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This paper deals with the relationship between spectral analysis in minmax algebra and ultrametric morphological operators. Indeed, morphological semigroups in ultrametric spaces are essentially based on that algebra. Theory of eigenfunctionals in minmax analysis is revisited, including classical applications (preference analysis, percolation and hierarchical segmentation). Ultrametric distance is the x point functional in minmax analysis and from this result, we prove that the ultrametric distance is the key ingredient to easily dene the eigenfunctions of ultrametric morphological openings and closings.

Introduction

Given a square matrix A, one of the fundamental linear algebra problems, known as spectral analysis of A, is to nd a number λ, called eigenvalue, and a vector v, called eigenvector, such that Av = λv. This problem is ubiquitous in both mathematics and physics. In the innity dimensional generalization, the problem is also relevant for linear operators. An example of its interest is the case of the spectral analysis of Laplace operator. The spectrum of the Laplace operator consists of all eigenvalues λ i for which there is a corresponding eigenfunction φ i with: -∆φ i = λ i φ i . Then, for instance, given any initial heat distribution f (x) in a bounded domain Ω, the solution of the heat equation at time t, u(x, t) = (f * k t )(x) = P t f (x), can be written either by its convolution form or by its spectral expansion, i.e.,

P t f (x) = 1 (4πt) d/2 Ω f (y)e -|x-y| 2 /4t dy = +∞ i=1
e -tλi u 0 , φ i φ i (x), [START_REF] Angulo | Convolution in (max,min)-algebra and its role in mathematical morphology[END_REF] with the heat kernel as k t (x, y) = +∞ i=1 e -tλi φ i (x)φ i (y).

From the 60s and 70s of last century, dierent applied mathematics areas have been studying a more general eigenproblem where the addition and multiplication in matrix and vectors operations are replaced by other pairs of operations.

If one replaces the addition and multiplication of vectors and matrices by operations of maximum and sum, the corresponding linear algebra is called max plus algebra, which has been extensively studied, including the eigenproblem, see for instance the book [START_REF] Gondran | Graphes, dioïdes et semi-anneaux[END_REF] for exhaustive list of references. But that problem is out of the scope of this paper. Readers interested on maxplus matrix algebra and spectral analysis from the perspective of mathematical morphology are referred to the excellent survey by Maragos [START_REF] Maragos | Representations for Morphological Image Operators and Analogies with Linear Operators[END_REF]. In the case where one replaces respectively by operations of maximum and minimum, we work on the so-called maxmin algebra (also known as bottleneck algebra [START_REF] Cechlárová | Eigenvectors in bottleneck algebra[END_REF]). Spectral analysis in maxmin algebra is also relatively classic from their rst interpretation in the eld of hierarchical clustering [START_REF] Gondran | Valeurs Propres et Vecteurs Propres en Classication Hiérarchique[END_REF]. Eigenvectors of max-min matrices and their connection with paths in digraphs were widely investigated by Gondran and Minoux, see overview papers [START_REF] Gondran | Linear Algebra in dioïds. A survey of recent results[END_REF][START_REF] Gondran | Dioïds and semirings: Links to fuzzy sets and other applications[END_REF], by Cechlárova [START_REF] Cechlárová | Eigenvectors in bottleneck algebra[END_REF] and by Gavalec [START_REF] Gavalec | Monotone eigenspace structure in maxmin algebra[END_REF]. Spectral analysis in maxmin algebras is also relatively classic in fuzzy reasoning [START_REF] Sanchez | Resolution of eigen fuzzy sets equations[END_REF]. This eigenproblem in distributive lattice was studied in [START_REF] Tan | On the eigenproblem of matrices over distributive lattices[END_REF]. Procedures and ecient algorithms to compute the maximal eigenvector of a given max-min matrix has been also considered [START_REF] Cechlárová | Eigenvectors in bottleneck algebra[END_REF]. Max-min algebra is also very relevant in several morphological frameworks, such as fuzzy logic, viscous morphology or geodesic reconstruction, see our overview in [START_REF] Angulo | Convolution in (max,min)-algebra and its role in mathematical morphology[END_REF].

In this work, we are interested on relating the notion of spectral analysis in maxmin algebra to ultrametric morphological operators [START_REF] Angulo | Morphological semigroups and scale-spaces on ultrametric spaces[END_REF]. Indeed, morphological semigroups in ultrametric spaces are essentially based on that algebra. The expansion provided by [START_REF] Angulo | Convolution in (max,min)-algebra and its role in mathematical morphology[END_REF] for the diusion process using the Laplacian eigenfunctions can be similarly formulated in ultrametric spaces [START_REF] Angulo | Hierarchical Laplacian and its Spectrum in Ultrametric Image Processing[END_REF]. The interpretation of ultrametric Laplace eigenfunctions depends obvioulsy on the hierarchical organisation of ultrametric balls according to the ultrametric distance. We show here that the ultrametric distance is also the key ingredient to dene the eigenfunctions of ultrametric morphological openings and closings. The theoretical results of this paper are mainly based on Gondran and Minoux theory, where the discrete case was considered in [START_REF] Gondran | Linear Algebra in dioïds. A survey of recent results[END_REF] and later, in [START_REF] Gondran | Eigenvalues and eigen-functionals of diagonally dominant endomorphophisms in MinMax analysis[END_REF] the continuous (and innite dimensional) one. The later study also considered the preliminary interest in nonlinear physics such as percolation. This paper is another step forwards in our program of revisiting classical image/data processing on ultrametric representations. The rest of its contents is organised as follows. Section 2 provides a short reminder of the main denitions and properties of ultrametric morphological operators. Gondran and Minoux theory of minmax analysis of operators and matrices is reviewed is Section 3. Section 4 discusses our contribution to the study of the eigensystem of ultrametric morphological operators. Finally, Section 5 closes the paper with some conclusions and perspectives.
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Reminder about ultrametric morphological openings and closings

Before going further, let us recall basic facts on ultrametric morphological openings and closings. One can refer to [START_REF] Angulo | Morphological semigroups and scale-spaces on ultrametric spaces[END_REF] for details.

An ultrametric space (X, d) is a metric space in which the triangle inequality is strengthened to d(x, z) ≤ max {d(x, y), d(y, z)}. Notably, that implies that the set of ball of radius r provides a partition of X into disjoint balls. Given a separable and complete ultrametric space (X, d), let us consider the family of non-negative bounded functions f on (X, d), f : X → [0, M ]. The complement (or negative) function of f , denoted f c , is obtained by the involution f c (x) = M -f (x). The set of non-negative bounded functions on ultrametric space is a lattice with respect to the pointwise maximum ∨ and minimum ∧.

Denition 1. The canonical isotropic ultrametric structuring function is the

parametric family {b t } t>0 of functions b t : X × X → (-∞, M ] given by b t (x, y) = M - d(x, y) t . (2) 
Denition 2. Given an ultrametric structuring function {b t } t>0 in (X, d), for any non-negative bounded function f the ultrametric dilation D t f and the ultrametric erosion E t f of f on (X, d) according to b t are dened as

D t f (x) = sup y∈X {f (y) ∧ b t (x, y)} , ∀x ∈ X, (3) 
E t f (x) = inf y∈X {f (y) ∨ b c t (x, y)} , ∀x ∈ X. (4) 
We can easily identify that the ultrametric dilation is a kind of product in (max, min)-algebra of function f by b t . Considering the classical algebraic definitions of morphological operators [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF] for the case of ultrametric semigroups {D t } t≥0 , resp. {E t } t≥0 , they have the properties of increasingness and commutativity with supremum, resp. inmum, which involves that D t is a dilation and E t is an erosion. In addition, they are extensive, resp. anti-extensive, operators and, by the supremal semigroup property, both are idempotent operators, i.e.,

D t D t = D t and E t E t = E t , which implies that D t is a closing and E t is an open- ing.
Finaly, these semigroups are just the so-called granulometric semigroup [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF] and therefore {D t } t≥0 is an anti-granulometry and {E t } t≥0 is a granulometry, which involve interesting scale-space properties useful for ltering and decomposition.

Let (X, d) be a discrete ultrametric space. Choose a sequence {c k }

∞ k=0 of positive reals such that c 0 = 0 and c k+1 > c k ≥ 0, k = 0, 1, • • • . Then, given t > 0, the following sequence {b k,t } ∞ k=0 is dened, such that b k,t = M -t -1 c k . (5) 
Let us dene ∀k, ∀x ∈ X, the ultrametric dilation and erosion of radius k on the associated partition as

Q ∨ k f (x) = sup y∈B k (x) f (y), (6) 
Q ∧ k f (x) = inf y∈B k (x) f (y), (7) 
where B k (x) is the ultrametric ball of radius k and center x. Using now ( 6) and ( 7), it is straightforward to see that the ultrametric dilation and ultrametric erosion of f by b k,t can be written as

D t f (x) = sup 0≤k≤∞ {Q ∨ k f (x) ∧ b k,t } , (8) 
E t f (x) = inf 0≤k≤∞ {Q ∧ k f (x) ∨ (M -b k,t )} . (9) 
From this formulation, one does not need to compute explicitly the ultrametric distance between all-pairs of points x and y since D t f (x) and E t f (x) are obtained by working on the supremum and inmum mosaics

Q ∨ k f (x) and Q ∧ k f (x) from the set of partitions, which is usually nite, i.e., k = 0, 1, • • • , K. 3 Eigen-functionals in (min,

max)-analysis

In this section, the main elements of the Gondran and Minoux theory [START_REF] Gondran | Linear Algebra in dioïds. A survey of recent results[END_REF][START_REF] Gondran | Eigenvalues and eigen-functionals of diagonally dominant endomorphophisms in MinMax analysis[END_REF] of eigenvalues and eigen-functionals of diagonally dominant endomorphophisms in minmax analysis is reviewed. The theory is the background to the specic problem of the study of eigenfunction of ultrametric morphological operators.

Inf-diagonal dominant kernel (idd-kernel) in (min, max)-algebra and its powers

Let us rst introduce the axiomatic denition of an inf-diagonal dominant kernel (idd-kernel).

Denition 3. A proper lower semi-continuous (with closed and bounded lowerlevel sets) functional α : X × X → R is called an idd-kernel if the following two conditions are satised 1. Boundedness and diagonal uniformity: there exists a nite value 0 α such that α(x, x) = 0 α , ∀x ∈ X;

2. Inf-diagonal dominance, i.e., α(x, y) ≥ 0 α , ∀x, y ∈ X;

which is equivalent to ∀x ∈ X: α(x, x) ≤ inf y =x {α(x, y)} . ( 10 
)
Let us denote by A the set of idd-kernels in X. Using the (min, max)associativity property, the succesive (min, max)-powers of an idd-kernel α ∈ A in X may be dened recursively as:

α n (x, y) = min z∈X α n-1 (x, z) ∨ α(z, y) , ∀n ∈ N, n > 2. ( 11 
)
Let α ∈ A be a idd-kernel. Considering for instance n = 2, one has

α 2 (x, y) = min z∈X {α(x, z) ∨ α(z, y)} .
In particular, taking z = y above and using the inf-diagonal dominance, we have α 2 (x, y) ≤ α(x, y) ∨ α(y, y) = α(x, y), x, y ∈ X, which provides a non-increasing behaviour. Indeed, there exists a stronger convergence result to a x-point which is easily seen for the fact that the sequence α(x, y), α 2 (x, y) • • • α n (x, y) is non-increasing, together with the fact that it is bounded from below by α(x, x) = 0 α . More formally: Proposition 1 ( [START_REF] Gondran | Eigenvalues and eigen-functionals of diagonally dominant endomorphophisms in MinMax analysis[END_REF]). The endomorphism α * dened by limit α * (x, y) = lim n→∞ α n (x, y) [START_REF] Gondran | Dioïds and semirings: Links to fuzzy sets and other applications[END_REF] always exists (i.e., limit is convergent) and satises the relationships The following two propositions provide on the one hand, the equivalence of the eigenfunctions of α and α * and on the other hand an explicit way to compute the eigenfunctions from the columns of α * [START_REF] Gondran | Eigenvalues and eigen-functionals of diagonally dominant endomorphophisms in MinMax analysis[END_REF]. We include the proof of the second proposition to justify the simplicity of the construction.

α * = (α * ) 2 = α • min,max α * = α * • min,max α.

Proposition 2 ([10]

). Let λ > 0 α . If ψ is a (min, max)-eigenfunction of α for the eigenvalue λ then ψ(x) ≥ λ, ∀x ∈ X. In addition, one has

λ ∨ ψ = 0 α ∨ ψ = ψ ; λ ∨ ψ = ψ * min,max α = ψ * min,max α * .

Proposition 3 ([10]

). For α ∈ A and λ ∈ R and for an arbitrary xed y ∈ X, let φ y λ denote the functional in f ∈ F(X, R) dened by

φ y λ (x) = λ ∨ α * (x, y). (14) 
Then, φ y λ is a (min, max)-eigenfunction of α for the eigenvalue λ.

Proof. Since max {α(x, z); φ y λ (z)} = max {α(x, z); α(z, y); λ}, we obtain (φ y λ * min,max α) (x) = inf Finally, the following representation theorem provides us the interest of the theory.

Theorem 1 (Gondran and Minoux, 1998 [START_REF] Gondran | Eigenvalues and eigen-functionals of diagonally dominant endomorphophisms in MinMax analysis[END_REF]). Let α ∈ A, λ > 0 α , and for any x, y ∈ X, one computes φ y λ (x) = λ ∨ α * (x, y). Then, the set

G λ = {φ y λ (x) : y ∈ X} ,
is the unique minimal generator of the set of (min, max)-eigenfunctions of λ.

Consequently, for any (min, max)-eigenfunction ψ of α with eigenvalue λ, there exists a functional h ∈ F(X, R) such that ψ can be expressed in terms of the φ y λ (x) as ψ(x) = inf y∈X {h(y) ∨ φ y λ (x)} = h, φ y λ min,max .

(15)

Discrete case of idd-kernels

Let X be a nite discrete space with |X| = n. The functional α(x i , x j ) is represented by a matrix A = (a ij ) ∈ M n (R), i.e., a ij = α(x i , x j ). The corresponding eigenproblem is written as

A • min,max v = λ ∨ v
where the matrix operations are given as follows. Given three matrices A, B, C ∈ M n (R), a scalar λ ∈ R and two vector v, w ∈ R n , one has matrix multiplication

A • min,max B = C ⇔ 1≤k≤n (a ik ∨ b kj ) = c ij , multiplication of a matrix by a scalar λ ∨ A = B ⇔ λ ∨ a ij = b ij and multiplication of a vector by a matrix A • min,max v = w ⇔ 1≤j≤n (a ij ∨ v j ) = w i . Thus A (k) = A • min,max A (k-1)
, is just the matrix product in the matrix algebra (min, max). The limit

A * = lim k→∞ A (k) = α * (x i , x j )
is called the quasi-inverse of A in (min, max)-matrix algebra [START_REF] Gondran | Linear Algebra in dioïds. A survey of recent results[END_REF]. Obviously, (min, max)-eigenfunctions theory is valid for the discrete case.

Two applications

We consider now two rst applications of the (min, max)-spectral theory.

Preference analysis in (max, min)-algebra [START_REF] Gondran | Dioïds and semirings: Links to fuzzy sets and other applications[END_REF]. Given n objects, nd a total ordering between them using the pairwise comparison preferences (or votes)

given by K judges. The results of this kind of ranking can be represented by a preference n × n-matrix A = (a ij ), where a ij denotes the number of judges who prefer i to j. Note that by construction of the matrix A, a ij + a ji = K, ∀i, j, i = j. In the case of ties, it is assumed a 1/2 contribution. Starting from A, the method of partial orders is based on determining a hierarchy of preference relations on the objects with nested equivalence classes.

More precisely, for any λ, the classes at level λ are dened as the strong connected components of the graph G λ = (X, E λ ), with node set X are the objects and the set of edges is E λ = {(i, j) : a ij ≥ λ}.

Let us consider example with n = 4 and K = 6, given by the following matrix A and its quasi-inverse in the (max, min)-algebra A * :

A =     0 3 4 3.5 3 0 4 1 2 2 0 5 2.5 5 1 0     , A * = A 3 =     0 4 4 4 3 0 4 4 3 5 0 5 3 5 4 0     .
There is thus three eigenvalues λ 1 = 5, λ 2 = 4 and λ 3 = 3. At level λ 3 = 3, G 3 is just a single connected component and the four objects are therefore not ordered. Level λ 2 = 4 leads to a quotient graph G 4 , rened into two classes, where object 1 is prefered over the three others, but the objects 2, 3 and 4 are undistinguishable. The level λ 1 = 5 provides a dierentiation order between them: 3 is preferred over 4, which, in turn, is preferred over 2. The (max, min)approach can be compared with a (+, ×)-based spectral analysis of A, associated to the method proposed by Berge [START_REF] Berge | La théorie des graphes et ses applications[END_REF]. It consists in a best mean ordering of the objects according to the non-increasing values of the components of the real eigenvector v corresponding to the largest eigenvalue λ, Av = λv. In the current example [START_REF] Gondran | Dioïds and semirings: Links to fuzzy sets and other applications[END_REF], the largest eigenvalue is λ = 8.92 and corresponding eigenvector is v = (0.56 0.46 0.50 0.47) T . Thus A * provides at the end the same order, but in addition various quotient graphs corresponding to the hierarchical partial orders.

Note that replacing objects and judges by drugs and eects on patients, the problem is relevant in medical analysis [START_REF] Sanchez | Resolution of eigen fuzzy sets equations[END_REF].

Percolation on distribution of particles in (max, min)-algebra [START_REF] Gondran | Eigenvalues and eigen-functionals of diagonally dominant endomorphophisms in MinMax analysis[END_REF]. Let us consider a continuous (or discrete) distribution of particles in the space X and α(x, y) can be interpreted as a potential of interaction between particles located at x and y (instead of a distance, it should be seen as an anity); e.g., for a random function, we can for instance use the dierence of intensities to dene the anity. The λ-percolation, or connectivity problem up to threshold λ, consists in nding for any pair of distinct points x and y in X a path with respect to the threshold λ.

Consider the dual (max, min)-eigensystem, i.e., sup-diagonal dominant kernel α(x, x) ≥ sup y =x {α(x, y)}.

First, compute the limit α * (x, y): as we show just below, that can obtained using the minimum spanning tree on the dual of the graph with the potential of interaction as anity. The (max, min)-eigenfunctions for any eigenvalue λ are φ y λ (x) = λ ∧ α * (x, y). Then, for any y ∈ X, there is a percolation path between x and y if φ y λ (x) = λ.

Eigensystem on ultrametric morphological operators

Eigenfunctional analysis in (min, max)-algebra is the natural framework in the case of ultrametric spaces.

(min, max)-eigensystem in ultrametric space

Let (X, d) be a length space, i.e., a metric space in which the distance between two points x, y ∈ X is given by the inmum of the lengths of paths which join them. It is easy to see that d(x, y) is just an example of an idd-kernel. The corresponding limit of (min, max)-powers [START_REF] Gondran | Graphes, dioïdes et semi-anneaux[END_REF] can be written as [START_REF] Gondran | Graphes, dioïdes et semi-anneaux[END_REF]:

d * (x, y) = min π∈path(x,y) max π : k=0,••• ,p-1 d(z k , z k+1 ) (16) 
with π = {z 0 = x, z 1 , • • • , z p = y} is a path in X.
We easily see that d * (x, y) ≤ max z (d * (x, z), d * (z, y)). Therefore d * (x, y) is the sub-dominant ultrametric on (X, d), dened as the largest ultrametric below the given dissimilarity d(x, y).

Let us note Λ = {d * (x, y) : x, y ∈ X, x = y}. Any λ ∈ Λ is a (min, max)eigenvalue of d(x, y) and d * (x, y) and the corresponding minimal generators of (min, max)-eigenfunctions are given by

φ y λ (x) = λ ∨ d * (x, y). (17) 
Application to hierarchical classication. Let us recall the pioneering result on the connection between hierarchical classication and spectral analysis in (min, max)-algebra.

Theorem 2 (Gondran, 1976 [8]). At each level λ of a hierarchical classi- 

          , D * =           0 
         
.

In this discrete setting, the matrix of ultrametric distances D * can be computed eciently using a minimum spanning tree (MST) algorithm. Interpretation of (min, max)-eigenfunction in an ultrametric space. Using the fact that in an ultrametric space if d * (x, y) < r then B r (x) = B r (y), one has that two points x and y that belonging to the ultrametric ball of radius λ have the same (min, max)-eigenfunction, i.e., if y ∈ B λ (x) (which implies that x ∈ B λ (y)

) then λ ∨ d * (x, z) = λ ∨ d * (y, z), z ∈ X ⇔ φ x λ = φ y λ .
In addition, we can easily see that

φ y λ (x) = λ 1 B λ (y) (x) + d * (x, y) ≥ λ 1 X\B λ (y) (x), (18) 
with the following normalization: 

inf y∈X φ y λ (x) = λ1 X (x), ∀x ∈ X.

Eigenfunctions of ultrametric erosion-opening and dilation-closing

The property d * (x, y) • min,max d * (x, y) = d * (x, y) is the basic ingredient in [START_REF] Angulo | Morphological semigroups and scale-spaces on ultrametric spaces[END_REF] to prove the existency of the supremal ultrametric morphological semigroups and the fact that ultrametric erosion and dilation are idempotent operators. Let us also notice that using expression [START_REF] Maragos | Representations for Morphological Image Operators and Analogies with Linear Operators[END_REF], one has

E t f (x) = inf y∈X f (y) ∨ t -1 d * (x, y) = f * min,max t -1 d * (x) = t -1 (tf * min,max d * ) (x), ∀x ∈ X, t > 0. (19) 
Proposition 4. Given an ultrametric space (X, d * ), the corresponding φ y λ (x), ∀y ∈ X and λ ∈ Λ, is an eigenfunction of the ultrametric erosion-opening with t = 1, i.e., E 1 φ y λ (x) = λ ∨ φ y λ (x).

(20)

For t = 1, one has the following scaling

E t t -1 φ y λ (x) = t -1 (λ ∨ φ y λ (x)) . Proof. We have E 1 φ y λ (x) = (φ y λ * min,max d * ) (x), then (φ y λ * min,max d * )(x) = inf z∈X {φ y λ (z) ∨ d * (x, z)} = inf z∈X {λ ∨ d * (y, z) ∨ d * (z, x)} = λ ∨ (d * (x, y) * min,max d * (x, y)) = λ ∨ d * (x, y) = λ ∨ φ y λ (x).
When t = 1, from (19), we obtain

E t t -1 φ y λ (x) = t -1 (φ y λ * min,max d * ) (x) = t -1 E 1 φ y λ (x), so naly, using (20), one has E t t -1 φ y λ (x) = t -1 (λ ∨ φ y λ (x)).
A similar result is obtained for the eigenfunctions of the ultrametric dilationclosing

D 1 φy λ (x) = λ ∧ φy λ (x). (21) 
where φy λ (x) are the corresponding (max, min)-eigenfunctions, obtained from the dual ultrametric distance and the corresponding dual eigenvalues λ.

Using the alternative representation of the discrete erosion ( 9) with c k = λ k E t f (x) = inf λ k ∈Λ {Q ∧ λ k f (x) ∨ λ k }, we have the following result.

Proposition 5. The ultrametric erosion-opening of a function f on (X, d * ) at t = 1 can be written as the expansion on the base of (min, max)-eigenfunctions φ y λ k λ k ∈Λ as follows:

E 1 f (x) = inf λ k ∈Λ f, φ y λ k min,max ∨ λ . (22) 
Scaling from (19) provides the corresponding expansion for E t f (x).

Proof. The (min, max)-scalar product of a function f on (X, d * ) and the (min, max)eigenfunction φ y λ :

f, φ y λ min,max = inf y∈X {f (y) ∨ φ y λ (x)} . Now, using the expression (18), one has f, φ y λ min,max = inf

x∈B λ (y) {f (x)} ∨ λ ∧ inf x / ∈B λ (y) {f (x) ∨ d * (y, x)} = Q ∧ λ f (x) ∨ λ.
Obviously, a similar expansion can be obtained from the dilation-closing using the (max, min)-eigenfunctions of ultrametric space X. This theory is related to Meyer's theory of watershed on node-or-edge-weighed graphs [START_REF] Meyer | Topographical Tools for Filtering and Segmentation 1: Watersheds on Node-or Edge-weighted Graphs[END_REF], since minmax algebra is also connected to analysis of paths on digraphs. A better understanding of the connection between the present spectral theory and Meyer's theory could help into the integrative use of ultrametric operators in segmentation and ltering.

3. 2

 2 (min, max)-eigenfunctions of α and α * Let us introduce now the (min, max)-product of a function f ∈ F(X, R) and an idd-kernel α ∈ A as follows (f * min,max α)(x) = inf y∈X {f (y) ∨ α(x, y)} .

( 13 )

 13 Denition 4. Given an idd-kernel α ∈ A and λ ∈ R, a ψ is called a (min, max)eigenfunction of α for the eigenvalue λ if and only if ψ * min,max α = λ ∨ ψ.

  z∈X {α(x, z) ∨ φ y λ (z)} = max inf z∈X {α(x, z) ∨ α * (z, y)} ; λ = max {α • min,max α * (x, y); λ} . From properties of α * , α • min,max α * (x, y) = α * (x, y), thus ∀x, (φ y λ * min,max α) (x) = max {α * (x, y); λ} = max {max(α * (x, y); λ); λ} = max {φ y λ (x); λ} = φ y λ (x) ∨ λ.

Fig. 1 .

 1 Fig. 1. (a) Example of minimum spanning tree and (b) associated dendrogram.

Fig. 1 (

 1 a) depicts the MST corresponding to the graph of D as adjacency matrix, matrix D * is straightforward derived from it. For instance, d * (2, 7) = max (d(2, 3), d(3, 4), d(4, 5), d(5, 8)) = 8. The associated hierarchical classication represented by a dendrogram is given in Fig. 1(b). Taking for instance λ = 5, one has the three eigenvectors v 1 = λ ∨ D * 1,: = λ ∨ D * 2,: = λ ∨ D * 3,: = (5 5 5 7 8 7 8) T v 2 = λ ∨ D * 4,: = λ ∨ D * 6,: = (7 7 7 5 8 5 8) T v 3 = λ ∨ D * 5,: = λ ∨ D * 7,: = (8 8 8 8 5 8 5) T which are the minimal generator G 5 = {v 1 , v 2 , v 3 }.

Fig. 2 Fig. 2 .

 22 Fig.2depicts two partitions of a discrete ultrametric space at levels λ and λ + 1 and the corresponding (min, max)-eigenfunction at point y ∈ X and eigenvalue λ.
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  Conclusions and PerspectivesMorphological semigroups in ultrametric spaces can be seen as the minmax product (and its dual) of a function and a scaled version of the ultrametric distance. Ultrametric distance is a xed point functional in minmax analysis and its eigenfunctions are dened in a direct way. From this viewpoint, min max spectral analysis on ultrametric spaces describes the nested organization of ultrametric balls. Eigenfunctions of ultrametric distance are just the eigenfunctions of ultrametric erosion-opening and this spectral base provide an expansion of morphological operators.