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Abstract:  We investigate a variant of the d-scan technique, an intuitive
pulse characterization method for retrieving the spectral phase of ultrashort
laser pulses. In this variant a ramp of quadratic spectral phases is applied
to the input pulses and the second harmonic spectra of the resulting
pulses are measured for each chirp value. We demonstrate that a given
field envelope produces a unique and unequivocal chirp-scan map and
that, under some asymptotic assumptions, both the spectral amplitude and
phase of the measured pulse can be retrieved analytically from only two
measurements. An iterative algorithm can exploit the redundancy of the
information contained in the chirp-scan map to discard experimental noise,
artifacts, calibration errors and improve the reconstruction of both the
spectral intensity and phase. This technique is compared to two reference
characterization techniques (FROG and SRSI). Finally, we perform d-scan
measurements with a simple grating-pair compressor.

© 2013 Optical Society of America

OCIS codes: (320.7100) Ultrafast measurements; (320.5540) Pulse shaping.
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Ultrashort pulse metrology has been a rapidly advancing field of research for more than three
decades [1]. The development of optical femtosecond sources with record pulse durations, peak
intensities, pulse contrast, tunability or pulse complexity has been constantly rising new chal-
lenges and triggered the search for new pulse characterization techniques. Parallel to the deploy-
ment of ever more sophisticated and specialized techniques, substantial efforts were made to
simplify setups and provide compact, intuitive and quantitative pulse diagnostics. Techniques
such as GRENOUILLE [2] or ARAIGNEE [3] are examples of successful attempts to scale
down and simplify the experimental setups of SH-FROG [4] and SPIDER [5].

More recently, measurement methods such as MIIPS [6-8], variant of MIIPS [9-11] and dis-
persion scan (d-scan) [12—14] have emerged. Both MIIPS and d-scan are scanning techniques
belonging to the class of phase-only techniques: a set of test spectral phase functions is ap-
plied to an unknown electric field E(¢) and for each test phase the second harmonic spectrum
is recorded. The test functions are usually parameterized by a single scalar parameter p and the
experimental data take the form of a two-dimensional map Isyg (@, p). For MIIPS in its original
version [6, 8], the test phase functions are sinusoidal functions with a period depending on the
spectral bandwidth and where the parameter p is a phase offset. For d-scan and some variants
of MIIPS [7], the test phases are polynomial functions and the parameter is a dispersion coef-
ficient. An iterative algorithm then retrieves the spectral phase (d-scan) or an approximation of
the spectral phase (MIIPS).

In spite of their scanning nature, MIIPS and d-scan roused a significant interest owing to the
simplicity of the experimental setup (minimal alignment, single-beam geometry without any
beam splitting nor beam recombination), its robustness (no assumption on the beam profile, no
interferometric stability), and ease of operation. Finally, these techniques can be directly em-
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bodied in chirped-pulse amplification systems [15] and used to measure and compress amplified
pulses with the same device.

However, from the point of view of optical metrology, several questions remain unanswered.
The first opened topic is related to the uniqueness of the retrieved phase. Secondly, these
techniques retrieve the spectral phase but do not retrieve the spectral amplitude and require an
independent spectrum measurement. The third set of questions concerns the spectral resolution
and dynamic range of the measurement. Such questions have been previously addressed for the
FROG and the SPIDER and are of major interest to provide a head-to-head comparison with
these well-established techniques.

In this paper we theoretically and experimentally investigate a variant of the d-scan technique
in which the test functions are pure quadratic phases (chirp-scan). We restrict our study to pulse
durations longer than ~10-15 fs. Within this framework, we demonstrate in sections 1 and
2 that: (i) there is a one-to-one relationship between E(t) and Isyg(®, ¢>) where ¢, is the
chirp coefficient, (ii) E(t) can be analytically retrieved from only two SH measurements if the
accessible range of ¢, values is large enough, (iii) E(¢) can alternatively be retrieved by an
iterative algorithm. In section 3 we demonstrate and compare two pulse retrieval algorithms
(CRT and 2D-fit). In section 4 we compare d-scan measurements with two well-established
reference techniques (bFROG [16] and SRSI [17]). In section 5, we show how a regular grating-
based compressor can be used to perform a d-scan measurement.

1. Second harmonic of chirped pulses

1.1. Second harmonic spectrum

The complex spectral amplitude of the second harmonic (SH) of an optical pulse can be written
as the auto-convolution of the complex spectral amplitude of the fundamental pulse. If E(®)
stands for the complex spectral amplitude of the input pulse the SH signal collected at the
angular frequency 2@ can be written as

/RE(a)fQ)E(erQ)dQ B (1)

IspG (20) o<

This simple model of SH generation assumes no absorption, an instantaneous nonlinearity, neg-
ligible higher-order nonlinear effects, a thin nonlinear medium and a perfect phase-matching
over the bandwidth of interest. With broadband pulses the latter assumption is seldom fulfilled
and a more appropriate expression for the SH power spectrum can be derived by including
the wavevector-mismatch and other frequency-dependent parameters of the SH and detection
stages by adding a spectral filter R (20) [18, 19]. For the sake of clarity, we will however omit
R(2w) in the following sections.

Equation (1) cannot be simplified without any further assumptions. However, it is well
known that the main contributing terms in integrals of the kind [ a(x)exp [i¢(x)]dx, where
a(x) > 0 and ¢(x) are real valued functions, originate from stationary points, i.e. from the
vicinity of values x such that ¢’(x) = 0. For the SH spectrum, the relevant amplitude and
phase functions a and ¢ to be considered are, respectively, a(Q) = |E(w — Q)E(0+ Q)|
and ¢ (Q) =arg[E(0 —Q)E(0+Q)]. If E(w) = |E(w)|exp [i@(w)], then the usual stationary
phase approximation states that Isyg(2®) reaches a maximum at angular frequencies fulfilling
0 (0+Q)— ¢'(w— Q) ~0. In particular, this condition is locally fulfilled if ¢” (@) = 0. Con-
sequently, the SH spectrum is expected to exhibit a local or global maximum at 2@ if @”(®)
cancels.
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1.2.  Quadratic test functions

We now assume that a pure quadratic phase is added before the non linear stage so that the spec-
tral phase of the pulse exciting the non linear process is @(®) + ¢»(® — ax)? /2. The measured
SH spectrum then becomes:

2
I (20, 92) o= \ [ Elo- 0@+ a0 @
R
Equation (2) can be equivalently expressed using the Fourier-transform operator F T
. 2
Isii6(20,92) > |FT [E2(0)e /%) ar) (20) ", 3)

Isu (20, ¢) can be seen to be proportional to the square modulus of the Fresnel transform of
E?(1). The analogy between wave propagation and spatial focusing, on one side, and dispersion
and temporal focusing on the other side was pointed out as earlier as 1968 [20] and has been
a fruitful tool for the understanding and development of temporal characterization methods.
From this point of view, performing a chirp-scan measurement by varying ¢, is equivalent to
recording the spatial profile at several locations along the beam propagation direction. However,
this analogy is not exact since Eq. (3) involves the square of the electric field amplitude instead
of the field amplitude itself. Nevertheless, some key features remain valid and this analogy
will be used later in this paper. In particular, small and large |¢| values can be associated to
respectively near-field and far-field regimes.

1.3.  Far-field approximation

Equation (1) can be simplified in the far-field regime, i.e. for large |¢,| values. Indeed the
integral [ a(x)exp [i¢ (x)] dx admits a remarkable asymptotic approximation if ¢ (x) exhibits a
single and well-defined non degenerate stationary point (i.e. ¢'(xo) = 0 and ¢” (xo) # 0) [21]:

g . i (x0) /hti% 3
00/ h g s ,/an +0(h?), 4
./Ra(X)e X R2ps0 0 o) /7] ( ) “)

where £ is a scaling factor used to express the condition that ¢’(x) takes small values in a
very narrow range around xg. In practice, & is a mute factor and can be ignored. If ¢ possesses
a finite number of non degenerate stationary points, the integral can be approximated by the
sum of the individual contributions. Besides, the residual error O (h%) has an analytical upper
bound which is a function of a(x) and of the higher derivatives of ¢” (x) [21].

Considering the right hand side of Eq. (2), we find that for sufficiently large values of |¢|,
the overall spectral phase is such that the corresponding group delay is strictly monotonic with

frequency and there is a single non-degenerate stationary point for ¢. The asymptotic expression
of the SH spectrum is simply

[(w)?
192+ ¢" ()]
As can be noted, the SH signal tends to diverge when ¢, ~ — " (®). In this particular case, the

stationary point becomes degenerate and Eq. (4) is not valid anymore. In practice, the harmonic
signal tends to reach a local maximum.

IsHg (92,20) o< )
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1.4.  Uniqueness

For a given wavelength, the SH signal is expected to decrease as |¢ + ¢”(®)|~! for large
positive and negative values of ¢ (i.e. such that |@| > max(|@”(®)])). It follows from (5) that
it is theoretically possible to extract analytically ¢”(®) from only two measurements. Indeed,
let 92" and @I"** be two second order coefficients of opposite signs such that 1" < —| ¢ (o)
and ¢"* > |@" ()| for all m, and one then gets:

i max i Imin 2 min I ax 2 X
I((]))o( \/Imm(zw) XI (2(1))( énax 7¢5n1n) and (p//(w) _ ( 0)) o) + ma ( w)¢2

Inin(20) + Inax (20) Inin( 20) + Inax (20)

(6)
where Inin(20) = ISHG(¢§‘i“,2w) and Inax (20) = Ispc (5", 2m). In other words, for a given
angular frequency, the local chirp ¢”(®) is the arithmetic mean of ¢"" and ;"™ weighted
by Inin(20) and I (20). By integrating ¢”(w) twice, the spectral phase ¢ () can be unam-
biguously retrieved up to a linear phase (the absolute group delay and absolute phase are not
measurable in the slow varying envelope approximation). In principle, the input spectrum can
also be retrieved by this method if the second harmonic spectra are acquired with a sufficiently
high dynamic range (the root square operation performed on the SH spectra tends to amplify
the noise). As a result, both the spectral amplitude and phase can be unambiguously measured
if at least two far-field SH spectra are acquired (formulas similar to Eq. (6) can be derived
for chirp coefficients of the same sign). To the best of our knowledge, equation (6) is the first
mathematical proof of the bijective character of the chirp-scan technique.

In the special case of §;"* = |¢| = —(/Jé“i“, the relations (6) can be simplified:
Lnin(20) X Inax (20) " Inax (20) — Inin(2@)
I(w)ocy |2 and )= . @)
( ) \/ ‘¢2|Imin(2a)) +Imax(2w) (p ( ) ‘¢2|Imin(2a)) +Imax(2w)

Application of this method, referred to as Chirp Reversal Technique (CRT) in this paper, is
experimentally demonstrated in section 3.2.

From a mathematical point of view the far-field regime is reached when ¢” (®) /¢, < 1 for all
angular frequencies. Although some complex mathematical condition may be established [21],
a empirical rule is |¢,| > 46t6w173 where Ty is the pulse duration of the Fourier-Transform-
limited pulse and 60y, is the expected time-bandwidth product of the input pulses, expressed
as the product of the temporal and spectral standard deviations.

2. Chirp-scan maps: examples and properties

In this section we briefly review some properties of the chirp-scan maps and describe the
characteristic chirp-scan maps associated with frequently encountered spectral phase shapes.
Isng (2, ¢») is obtained by scanning ¢ from ¢ yin t0 ¢2 ymax and acquiring N second harmonic
spectra. @ yin and ¢ 4, are chosen to both encompass the SH maxima and extend to the far-
field regime.

2.1. Examples

For a perfectly flat spectral phase (i.e. for Fourier-transform limited pulses or ¢”(®) = 0) a
typical chirp-scan map is shown in Fig. 1(a): for all wavelengths the SH signal is maximum at
¢> = 0 and decreases symmetrically with respect to the maximum (at ¢, = 0). For a Gaussian
fundamental spectrum the shape of the SH spectra is also Gaussian for all applied ¢ values

-1/2
and the SH signal decreases as [1 + (¢2Aa)2 /4 ln(2))2] where A® is the FWHM spectral

#195491 - $15.00 USD  Received 8 Aug 2013; revised 26 Sep 2013; accepted 26 Sep 2013; published 10 Oct 2013
(C) 2013 OSA 21 October 2013 | Vol. 21, No. 21| DOI:10.1364/0OE.21.024879 | OPTICS EXPRESS 24883

)



width of the input pulse. For all angular frequencies, the SH drops by a factor of 2 for |¢,| =
8v/31In2/Am? ~ 1.2673 and then decays as 1/|¢,|.

For a chirped pulse (¢” (@) = ¢” (), Fig. 1(b)), the maxima are simply shifted toward the
¢, that compensates the chirp of the input pulse (i.e. to ¢ = —@" (@y)).

: Order 3

-5000 0 , 5000 -5000 0 , 5000 -5000 0 , 5000
4, (59 b, (59 9, ()

Order 2 Order 4

-5000 0 5 5000 -5000 0 , 5000 -5000 0 , 5000
4, (59 4, (59 9, (9

Fig. 1. Chirp scan maps for basic cases of Gaussian shape spectra centered around A =
800 nm with AA =30 nm FWHM. The initial spectral phase coefficient of the pulse is set
to be (a) zero, (b) 3000 fs2, (c) 70000 fs3, (d) 2.10° fs*, (e) 2.108 £s> and (f) 0.5 x
sin(100 fsx (@ — @p)). The overlay white dashed line corresponds to —¢" (®).

For a third order phase dispersion (Fig. 1(c)), the signal is sheared and the maxima of
Isuc (20, ¢) are aligned along the white dashed line revealing ¢”(w). As stated by [7], the
maximum SH signal for a given angular frequency 2 is reached when ¢, = —¢” (®) (station-
ary phase approximation, see section 1.1). For the third order phase, the second order phase is
a linear function of ® and the SH maxima are located at ¢, = —@®) (@) (® — ).

For a fourth order input phase (Fig. 1(d)), a similar behavior could be expected: the loci
of the maxima are expected to follow the parabola ¢, = —@®) (@) (@ — @y) — @™ (@) (w —
@x)? /2. The stationary phase approximation is however not exact and the ¢ value for which
Isug(92,2) is maximized is not exactly on this parabola.

For a fifth order phase (Fig. 1(e)), the discrepancy is even stronger even if the “S” shaped
(cubic dependence of the optimal ¢, on 2w) can still be recognized.

For a sinusoidal phase (Fig. 1(e)), the figure becomes even more complex and the local max-
ima are not located at —¢@"”(®). Here the maxima are all aligned at ¢, = 0. In such a case,
the stationary phase approximation completely fails. Large parts of the spectrum indeed con-
tribute to the SH signal owing to the broadband intrapulse frequency mixing. The approxima-
tion ¢ max =~ —@” (®) nevertheless holds in some specific cases: when a very small portion
of the spectrum contributes to the signal at 2@ (spectral edges for example), spectral phase of
large amplitude with slow variations (like in [7]) with a regular spectrum. At the same time, the
far-field pattern does follow the expected tendency: on Fig. 1(e) the blue shade indeed follows
the white dashed line.

To get an intuitive representation of the chirp-scan maps, we simulate a more dense variety
of amplitudes and spectral phases in the attached video (cf. Fig. 2).
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Spectra Cubic phase Chirp scan
1 ' i
P 410 27.10% fs®
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5 v £
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= » 395
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Fig. 2. Snapshot of the video (Medial) showing some typical chirp-scan maps as a function
of the spectral amplitude and/or phase distortions. The spectral components (— intensity
and — phase) are plotted on the left side while the map is on the right side.

2.2.  Symmetry

Unlike SH-FROG maps, chirp-scan maps are generally not symmetric with respect to the
scanned variable. In fact, it can be shown that the only case for which chirp-scan maps are
symmetric with respect to the ¢, axis is when ¢”(®) is constant i.e. for pure quadratic spec-
tral phases. Such feature is extremely practical, since any departure from a perfect “left-right”
symmetry indicates the presence of some higher-order spectral phase. From equation (2) one
can also deduce that if the spectrum is symmetric with respect to the carrier frequency @y
then then an even spectral phase leads to an axial symmetry with respect to @ = 2wy whereas
anti-symmetric spectral phases lead to centro-symmetric diagrams (Fig. 1(c), (e) and (f)).

2.3.  Marginals

Similarly to the SH-FROG maps, the marginals of chirp-maps contain information of interest.
First, the integral of Ispyg(2m, ¢2) along @ is expected to decrease as 1/|¢] in the far-field
approximation. This hyperbolic decay can be deduced from Eq. (5) and can be used to check if
the far-field regime is reached. Secondly, the integral of Isyg(2®, ¢,) along ¢, is independent
of @(w) for a given scanning range and a given fundamental spectrum I(®), provided that the
far-field is reached on the edges of the scan. Equation (2) can indeed be rewritten as:

Isng (20, ¢2) < //H%ZE(w —Q)E(0+Q)E (0 —Q)E* (0 +Q)e (@2 4040/ (8)

The integration over ¢, with the change of variables Q = (u+v)/2 and Q' = (u—v)/2 then
leads to:

e (o) (ov 52 (-5 (0552 i, o

and finally:

AQuy

/ It (20, 62)ddr = Ag / /R  flu,v)sine ( ) 1O . (10)

where f(u,v) is a complex-valued function, A@2 = @2 maxr — P2min and (@2) = (P2.max +
02,min)/2. Since the spectral support of the fundamental spectrum is experimentally bounded,
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the integral limits are also bounded and the sinc (A@;uv/2) term behaves as a sampling func-
tion (Dirac function) if A¢, is large enough. More precisely, this condition is Ay A®? > 7 and
corresponds to the far-field approximation. As a result, the integral becomes, to the first order,
independent of the spectral phase:

[ 1516(20,02)46: = 092 £(0.0) = asgi (@), (1n
where « is a constant coefficient depending on A@,.

3. Experimental demonstration

3.1.  Experimental setup

We use as test pulses the output of a Ti:Sapphire chirped-pulse amplifier delivering 2 mJ pulses
at 5 kHz (Dual Legend Elite USX, Coherent). The spectral width of the compressed pulses
is AA =~ 50 nm FWHM centered at A9 = 800 nm which supports sub-25 fs pulses. The experi-
mental setup consists of a beam sampling plate, an acousto-optic programmable dispersive filter
(AOPDF [22]), a 20 pum-tick B-barium borate (BBO) crystal cut for a type I second harmonic
generation at 800 nm (6 = 29°), a coloured filter (BG37, Schott) to isolate the SH signal, a fo-
cusing lens and a high-resolution spectrometer covering 350-450 nm with a 0.1 nm resolution
(AvaSpec2048, Avantes, with a 10 yum input slit). The spectral response of both the spectrome-
ter and the colored filter were calibrated with a blackbody source. The AOPDF is a 25 mm HR-
cut TeO, crystal (HR800, Fastlite) and is used simultaneously to compensate for the dispersion
of the AOPDF itself and add the ramp of quadratic phases required for the chirp-scan measure-
ments and, optionally, compensate the measured spectral phase. After self-compensation the
AOPDF was able to add quadratic phases with chirp coefficients ranging from -9000 fs? to
+9000 fs> with a precision better than 1%. Such a span correspond to a pulse broadening is
up to about 50 times the FTL pulse duration. Given the thickness of the BBO crystal the finite
phase-matching bandwidth does not distort the SH spectrum by more than a few percents at
the edges of the SH spectrum (the beam is not focused on the BBO crystal). Pulse durations as
given at FWHM with a precision of +0.5 fs limited by the shot-to-shot fluctuations.

3.2.  Chirp-reversal technique

To test and demonstrate the chirp-reversal technique (CRT) introduced in subsection 1.4, we
first use the AOPDF to add sequentially -5000 fs? and +5000 fs”. The corresponding SH spec-
tra are shown in Fig. 3(a). The reconstructed spectra and the second derivative of the spectral
phase are displayed in Figs. 3(b) and 3(c) (blue solid curves) and are compared to the spectrum
and phase retrieved by the 2D-fit described in the sub-section 3.3. The noise level on the re-
trieved spectrum is intrinsic to the technique since any noise on the measured SH spectra (or any
defect of the phase applied by the AOPDF) will be directly transferred on the retrieved spec-
trum. To avoid numerical artifacts the SH spectra were smoothed and apodized before applying
formula 7. The analytic reconstruction is still very close to the real spectrum. The retrieved
spectral phase is complex and is composed of high-order polynomial phase and oscillating fea-
tures. Although this phase structure was confirmed by further experiments, its physical origin
was not explored.

This experiment demonstrates that a chirp-scan reduced to only 2 acquisitions can already
provide a decent measure of the spectral amplitude and phase. However, as already mentioned,
the experimental data do not contain redundant information and potential measurements arti-
facts cannot be discarded. To overcome this problem, some additional data are required. The
advantages of a full chirp-scan are manifold: noise is reduced in the retrieved data, the interpre-
tation is far more intuitive, the conditions of far-field do not have to be fulfilled. On the other
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Fig. 3. (a) SH spectra recorded at +5000 fs2(— in black) and -5000 fs%(— in magenta).
The reconstructed spectral intensity (b) and the second derivative of the phase (¢) shown in
blue solid line for the CRT reconstruction technique and in red dashed line for our 2D-fit
technique described in the following.

hand, an iterative algorithm is required in order to reconstruct the test pulses. The two tech-
niques are, in fact, complementary since a chirp-scan usually contains data compatible with the
CRT and the iterative algorithm requires relevant initial conditions. In the following sections
we combine both retrieval methods (analytical and blind reconstructions).

3.3. Iterative algorithm

In this subsection we use an optimization algorithm to reconstruct the spectral amplitude and
phase from a full chirp-scan map (the number N of SH spectra recorded is typically 64). The
fitting procedure is based on a standard Levenberg-Marquardt least-square fit procedure. Unlike
[12], we assume that R(2®) is known (i.e. calibrated spectrometer, perfect phase-matching)
and we reconstruct simultaneously both the spectral amplitude and the spectral phase. Such
an assumption can be experimentally justified for pulse durations longer than ~10-15 fs. The
main advantage of this approach is to avoid an independent measurement of the spectrum and
potential artifacts such as beam inhomogeneities or amplified spontaneous emission do not
come into account. Our procedure proceeds all the data in a single loop. The fit parameters are
directly the sampled spectral amplitude and the second derivative of the spectral phase (|E ;)|
and @"(w;) for i ranging from 1 to N;). Working with the second derivative (i.e. local chirp)
rather than with the phase directly is warranted by the fact that, in the slowly varying envelop
approximation, the SH signal is insensitive to the absolute and linear phase. We use the result
of the CRT algorithm as initial conditions to start the fit with reasonable initial conditions for
the amplitude and phase parameters. Using this strategy, the convergence of the algorithm is
very stable and we found numerically that it always converges towards the same solution. With
N ~ N; ~ 64 and about 200-300 spectral points a typical convergence time is about 10 s with
a standard laptop computer.

3.4. Example 1: complex chirped pulse

To validate our technique we record the chirp-scan map, retrieve the spectrum and spectral
phase by combining CRT and the 2D-fit and then correct the reconstructed spectral phase with
the AOPDF by adding the opposite of the measured spectral phase. For this experiment we
intentionally misalign the grating compressor of our laser system. Figure 4 presents the exper-
imental chirp-scan map (Fig. 4(a)) and the reconstructed map (Fig. 4(d)). The same data are
shown after a single phase feedback loop (Figs. 4(b) and 4(e)). After feedback the trace is “fo-
cused” at ¢, = 0 and is almost symmetric with respect to it. As mentioned in subsection 2.2 this
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is a strong indication of an FTL pulse. The spectrum, phase and time profile before and after
feedback are compared in Figs. 4(c) and 4(f). The higher order spectral phase is corrected and
the pulse satellites are efficiently suppressed.
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Fig. 4. Measurement and feedback experiment. (a) and (d) experimental chirp-scan map
the reconstructed map before phase feedback. (b) and (e) same as (a) and (d) but after
feedback. (¢) and (f) the retrieved spectrum, spectral phase, and temporal intensity before
(- - - in blue (intensity) and - - - black (phase)) and after (— in red (intensity) and — gray
(phase)) correction. The retrieved spectral phase before and after the phase feedback are
respectively displayed in solid gray and dashed black (c).

3.5. Example 2: near-FTL pulse

Since the compensation of a strong spectral phase doesn’t necessary demonstrate the precision
of the measurement, we perform the same experiment when the grating compressor re-aligned.
The experimental map (Fig. 5(a)) is almost symmetric and well centered but a single phase
feedback can still improve these features (Fig. 5(b)). The time profiles before and after feedback
loop are shown in Fig. 5(f). The FWHM pulse durations before and after the measurement-
correction loop are equal to 25.5 fs and 23.8 fs. However, the pulse contrast was increased from
10 dB to more than 20 dB. Despite the small values of the initial spectral phase, the chirp-
scan map exhibits significant variations. In this experiment, the pulse contrast after the phase
correction was limited by the modulations on the spectrum and by the spectral clippings at
760 nm and 850 nm.

3.6. Calibration of the ¢, axis

In [12] it is briefly mentioned that the dispersion can be retrieved from the experimental maps.
In this section we detail the condition for which the ¢, values can be accurately retrieved by
the fit algorithm. A precise knowledge of the chirp values ¢, is indeed not required and the
measurement is somehow “self-calibrated”. This striking property can be intuitively explained
by the fact that, as in the case of the FROG, the two coordinates (wavelength and chirp) are
not independent: a trace corresponding to a physical signal has to fulfill some constraints in the
frequency-chirp space. For example, the SH signal cannot vanish within tens of fs? if the pulse
bandwidth is only a few nanometers wide. As a result, if the spectrometer is assumed to be
perfectly calibrated, the chirp values ¢, introduced by the AOPDF can be retrieved. In practice,
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it is necessary to set at least two ¢ conditions: the global ¢, offset (i.e. the origin of the ¢,
axis), the direction of the ¢, axis (otherwise the algorithm might reconstruct —¢@"” (@) instead
of +¢"(®)). We chose to set ¢, = 0 when no spectral phase is introduced by the AOPDF.
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Fig. 6. Robustness of the ¢, axis retrieval. To ease the reading, the negative (a) and positive
(b) portions of the ¢, axis are displayed separately. In solid lines are presented the ¢ initial
values: expected values from the AOPDF (black), 1.5 x the expected values (red) and 0.75 x
the expected values (blue). The symbols represent the final (i.e. retrieved) values by the
least-square algorithm (same color code than for the initial values).

To test the robustness of the ¢ reconstruction, we try to reconstruct the experimental map
displayed in Fig. 6 with different set of initial conditions for ¢,. The initial conditions are
obtained by multiplying the expected ¢, values by 1 (black solid line), 1.5 (red solid line) and
0.75 (blue solid line). As done previously, the initial guess of the spectral amplitude and spectral
phase are determined with the CRT method. Independently of the initial conditions, the ¢,
values retrieved by the algorithm are almost identical (blue, red and black dots are superposed
on Fig. 6) and almost match the expected values (black solid line). A small discrepancy can
however be noticed for large negative ¢ values. This discrepancy may originate from a small
calibration error of the AOPDF and is stronger for negative value because of the dispersion bias
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(the AOPDF also compensates for its own dispersion of about -13000fs?).

4. Comparison with reference techniques

In the same spirit as [14] we cross-check our measurements with reference devices. In this
section we compare chirp-scan with a home-built b-FROG [16] and with a commercial SRSI
[17,23] device (Wizzler800, Fastlite). The experimental protocol is the following: the pulses
are characterized by chirp-scan, the retrieved spectral phase is compensated by the AOPDF and
the pulses are characterized by b-FROG or by SRSI. These techniques were selected for the
following reasons: b-FROG measurements can be implemented with exactly the same optical
setup (no additional optics), SRSI is based on a radically different principle and the dynamic
range of SRSI can reach 45dB [24].

4.1. Comparison with b-FROG

For the b-FROG measurements, the AOPDF produces two pulses replicas of the input pulse and
scans the interpulse delay. The spectrometer records the SH spectrum and the b-FROG map is
processed by an iterative algorithm. To avoid rescaling and sampling issues, we chose to use the
same 2D least-square fitting procedure to extract the spectral amplitude and phase. The results
of the reconstruction are shown in Fig. 7. The two measurements agree satisfactorily.
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Fig. 7. Comparison of the spectral (@) intensity and (b) phase and (c) the temporal profile
reconstructed by the b-FROG (blue dashed line) and the chirp-scan (red solid line).

4.2.  Comparison with SRSI

We now compare chirp-scan with SRSI and evaluate the accuracy of the pulse compression.
Figure 8 shows an excellent agreement on the spectral phase. Some minor discrepancy in the
retrieved spectrum can be noticed. The reconstructed temporal profiles match well down to
-25 dB (3.1073) with respect to the maximum intensity. The time delays of the pre- or post-
pulses also match at -30 dB. The discrepancies are believed to be related to the differences
in the measured points of the spatial profile. As the fundamental spectrum wasn’t perfectly
homogeneous over the spatial profile it is possible that the two devices sampled different parts
of the input beam.

5. Dispersion-scan with a grating compressor

A major difference between this work and the references [12—14] is that an AOPDF pulse shaper
was used to scan the phase parameter. Ideally, such a technique would gain in simplicity if it
could be implemented with regular passive optics. Miranda et al. [13] showed that a prism pair
could be used. Howeyver, this solution is not very convenient for narrowband pulses (i.e. <50 nm

#195491 - $15.00 USD  Received 8 Aug 2013; revised 26 Sep 2013; accepted 26 Sep 2013; published 10 Oct 2013
(C) 2013 OSA 21 October 2013 | Vol. 21, No. 21| DOI:10.1364/0OE.21.024879 | OPTICS EXPRESS 24890



1 1.5 0
PN @ (b)
208 v 1 -10
5 . vy 5 )
206f ¥ v & oo S 20
® N ~ X >
- N o 0% ey E
204} 7§ & c -30
2 \ < -05 3
[0} [ c
€02 A = -40
- [
i
0760 780 800 820 840 860 _1'5760 780 800 820 840 860  -200
wavelength (nm) wavelength (nm) time (fs)

Fig. 8. Spectral and temporal characteristic of the pulse measured by SRSI [23, 24] (blue
dashed line) and chirp-scan (red solid line).

FWHM at 800nm): the dispersion of a prism pair is indeed rather low and large propagation
distances might be required. In this section we show that, at the cost of a dispersion calibration
step, the compressor of the laser system itself can be used directly for the scan.

To measure the third order and higher order dispersion introduced by the grating compressor,
we first optimize the pulse duration by chirp-scan and record a reference chirp-scan map. The
distance between the gratings is then gradually varied and consecutive chirp-scan maps are
recorded. Typical measurements are shown in Fig. 9. As can be seen at first glance, changing
the gratings distance changes both the second order dispersion (shifted traces) and the third
order dispersion (sheared traces) of the pulses. To extract the second, third and fourth order
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Fig. 9. d-scan measurements realized when the diffraction grating is before (a), at (b) and
after (c) the compression optimization.

dispersion coefficients of the compressor as a function of the grating separation, the spectral
phase is retrieved for each grating position and the reconstructed phase is fitted by a fourth
order polynomial. The resulting third and fourth orders of dispersion are shown in Fig. 10 as
functions of the second order coefficient.

Figure 10(a) shows a linear dependence of the third order dispersion with chirp. The fourth
order dispersion was found almost constant (Fig. 10(b)) within the experimental error. To the
first order, the ratio of the third order dispersion coefficient @3 to ¢ is almost constant and given
by:

% = (—2.067+0.026) fs. (12)

The theoretical value (groove density of 1500 g/mm and incidence angle of 50°) is -2.09 fs at
800 nm and it agrees well with the experimental value. Calculations also give a ¢4 to ¢, ratio
of 7.0 fs? at 800 nm, which is also in agreement with the measurements. Once the compressor
is calibrated, the third order dispersion is taken into account by the chirp-scan algorithm. As
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we previously demonstrated (Figure 6) it is not necessary to accurately know the real value of
the applied chirp, it is possible to simply scan the gratings separation distance without even
measuring the actual displacements.
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Fig. 11. Grating d-scan acquisition “on-the-fly” (a) and its respective fit (¢). The spectral
intensity (solid line) and phase (dash line) are presented in () for the present measurement
(red) and a reference measurement realized with a standard d-scan (blue). The retrieved
linear chirp ¢, that we have introduce with the grating is shown in (d) and the third order
is given by the equation (12).

The implementation of the third order correction in the 2D-fit algorithm is straightforward:
an additional term in included in the calculations. In our case, as we do not control the abso-
lute position of the grating with the translational stage we reconstruct at once the amplitude,
the phase and the added dispersion. Experimentally, one spectra was recorded every 50 ms
“on-the-fly” while continuously scanning the distance between the compression gratings with a
manual linear translation stage. The results are shown in Fig. 11. These measurements are then
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compared to an AOPDF-based chirp-scan. The reconstruction is as good as with the AOPDF
and the algorithm stability is not affected by the introduction of the ¢3 correction. It is worth
noting that the retrieved chirp values are not perfectly regular as shown in Fig. 12(d) (the trans-
lation speed wasn’t perfectly constant due to the manual operation), which shows that, as stated
before, the ¢, values can be accurately retrieved.

6. Conclusions

Chirp-scan, and more generally dispersion-scan, is a powerful technique to characterize short
pulses. Varying chirp instead of more complex phase functions provides an intuitive access to
the spectral phase content and simple criteria to assess the pulse compression quality (symme-
try). We showed that both the spectrum and the spectral phase can be retrieved by chirp-scan
either analytically or by running a simple iterative algorithm and that the minimal number of
measurements is 2. We also showed that this technique is free from non-trivial ambiguities if
the chirp range is large enough and that this technique is, in a sens, self-calibrated. 25fs pulses
delivered by amplified Ti:Sapphire system were characterized by chirp-scan and the measure-
ments were compared to the measurements provided by two reference techniques. The results
nicely agree and the dynamic range of the chirp-scan measurements could be assessed to at
least two orders of magnitude.

We believe that most of these features and characteristics would hold for a general d-scan (not
demonstrated here). As an example, we described how a calibrated grating compressor could
be used to perform a simple d-scan measurement. Since any available dispersive setup (pulse
shaper, grating compressor, prism compressor, glass wedges and chirped mirrors...) could be
virtually used, the d-scan technique could easily be implemented in most existing setups to
characterize pulses with durations ranging for a few ps to few optical cycles.
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