by this way, the integration from a to
D is performed and it is checked that the same surface profile is restored in
both directions of integration. For the examples in Fig. 9, the perturbation
was chosen so that the slope at the edge of the flat punch is maximum, i. e.
sinβ(a) = 1. Note that the force and depression increase almost linearly
with this perturbation angle β(D).

We notice in Fig. 9 that the disturbance length of the surface 7 is about
λ from the punch edge. The contribution of the hydrostatic pressure below
the punch surface to the total reaction force is about 64% for a = 8mm and
96% for a = 1dm. It has been shown previously that this is negligible for
microscopic8 but in these cases it is considerable. The capillary length λ for
the a radius therefore marks the transition between the sustentation by the

7length from the punch to find a nearly horizontal surface
8objects whose order of magnitude is much smaller than the order of magnitude of λ
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Figure 9: Surface profiles for a = 8mm and a = 1dm corresponding to λ = 2.67mm. The
punches are materialized by the black dotted lines.

surface tension and the sustentation by the hydrostatic pressure generated
under the tip by its depth. When β(a) has reached π/2, if the punch continues
to sink the "triple point" moves along the punch wall and the object floats
or sinks.

4. Discussion

The aim was to provide a simple solution for the case of indentation of a
flat punch in a semi-infinite planar medium, in the case where the mechanical
behaviour of this medium is similar to that of a liquid. The medium is con-
sidered to be liquid, of negligible viscosity and incompressible. Calculations
confirm that the latter assumption is appropriate. Indeed, the extremely
small pressure variations are not likely to considerably change the density
of the liquid whose compressibility is typically in the order of 2GPa. The
results provided here can be easily used and adapted for spherical or conical
indenters for which the angle β(a) will be limited by the geometry of the
indentor. Indeed, since it has been shown here that for microscopic objects
the contribution of pressure under the indent to equilibrium is a second or-
der term, it will not be necessary to redeploy numerical integrations in these
cases. Only objects with a capillary length greater than λ would require a
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more precise quantification, but this does not concern the purpose of this
article.

5. Conclusion

The calculations presented in this article for a liquid are consistent with
those of (Fond, 2018c), (Fond, 2018a) for highly stressed membranes. They
make it possible to locate the domain of validity in order to neglect certain
parameters. They provide validation arguments for finite elements numerical
indentation computations taking into consideration surface tension as well
as elasticity for microscopic indentation. Given the relatively large volume
of information required to properly present this numerical model, it will be
presented in a separate article. This finite element numerical model calculates
the effects of elasticity and surface tension in a coupled manner by covering
the entire range of the ratio γ

aµ
where µ refers to the shear modulus of the

solid. It was therefore essential to have solutions in cases where γ
aµ

<< 1 and
γ
aµ

>> 1.

Appendix A. Analyse des solutions de l’équation différentielle du

second ordre

The equilibrium equation 1 does not admit an analytical solution if all its
terms are non-zero. In order to find a suitable approximation of numerical
solutions, it is convenient to analyze analytical solutions when certain terms
of the equation of equilibrium vanish.

Appendix A.1. ρg = 0

For small angles, i. e. sinβ(a) ≈ β(a), when ρg = 0, there is an analytical
solution to the equilibrium equation. For p = 0 it is formulated by:

δ(r) ≈ F

2πγ
log(r/a) (A.1)

with r ≥ a.

Appendix A.2. δ′ = 0

When δ′ = 0, there is an analytical solution to the equilibrium equation
formulated by:

δ(r) = c1e
r/
√

γ
ρg + c2e

−r/
√

γ
ρg (A.2)

where c1 and c2 are constants.
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Appendix A.3. δ” = 0

When δ” = 0, there is an analytical solution to the equilibrium equation
formulated by:

δ(r) = c3e
r2/ 2γ

ρg (A.3)

where c3 is a constant.
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