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Evaluating Classification Feasibility Using
Functional Dependencies

Marie Le Guilly1, Jean-Marc Petit1, and Vasile-Marian Scuturici1

Univ Lyon, INSA Lyon, LIRIS, UMR 5205 CNRS, Villeurbanne, France

Abstract. With the vast amount of available tools and libraries for data
science, it has never been easier to make use of classification algorithms:
a few lines of code are enough to apply dozens of algorithms on any
dataset. It is therefore “super easy” for data scientists to produce ma-
chine learning (ML) models in a very limited time. On the counterpart,
domain experts may have the impression that such ML models are just a
black box, almost magic, that would work on any dataset without really
understanding why. For this reason, related to interpretability of ma-
chine learning, there is an urgent need to reconcile domain experts with
ML models and to identify at the right level of abstraction, techniques
to get them implied in the ML model construction.

In this paper, we address this notion of trusting ML models by using
data dependencies. We argue that functional dependencies characterize
the existence of a function that a classification algorithm seeks to define.
From this simple yet crucial remark, we have made several contribu-
tions. First, we show how functional dependencies can give a tight upper
bound for the classification’s accuracy, leading to impressive experimen-
tal results on UCI datasets with state-of-the art ML methods. Second,
we point out how to generate very difficult synthetic datasets for classi-
fication, showing evidence about the fact that for some datasets, it does
not make any sense to use ML methods. Third, we propose a practical
and scalable solution to assess the existence of a function before applying
ML techniques, allowing to take into account real life data and to keep
domain experts in the loop.

Keywords: Functional Dependencies · Classification · Feasibility

1 Introduction

As the number of machine learning libraries keeps increasing, with more and
more tools and technologies, it is getting easier to apply classification models on
any dataset, with a very limited number of steps. Indeed, for a data scientist, it
only takes a few lines of code to train and test a model in her data, and to get
first results in a few minutes. If this is very practical, it can also be dangerous: it
is possible to try and classify on data for which it might not make any sense, or
for which much more cleaning and preprocessing is necessary. Of course, in such
cases, the scores used to evaluate the model will likely be pretty low, indicating
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to the data scientist that there is room for improvement, regarding either the
data or the algorithm’s parameters.

Another problem of classification algorithm is its black box aspect: when
applied on a dataset, the domain expert will not necessarily trust them, as it is
not always possible to explain simply why it works or the prediction it produces.
For this reason’s models interpretability is an extremely important topic [8, 16].
Some models are interpretable by nature, such as decision tree, and there are
many ongoing work to propose models that can be easily explicable [46, 48].
Having domain experts understanding why the model is adapted to their data,
and then trust it, is crucial to build new artificial intelligence applications.

In this paper, we address this notion of trusting ML models by using data
dependencies. We argue that functional dependencies characterize the existence
of a function that a classification algorithm seeks to define. Rather than focusing
on the model itself, we propose to explain the limitation of the main input of a
classification problem, i.e. the classification dataset, to show why the accuracy
of any classifier is limited by the available data, while keeping domain experts
in the loop. Indeed, the existence of a function is much easier to understand
than the function itself and turns out to be a very convenient concept for data
scientists to get closer to domain experts.

On the one hand, functional dependencies are a key concept, at the founda-
tion of the theory for relational database design (see [2]), data cleaning [5] or
for query optimization, to mention a few. Supervised classification, on the other
hand, is a traditional problem in machine learning: it seeks to find a model
that can predict the class of a sample described by its value over some given
attributes. Many algorithms have been developed to build such models (see [21]
for an overview), from simple decision trees to the trendy deep neural networks.
These algorithms have gained in popularity this last few years, especially thanks
to the volume of data that is now available to data scientists. Classification prob-
lems arise in very different areas, and models are being produced for an even
wider range of applications, from cancer prediction to targeted advertising.

Functional dependencies on one side, and supervised classification on the
other, therefore appear as two problems that do not seem to have much in com-
mon. For instance, they do not look at data in the same way: for functional
dependencies, the values themselves are not important, only their comparabili-
ties matter, while values are crucial for learning algorithms. Nevertheless, these
approaches turn out to be complementary, as shown in the following general
observation:

Given a dataset r over {A1, . . . , An, C} where C C values represent the
class to be predicted, classification algorithms seek to find out a function
to predict an output (C value) based on a given input (A1, . . . , An values)
whereas the satisfaction of the functional dependency A1, . . . , An → C
in r expresses nothing else than the existence of that function.

Between these two notions, one is clearly easier than the other. This observation
raises a simple question: Does it make sense to look for a function when the data
themselves show that no function exists ?
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Indeed, there exist many machine learning libraries and tools that allow to build
dozens of models, and therefore look for a function... that does not even exist.

As a result, in a classification setting, studying the existence of a functional
dependency between the attributes and the class of the dataset could produce
meaningful information regarding the possible performances of the classifier.
No matter how complicated the function to find out is, looking at the data
dependencies allow to simply validate its existence. It can also identify relevant
counterexamples, i.e. tuples in the dataset that will cause a classifier to fail when
predicting an output for it, because several outputs are possible for the exact
same input. More precisely, we propose to qualify the existence of the functional
dependency using well-known metrics, such that an upper bound for the classifier
accuracy can be given. This can then be used for data analysts to better explain
to domain experts what is going on with their data, before building a model on
top of it. Using the score, they can make an informed decision, by being aware
of some limitations of the model they are trying to build. Moreover, it can assist
them in deciding whether or not they should jump into the learning phase, or
if they should spend more time to do more data cleaning, add other attributes,
etc.

Example 1. Let’s take a small dataset from table 1 as an example. This is the
dataset about passengers of the famous Titanic, with their ticket class (first or
second), their age range (child or adult), their gender, and whether or not they
survived. The purpose of this problem is to predict if a passenger has survived
or not. Such an analysis can then be used to determine if some passengers were
more likely to survive than the other.

In this dataset, the available attributes are not enough to determine the
class. For example, tuples t2 and t5 both concern male children in second class,
however one survived while the other did not. Similarly, the two adult males
in first class from tuples t7 and t8 had two different outcomes. Whatever the
classifier, it will irremediably misclassify at least one of them.

id Ticket Age Gender Survived

t1 1st Child Female no
t2 2nd Child Male yes
t3 1st Adult Male no
t4 2nd Adult Female yes
t5 2nd Child Male no
t6 2nd Child Male yes
t7 1st Adult Male no
t8 1st Adult Male yes
t9 2nd Child Male yes
t10 1st Child Female yes

Table 1: Toy dataset: Titanic relation
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This very simple example shows how the satisfaction of the functional de-
pendency between the attributes (Ticket, Age, Gender) and the class (Survived)
in a classification dataset highlights the limits a classifier reaches on a dataset:
according to the measure G3 [23] (see section 3), the accuracy of classifiers on
this dataset can not be more than 70%. In addition, the counterexamples do
not only highlight why the classification performance will not be above a certain
value, but also what are the tuples that cause problems.

To summarize, this paper is based on a dramatically simple but powerful
observation, making a clear relationship between supervised classification and
functional dependencies, especially on the interest of first studying the existence
of a function before applying machine learning techniques. Thus, we propose the
following contributions:

1. We give a tight upper bound of classifier’s accuracy based on the G3 mea-
sure [24] for functional dependencies. An algorithm is given to compute the
upper bound, and experimentations are provided on datasets from the UCI
repository. This is a practical solution to give understandability to the learn-
ing process, by quantifying whether or not it makes sense to use machine
learning techniques on the considered dataset.

2. An algorithm to generate difficult synthetic classification datasets with a
predictable upper bound for accuracy, whatever the classification algorithms.
As far as we know, this is the first contribution to generate synthetic datasets
so that their classification accuracy can be as hard as desired.

3. A practical and scalable solution to deal with real life datasets, and assess
the existence of a function. The solution relies on a dataset reduction tech-
nique and crisp functional dependencies, delivering complex and meaningful
counterexamples, crucial to keep domain experts in the loop. Experiments
conducted on real-life datasets point out the scalability of our technique.

This work contributes to bridge the gap between data dependencies and
machine learning, a timely and active research trend, see for example [35, 1, 38].

Section 2 introduces the necessary preliminary notions on functional depen-
dencies and supervised classification. Section 3 explains the thought process that
goes from the existence of a function using functional dependencies to finding
the function with a classification algorithm. Section 4 exposes the generation
of difficult datasets and the corresponding tests. Section 5 explains how to use
counterexamples in practical settings, with our practical and scalable solution for
real life datasets. Finally section 6 describes the related work, before concluding
in section 7.

2 Preliminaries

We first recall basic notations and definitions that will be used throughout the
paper. It is assumed that the reader is familiar with databases notations (see
[28]).
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Let U be a set of attributes. A relation schema R is a name associated with
attributes of U , i.e. R ⊆ U .

Let D be a set of constants, A ∈ U and R a relation schema. The domain
of A is denoted by dom(A) ⊆ D. The definition of a tuple t over R t over R is
a function from R to D. A relation r over R is a set of tuples over R. In the
sequel, we will use interchangeably the term relation or dataset. If X ⊆ U , and
if t is a tuple over U , then we denote the restriction of t to X by t[X]. If r is a
relation over U , then r[X] = {t[X], t ∈ R}. The active domain of A in r, denoted
by adom(A, r), is the set of values taken by A in r.

2.1 Functional dependencies

We now define the syntax and the semantics of a Functional Dependency (FD).

Definition 1. Let R be a relation schema, and X,Y ⊆ R. A FD on R is an
expression of the form R : X → Y (or simply X → Y when R is clear from
context)

Definition 2. Let r be a relation over R and X → Y a functional dependency
on R. X → Y is satisfied in r, denoted by r |= X → Y , if and only if for all
t1, t2 ∈ r, if t1[X] = t2[X] then t1[Y ] = t2[Y ].

The satisfaction can be verified using this well-known property:

Property 1. Let r be a relation over R and X → Y an FD over R. Then: r |=
X → Y ⇔ |πXY (r)| = |πX(r)|

Understanding what tuples prevent a given functional dependency to be sat-
isfied relies on the notion of counterexamples, defined as follows:

Definition 3. Let r be a relation over R and X → Y a FD f on R. The set of
counterexamples of f over r is denoted by CE(X → Y ) and defined as follows:

CE(X → Y, r) = {(t1, t2)|t1, t2 ∈ r, for all A ∈ X, t1[A] =
t2[A] and there exists B ∈ Y, t1[B] 6= t2[B]}

The error of the functional dependency in a relation has been addressed in
in [23], in which three measures are presented, given a functional dependency
X → Y and a relation r. Other measures, based on information theory, are
presented in [15], but are out of the scope of this paper.

The first measure, G1, gives the proportion of counterexamples in the rela-
tion:

G1(X → Y, r) =
|{(u, v)|u, v ∈ r, u[X] = v[X], u[Y ] 6= v[Y ]}|

|r|2

Using definition 3, this can be rewritten as:

G1(X → Y, r) =
|CE(X → Y, r)|

|r|2



6 M. Le Guilly et al.

Following this first measure, it is also possible to determine the proportion
of tuples involved in counterexamples. This measure G2 is given as follows:

G2(X → Y, r) =
|{u|u ∈ r, ∃v ∈ r : u[X] = v[X], u[Y ] 6= v[Y ]}|

|r|
These two metrics are designed to evaluate the importance of counterexam-

ples in the relation. Similarly, measure G3 computes the size of the set of tuples
in r to obtain a maximal new relation s satisfying X → Y . Contrary to [23] that
present this measure as an error, we propose it as follows:

G3(X → Y, r) =
max({|s||s ⊆ r, s |= X → Y })

|r|

Example 2. Using table 1, considering the functional dependency fd = Ticket, Age,Gender →
Survived, we have:

CE(fd, T itanic) =
{(t1, t10), (t2, t5), (t3, t8), (t5, t6), (t5, t9), (t7, t8)
(t10, t1), (t5, t2), (t8, t3), (t6, t5), (t9, t5), (t8, t7)}

As a result:

– G1(fd, T itanic) = 12
100 = 12%

– G2(fd, T itanic) = 9
10 = 90%

– G3(fd, T itanic) = 70%

2.2 Supervised classification in machine learning

Traditionally, a supervised classification problem (see [30]) consists in a set of N
training examples, of the form
{(x1, y1), ..., (xN , yN )} where xi is the feature vector of the i-th example and yi
its label. The number of labels (also known as class), k, is limited and usually
much smaller than the number of examples (k = 2 in binary classification prob-
lems). Given the training examples, classification is the task of learning a target
function g that maps each example xi to one of the k classes.

The function g, known as a classifier is an element of some space of possible
functions G, usually called the hypothesis space. The objective of a learning
algorithm is to output the classifier with the lowest possible error rate, which is
the portion of misclassified examples according to their ground truth label.

It is sometimes convenient to represent g using a scoring function f : X×Y →
R such that g is defined as returning the y value that gives the highest score:

g(x) = arg max
y

f(x, y)

This optimal function can take different forms, depending on the learning
algorithm used to define it: polynomial, exponential, sometimes not even ex-
pressible using simple formulas (black boxes). This function g is often referred
to as the model of the classification task.
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In the rest of the paper, we will consider a relation r over {A1, . . . , An, C}
such that for every tuple ti ∈ r, ti[A1 . . . An] = xi and ti[C] = yi.

Evaluating the performances of a classification model is a crucial part in
a learning process. It allows to evaluate its quality and how well the model
generalizes. It is also useful to compare the performances of different learning
algorithms over a given dataset, to choose the most appropriate one given the
problem at hand. In this paper, we will focus mainly on accuracy, a simple but
efficient measure. We refer to [39] for a detailed overview of how to deal with
the evaluation of classification models.

Accuracy is a widely used metrics, as it is both informative and easy to
compute. Given a classification dataset of N samples, accuracy is the proportion
of samples that are correctly classified by the model. This score lies between 0
and 1, and ideally should get as close as possible to 1. Given a model M over a
relation r, the accuracy is defined as follows:

accuracy(M, r) =
# of correct predictions

|r|

3 From machine learning to functional dependencies

3.1 Existence versus determination of a function

At first sight, supervised classification and functional dependencies do not appear
to be two related concepts: they do not apply to the same problems. Both share
the well-known concept of function, recalled below:

Definition 4. A function f : X → Y is a mapping of each element x of a set
X (the domain of the function), to a unique element y of another set Y (the
codomain of the function).

According to the core definition of a classification problem in section 2, a
classifier is itself a function: for any input vector, it predicts a unique output
value. As a result, classifiers rely on the assumption that there exists a function
from the attributes to the class in the dataset.

Functional dependencies also rely heavily on this notion of unique output.
Indeed, a relation r satisfies a FD X → Y if and only if all tuples that are equal
on X are associated with the same unique value on Y . As a result, r |= X → Y
if and only if there exists a function f from X to Y , on the active domain of r.
It should be noted that a functional dependency is a statement of the existence
of a function in every possible relation r over R. A classification task can’t be
defined at the schema level, and requires a dataset to be provided as an input.

If we combine these results, it appears that a classifier determines a function
over a relation, whereas a satisfied functional dependency guaranties the exis-
tence of a partial function from the active domain of X to the active domain of
Y. Therefore, it follows:
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Property 2. r |= A1, . . . , An → C ⇐⇒ there exists a function f from adom(A1, r)×
...× adom(An, r) to adom(C, r)

This problem is clearly easier than the associated classification problem: de-
termining the function itself requires more investigation than proving its exis-
tence. However, it is interesting to notice that in most classification problems,
the existence of the function is assumed but not formally verified. This is sur-
prising, as it could be useful at several steps of the learning process. First, FDs
satisfaction in the training set can be used for data cleaning. Indeed, the tuples
that are counterexamples of the functional dependency can be used to iden-
tify inconsistencies in the dataset, that can have various explanations. Seeing
those counterexamples could then assist an analyst during the data cleaning
part, to see where those inconsistencies come from: are they normal, or do they
correspond to measurement errors that should be corrected ? If a few counterex-
amples can be expected, when their proportion is too high, the classification
model might not be trusted. This observation allows the data scientist and the
domain expert to stay connected, and to demystify part of the black box aspect
of machine learning, by explaining concrete limitations of the model.

To summarize, our first proposition is, given a classification dataset, to verify
the satisfaction of the functional dependency attributes → class. Contrary to
many pattern mining problems related to functional dependencies’ enumeration,
that pose combinatorial complexity, this problem is dramatically simpler, as we
only consider one dependency, attributes→ class, with attributes = A1 . . . An.

3.2 Upper bound for accuracy

In this setting, measure G3 appears to be of crucial importance for the classifica-
tion problem, as it represent the proportion of tuples in the dataset, that satisfy
the considered functional dependency. In this subset of the original data, there
is therefore no counterexample. This means that in the subset s defined for G3,
there exists a function between the left and right hand side of the dependency.
Theoretically, it is therefore possible for a classifier to reach a perfect score if
it identifies the correct underlying function, independently of its capabilities to
generalize from it. On the opposite, the counterexamples to A1, . . . , An → class
are blocking point for any classification algorithms, as they introduce pairs of
tuples for such that the classifier will misclassify at least one of them. As a
consequence, we propose the following result:

Proposition 1. Let A1, . . . , An → class be a FD over R, r a relation on R,
and M a classifier from A1, . . . , An to C. Then:

accuracy(M, r) ≤ G3(A1, . . . , An → C, r)

Proof. Let s be a maximum subset of r such that s |= A1, . . . , An → C.

For all (ti, tj) ∈ s, if ti[attributes] = tj [attributes] then ti[class] = tj [class].
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Let th ∈ r \ s. Then there exists ti ∈ s, such that (ti, tj) ∈ CE(attributes→
class, r), otherwise s is not maximal. If only the tuples from r \ s are misclas-

sified, and all the tuples from s correctly classified, accuracy(M, r) = |s|
|r| =

G3(attributes→ class, r).
If some tuples are misclassified due to the algorithm itself, this can only lower

the accuracy, and thus the result follows.

This upper-bound result is simple but powerful, as it can be applied to any
classification dataset, and offer guaranties on the feasibility of classification over
it. Moreover, G3 is closely related to Bayes error [43], allowing to revisit this error
through the prism of functional dependencies. The statistical learning theory give
theoretical bounds for the capacity of learning of a given type of classifier [44],
but these bounds are extremely difficult to compute. Our usage of G3 give an
estimation of a high bound which can eventually be attended by a classifier on a
given dataset. In addition, we make simpler assumptions by only considering the
available data and comparing the given tuples, and do not consider a probability
distribution. What we propose is an upper bound, which is only based on the
tuples used to evaluate the accuracy, which means that this can be influenced
by how the available data is split between training and testing sets for example.

3.3 Validation on classification datasets

We propose to compute this upper bound on various classification datasets, to
see how state-of-the-art algorithms perform in terms of accuracy, with respect
to this upper bound.

G3 computation Contrary to G1 and G2 that can be quite easily computed by
looking at each pair of tuples, G3 requires to identify the tuples to be removed
from the dataset so that is satisfies the dependency. In addition, the minimum
possible number of tuples should be removed. In the general case, this is a NP-
complete problem, as it is equivalent to the minimal vertex cover problem for
graphs [42].

However, when the data is discrete and when using crisp functional depen-
dencies, the comparison of values is transitive, and it is therefore possible to
compute G3. Following the definition of G3, in order for s to be maximal, it
should keep as many tuples as possible, while removing all the counterexamples
of the given functional dependency. As a result, this can be done by grouping all
the tuples that share the same left hand side, and then selecting among them
the ones that share the same right hand side, and that are the majority. This
allows to remove all the counterexamples, while removing the minimum number
of counterexamples. The size of s is therefore the sum, for each different left hand
side, of the size of the majority right hand side. Therefore, G3 can be computed
with the following proposition:

Proposition 2. Let r be a relation over R. Then:
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G3(X → Y, r) =

∑
xi

max
yi

|πXY (σX=xi∧Y=yi(r))|

|r|
where xi ∈ πX(r) and yi ∈ πY (σX=xi(r)).

Note that X = xi is a simplification for A1 = v1 ∧ . . . ∧ An = vn for X =
〈A1..An〉 and xi = 〈v1..vn〉.

To compute this measure, we propose algorithm 1. It relies on a specific data
structure, presented on figure 1, with tuples from table 1 as an example. It is
a hash map, with the values over the attributes as key, and another hash map
as value. For the second map, the key is the class, and the value the number
of times this class appears (for these given attributes). The construction of this
map is explained from line 3 to line 14 of algorithm 1: for each row in the dataset,
the corresponding values in the map are filled or created when necessary. Once
this data structure is complete, the algorithm looks at each key in the map: it
will then retrieve the number of occurrences for the class that has the highest
value in the second map. All these maximum values are added to one another,
as they correspond to the maximum number of tuples that can be kept, among
the ones that share the same attributes value, in order to satisfy the functional
dependency. This process is explained though line 15 to 19 in algorithm 1, with
a complexity in O(log |r|).

Algorithm 1: G3 computation algorithm

1 procedure ComputeG3 (r);
Input : r the classification dataset,

A1 . . . An → C a functional dependency
Output: G3(A1 . . . An → C, r)

2 map = {}
3 for row ∈ r do
4 if row[A1..An] ∈ map then
5 if row[class] ∈ map[row[A1..An]] then
6 map[row[A1..An]][row[class]]+ = 1
7 else
8 map[row[A1..An]][row[class]] = 1

9 else
10 map[row[A1..An]] = {}
11 map[row[A1..An]][row[class]] = 1

12 maxsum = 0
13 foreach key ∈ map do
14 maxfrequent = max(map[key])
15 maxsum += maxfrequent

16 return maxsum
|r|
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Ticket Age Gender

1st Adult Male Survived #

yes 1
no 2

2nd Adult Female Survived #

yes 1
no 0

1st Child Female Survived #

yes 1
no 1

2nd Child Male Survived #

yes 3
no 1

Fig. 1: Data structure for G3 computation

Example 3. Using figure 1, measure G3 can be computed as follows for the Ti-
tanic dataset:

G3(Ticket, Age,Gender → Survived, T itanic) = 2+1+1+3
10 = 7

10 = 70%

Experimentations We decided to perform experimentations, in order to show
experimentally the upper bound given by G3 on the accuracy of classifiers. To
do so, we ran experiments on well-known datasets, to compare the state-of-the-
art accuracy results for these datasets with their G3 measure. The datasets and
the accuracy measure come from [19], a thorough study on the accuracy of 179
classification algorithms over 121 datasets: the measures we use are therefore the
ones given by this study using these algorithms.

The results are presented in table 2. As expected, for all the datasets, the
maximum accuracy measured in [19] is always below our measured G3 value:
the difference between the two values is indicated in the last column of the
table, showing some significant differences for some datasets. For some datasets,
the G3 measure is 100%, which is reassuring, as it means that their exists a
function between the attributes and the class, and that it does actually make
sense to perform classification. It is also interesting that despite the existence
of a function, the average accuracy is still very low sometimes, such as for the
Contract dataset. Finally, the Titanic and the Led display are very interesting
datasets, as their G3 measure is pretty low compared to the other ones. Therefore
it is worth questioning the interest of performing classification on these datasets.
For the Titanic dataset, the maximum accuracy is strictly equal to G3, meaning
their exists a perfect classifier on this dataset, that only failed on tuples from
counterexamples.
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These results are very interesting, as they show how this paper’s result could
be used on any given datasets. It indicates both to data scientist wether or not it
is worth performing classification, or if there are simply too many counterexam-
ples for the results to be interesting. In addition, depending on the classification’s
results, it is interesting to see if G3 is reached or not. Based on these measures,
it could also be used to compare various classification methods, in order to see
how they influence the accuracy, and if there are methods that are more often
that other closer to the upper bound defined by G3.

Dataset # tuples # classes Average Accuracy (%) Max Accuracy G3 (%) G3 −max

Titanic 2201 3 76.6 79.1 79.1 0.0
Breast Cancer 286 9 71.2 76.2 97.8 21.6

Abalone 4177 5 60.1 67,4 100 32.6
Adult 48842 13 81.8 86,2 99.9 13.7
Bank 4521 16 88.4 90,5 100 9.5
Car 1728 6 86 99,2 100 0.8

Contrac 1473 9 49.6 57,2 95,5 38.3
Ecoli 336 7 77.6 90,9 100 9.1
Iris 150 4 89.4 99,3 100 0.7

Led-display 1000 7 60.3 74,8 76 1.2
Lenses 24 4 74 95,8 100 4.2

wine-quality-red 1599 11 55.6 69 100 31
yeast 1484 8 52.5 63,7 100 36.3
zoo 101 16 86.5 99.0 100 1.0

Table 2: Comparison of accuracy and G3 measure over classification datasets

4 Generating difficult datasets for classification

In this section, we are interested in generating datasets for classification as hard
as possible, using the notion of counterexamples.

4.1 Generation

The idea to generate datasets with a very lowG3 measure, such that any classifier
will not be able to perform efficiently on it, as shown in the previous section.
Generating such datasets can then be used to test new classifier, or to improve
existing one so that they get as close as possible to the theoretical maximum
accuracy (i.e. they only misclassify counterexamples).

To generate such datasets, it is necessary to create counterexamples, and to
play with their number to increase G3 error and lower the maximum accuracy.
To get very difficult classification datasets, we propose to start with an initial
classification relation that does not have any identical tuples, and to duplicate
them, by associating each new tuple to a different class at each duplication. This
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will naturally introduce counterexamples, and their number will increase with
the number of duplication.

id A1 A2 ... An−1 An Class Scaling
Factor

1 13 9 ... 21 16 1
2 58 13 ... 18 5 2
...

...
...

...
...

...
...

... ... ... ... ... ... k 1

... ... ... ... ... ... 1
...

...
...

...
...

...
...

N 35 9 ... 21 11 4
...

...
...

...
...

...
...

...

(j − 1)×N + 1 13 9 ... 21 16 (t((j−1)×N+1)−N [Class] + 1)%k
... ... ... ... ... ... ...
i ti%N [A1] ti%N [A2] . . . ti%N [An−1] ti%N [An] (ti−N [Class] + 1)%k j
... ... ... ... ... ... ...

j ×N 35 9 ... 21 11 (t(j×N)−N [Class] + 1)%k
...

...
...

...
...

...
...

...

(sf − 1)×N + 1 13 9 ... 21 16 (t((sf−1)×N+1)−N [Class] + 1)%k
... ... ... ... ... ... ... sf

sf ×N 35 9 ... 21 11 (t(sf×N)−N [Class] + 1)%k

Table 3: Generation of a difficult dataset

The generation strategy is illustrated in table 3. It requires the size N of the
initial relation, the number n of attributes of the relation, the number k of classes,
and the scaling factor sf (total number of relations after the duplications) used
to produce counterexamples. The strategy works as follows: let r be a relation
over R = A1 . . . An. Then:

1. Insert N unique tuples ti for i ∈ 1..N . For each tuple ti, i ∈ 1..N , add a value
for the class attribute as follows: ti[Class] = i%k. This corresponds to the
rows 1 to N in table 3.

2. The duplication process is repeated sf − 1 times as follows:
Let j be the current duplication, 2 ≤ j ≤ sf . The initial relation is du-
plicated, generating N new tuples, numbered t(j−1)×N+1 to tj×N . For each
duplicated tuple ti, (j − 1) × N + 1 ≤ i ≤ j × N , the values do not change
over attributes A1 to An, i.e. ti[A1...An] = ti%N [A1...An]. However, the
class value is shifted by one with respect to the previous duplicate, i.e.
ti[Class] = (ti−N [Class] + 1)%k

Algorithm 2 give the details of the generation process. Let us mention a few
important point not detailed here.
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Algorithm 2: Difficult dataset generation algorithm

1 procedure GenerateDifficult (n,N, k, sf);
Input : n the number of attributes, N the number of tuples before

duplication, k the number of classes, and sf the scaling factor
Output: d a difficult dataset for classification

2 class = 1
3 relation = [N][n+1]
4 for i ∈ 1..N do
5 for j ∈ 1..n do
6 relation[i][j] = random([0:ln(N)]

7 relation[i][n+1] = class
8 if class == k then
9 class = 1

10 class + = 1

11 if A1..An is not a key ; // Check that all rows are unique

12 then

13 dataset = relation
14 copy = relation
15 for i ∈ 2..sf do
16 copy = Duplicate(copy, k);
17 dataset = dataset

⋃
copy;

18 return dataset

19 Function Duplicate(r, k):
20 duplicate = []
21 for row ∈ r do
22 new[A1...An] = row[A1...An]
23 new[class] = (row[class] + 1)%k
24 duplicate += new

25 return duplicate

– First, the domain of attributes is to be defined. In table 3, we use integers for
the sake of clarity, but any other type of attribute would work exactly the
same. However the data types will have an impact on the classifiers, as for
example non-numerical values would require some pre-processing to be used
with most classifiers. This also underlines how classification is impacted par
features’ domains while FDs are not.

– The only limitation on the attribute domain is to have enough values to

generate unique rows, at least ln(N)
ln(n) values1. Using a really high number of

different values will only increase the difficulty for a classifier, as there will

1 Given |dom| different values, there exists n|dom| different vectors of size n. Therefore

it is necessary that N < n|dom| and thus |dom| > ln(N)
ln(n)
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be very little redundancy between the values. This is a parameter than can
be used to tune the difficulty of the classification dataset. In Algorithm 2
and the experiments, we used ln(N) different values (see line 6 in algorithm
2.

– In addition, whenever sf > k, the dataset contains duplicates that share
the same class values, as all values for the class have already been used for
duplicates. This introduces redundancy in the data, but does not remove
any counterexample. Given the parameters of algorithm 2, it is possible to
compute the exact value of G3 for the produced dataset:

Proposition 3. Let rhard be a relation generated using algorithm 2. Then:

G3(A1..An → Class, rhard) =
1 + sf−sf%k

k

sf

Proof. Let i ∈ [1..sf ] denote the i-th duplication of the initial relation. While
i < k, it only introduces counterexamples. Therefore, for each duplicated tuple,
there are i different classes, for each of the N original tuples. As a consequence,
if sf < k, G3 = N

N∗sf = 1
sf .

For i ≥ k, there is redundancy for each duplicate: the duplicated tuples agree
with the ones already produced. Therefore, there are as many agreeing tuples
as the number of times i%k = 1. The size of the set of agreeing tuples therefore
depends of how many times an initial tuple is associated with the same initial
class during the sf duplications, which is exactly the quotient of the euclidean

division of sf by k, i.e
N+N∗ sf−sf%k

k

sf∗N . And the result follows.

4.2 Experimentations

(a) Evolution of classifiers
accuracy against the num-
ber of tuples the dataset,
with respect to G3

(k = 5, sf = 10)

(b) Evolution of classifiers
accuracy against the scaling
factor of the dataset, with
respect to G3

(N = 100, k = 5)

(c) Evolution of classifiers
accuracy against the num-
ber of classes in the dataset,
with respect to G3

(N = 100, sf = 10)

Fig. 2: Classifiers accuracy given the parameters for generating difficult classifi-
cation datasets, compared to G3
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(a) Measure G1 (b) Measure G2 (c) Measure G3

Fig. 3: Evolution of classifiers accuracy given the FD error measure of the dataset

We implemented the generation algorithm, in order to measure the influence
of its different parameters. To do so, we generated datasets with different pa-
rameters, and used ten different classifiers from the scikit-learn library [32] to
estimate their accuracy over the datasets. In order to propose a general compar-
ison over several algorithms, the algorithms are based on the default parameters
from the library. All results presented below are averaged over 10 different in-
stances randomly generated using the algorithm. The computing time being
below one second, they are not discussed in this paper.

First, the influence of the number of tuples in the original relation (before
duplication), was tested. The results are shown on figure 2a. It is worth noticing
that the accuracy is in any case really low as expected: the maximum accuracy
reached is 12%. However, as the initial number of tuples increases, so does the
accuracy. Indeed, adding more tuples introduces some redundancy among the
values for each attribute, allowing the classifier to find some sort of generalization
for some cases. However, the number of counterexamples is way too high to reach
good classification measure, and G3, which is constant as the number of tuples
does not influence it, is also low: it can be seen that the model is far from reaching
it.

Then, the influence of the scaling factor sf was tested, and results are pre-
sented on figure 2b. As it influences G3, this measure slowly decreases with the
scaling factor, as more and more counterexamples are introduced. For this pa-
rameter, the accuracy first drops, before slowly increasing with the scaling ratio.
This increase starts as soon as sf > k, as explained previously, because there
is then some redundancy allowing the classifier to make correct predictions for
some tuples.

In addition, the influence of the number of classes is exposed on figure 2c.
Once again, G3 decreases with the number of classes, as their are more counterex-
amples. As expected, the accuracy only drops with the number of classes, as the
classifier has then fewer examples for each class, and therefore fewer possibilities
to find patterns and generalize.

Finally, the accuracy of the classifiers was evaluated with respect to the error
measure of the functional dependency A1...An → class. The results are shown on
figure 3. For measures G1 and G2 the accuracy drops as the error increases, as the
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number of counterexamples also increases. On the opposite, when G3 increases,
so does the accuracy, as it means that the set of tuples that would satisfy the
functional dependency is getting bigger, allowing the classifier to reach a higher
accuracy.

5 Application to real life datasets

Using functional dependency to evaluate the feasibility of classification datasets
can be very useful for industrial applications. Indeed, many companies now un-
derstand the interest of their data, and are more and more interested in applying
machine learning methods to gain value out of their data. Being able to quickly
tell the company what can be hoped for as classification results, given their data,
is a very useful strategy to start the discussion, and to see what can be done
to improve if necessary. However, real-life datasets are known to be often dirty,
with null or imprecise values, incoherence and uncertainties. In this setting, we
discuss the interest of applying the previous results right before ML techniques
in practical scenarios, to let the domain experts in the loop of the construction
of their ML model.

5.1 Interest and limits of G3 measure

Measures like G3 can be seen as an indicator of whether or not the classification
should be done, in comparison with the accuracy required by domain experts.
Moreover, expressing at a declarative level such a constraint to domain experts
offers more guarantee about their understanding of the whole process.

The main problem concerns the inability of crisp functional dependencies to
deal with real-life data. Fortunately, many propositions have been made to ex-
tend functional dependencies, for example [34, 7, 9, 12]. Indeed, when performing
the comparison of tuples on each attribute, the strict equality might not be the
best suited for comparing real-life values. When dealing for example with con-
tinuous values, it is very less likely for two values to be equal, and therefore all
possible functional dependencies are likely to be satisfied in a given dataset. This
is especially true for physical measurements, for which the precision of the mea-
sure is important to take into account: two values might not be exactly equal,
but by considering the interval of measurement uncertainty, actually overlap.

Example 4. On figure 5a, the table presents data from a meteorological prob-
lem: given the temperature, pressure and humidity of a place, will it be raining
the next hour ? All the attributes are measured using instruments that have a
measurement uncertainty, well-known from the meteorologists:

– Temperature measurement uncertainty is ±0.5◦C
– Pressure measurement uncertainty is ±1hPa
– Humidity measurement uncertainty is ±2%

Considering this, every possible crisp FD is likely to be satisfied and all of
them are thus useless.
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We also note that very close values between two tuples but with a different
class might confuse the classifier and prevent its generalization. In these situa-
tions, feedbacks of domain experts on the dataset is important to understand
what it means for two values to be equal or similar on a given attribute.

Main issue: To sum up, we have to take into account some form of similarities
between data values, without requiring domain experts to spend times on these
time consuming tasks. This will be addressed in Section 5.3.

5.2 Interest of counterexamples

The counterexamples are also very important to understand the score, to see the
data that causes conflicts, so that a domain expert can explain their presence,
and eventually remove them to improve the classification results. The counterex-
amples are a powerful notion to avoid the domain expert from being overwhelmed
by the data, as she then only have a small but meaningful subset of tuples to
study. The counterexamples are therefore a perfect starting point for a discus-
sion between data scientist and domain expert: while the first gain knowledge
on data they are not expert on, the others can point out important informa-
tion more easily. The counterexamples are a way for domain experts to read a
concrete information that can have an impact on their day-to-day work.

With respect to counterexamples, not all of them are of equal interest. To
help domain experts in exploring them, and especially if there are many of them,
it is important to think about how to present them, so that the experts are not
overflowed. To do so, several strategies are possible, for example ranking the
counterexamples, by computing how much they differ on the class value, which
is especially easy for numerical value, by computing the difference between the
two values. For other types, a score can be manually defined. In addition, we
propose to visualize all of the counterexamples, so that domain experts can see
the global picture in one glance. For instance, a graph representation can be built
as follows: Let G = (V,E) a graph where V is the set of tuples and (t1, t2) ∈ E if
t1, t2 are implied in one counterexample. The degree of a node is a first criterion
to sort out the tuples to focus on. This modelisation show how the computation
of G3 and the removal of counterexamples can be seen as a graph problem,
equivalent to the minimal vertex cover [42].

Example 5. Figure 4 presents such a graph for the Titanic dataset. The degree
of t5 (resp. t8) is 3 (resp. 2). Clearly t5 and t8 cause more counterexamples
than the others. By changing the class value for these two tuples, the number of
counterexamples drops to 1 (instead of 6).

Such visualizations can be useful for data cleaning, as the most conflictual
tuples could then be easily identified and removed, to easily decrease signifi-
cantly the number of counterexamples. Another solution would be to correct the
counterexamples, with a minimal number of correction, by assigning them a class
that does not contradict the other tuples. These vizualisation is also useful to see
that finding an optimal solution is not an easy problem. Indeed, the objective is,
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t1

t2

t3

t4

t5

t6

t7t8

t9

t10

Fig. 4: Couterexamples interaction graph for the Titanic dataset

from the graph, to remove as few vertices as possible, so that there are no more
edges. This is known as the minimal vertex problem, which is NP-complete.

Main issue: To sum up, when it comes to counterexamples enumeration, the
main bottleneck lies on the comparison of each pair of tuples, which is quadratic
in the number of tuples. This problem appears in different contexts such as
deduplication, and several techniques have been proposed to perform such com-
parison in a reasonable amount of time, such as blocking [4], or parallelization
using specific distribution strategies as in [13].

5.3 Similarity-aware dataset reduction for scaling counterexamples
enumeration

In order to overcome the problems mentioned in sections 5.1 and 5.2, we propose
a hybrid approach, that can both scale the counterexamples retrieval, while
also allowing to consider similarities between values of a given attribute. Our
approach is based on single attribute clustering and dataset reduction. It is a
form of discretization, which is a classic approach in machine learning. In this
setting, we use it to reduce the size of the dataset on which to evaluate the FD,
and to therefore reduce the number of necessary comparisons between pairs of
tuples.

The idea is to first group similar values together, so that they are all assigned
to a unique same value: this allows to define similarity. Second, as the number of
different values is likely to be much smaller, it is possible to ”reduce” the dataset
by only keeping unique rows. The detailed process is illustrated on figure 5, and
works as follows:

– First, each attribute of the original data is clustered, to group similar values.
The clustering algorithm can be adapted to the need, we propose to use k-
means [29], using the silhouette coefficient [36] to automatically determine
the best value for k. Of course, domain knowledge can also be used if it is
available. It should be noted that this can be adapted and fine-tuned to each
application, and that specific similarity measures can be defined in this step
if necessary. Clustering could also be extended to deal with more than one
attribute (not detailed here).
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id Temp. Pres. Hum. Rain

t1 27.2 1004.5 98.7 yes
t2 26.5 1018.4 42.5 no
t3 15.7 1008.6 78.9 yes
t4 16.1 1016.9 76.7 no
t5 25.9 1017.5 43.8 yes
t6 28.1 1021.7 41.7 no
t7 4.1 1007.2 74.3 yes
t8 15.9 1022.3 79.1 no
t9 27.3 1019.8 39.5 no
t10 3.8 1006.7 71.4 yes

(a) Original data

id Temp. Pres. Hum. Rain

t1 1 1 4 yes
t2 1 2 1 no
t3 3 1 2 yes
t4 2 2 2 no
t5 1 2 1 yes
t6 1 2 1 no
t7 3 1 2 yes
t8 2 2 2 no
t9 1 2 1 no
t10 3 1 2 yes

(b) Clustered data

id Temp. Pres. Hum. Rain #

t′1 1 1 4 yes 1
t′2 1 2 1 no 3
t′3 2 2 2 no 2
t′4 1 2 1 yes 1
t′5 3 1 2 yes 3

(c) Reduced data

Fig. 5: Data reduction process

– Once an attribute is clustered, each of its value is replaced by the number
of cluster it belongs to. As functional dependencies do not care about the
order between values, this does not impact the validity of the dependency.

– Once the data is clustered, as the number of different values for each attribute
is equal to the number of clusters, there might be identical rows in the
dataset. It is therefore possible to dramatically reduce the size of the original
data, by only keeping unique rows, and adding an additional attribute to
memorize how many times this row appears in the clustered data.

To perform this process, we propose algorithm 3: the clustering process is
described from line 3 to 9, and the data reduction is performed on line 12.

Example 6. In the reduced dataset given in table 6c, let us consider the coun-
terexample (t′2, t

′
4) of the functional dependency Temp, Pres, Hum → Rain.

Using table 6b, it concerns in fact 4 tuples: t2, t6, t9 and t5 (cf previous exam-
ple). It is then possible to go back to the original data in table 6a to see what
does that mean on the real values. For example, values 〈25.9, 1017.5, 43.8〉 of t5
and values 〈28.1, 1021.7, 41.7〉 of t6 are considered similar and then, both tuples
form a counterxample.

5.4 Experimentations

We evaluate both the data reduction technique and the scalability of counterex-
amples enumeration. We first looked at how the data is reduced. We took the
4 biggest datasets from table 2, and computed their reduction ratio, when ap-
plying our algorithm. In this situation, we used the silhouette coefficient [36]
to determine the most appropriate number of clusters for each attribute. The
results are presented in table 4. It shows that the ratio differs from one dataset
to another, with some very significant drops for some datasets such as Titanic,
indicating their must be many redundant values. We then evaluated how well
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Algorithm 3: Scaling algorithm

1 procedure Reduce (r) over attributes A1..An;
Input : r the classification dataset
Output: A clustered and reduced dataset of integers

2 d = []
3 for A ∈ {A1..An} do
4 if A is continuous then
5 k = maxsilhouette(r[A])
6 clusters = cluster(r[A], k)
7 d[A] = clusters

8 else
9 d[A] = r[A]

10 d[class] = r[class]
11 rreduced =Select A1 . . . An, C, count(∗) as ′#′ From d Group By A1 . . . An, C
12 return rreduced

the data reduction technique improves the counterexamples retrieval time, to see
how the approach would scale on large datasets. We evaluated it on astrophys-
ical data from the Large Synoptic Survey Telescope2 containing 500 000 tuples
over 25 attributes. For different sizes of datasets, we compute:

– The reducing ratio, i.e how much the initial dataset is reduced:

ratio = |r|−|rreduced|
|r|

Where rreduced is the reduced dataset.

– The computation time for counterexamples retrieval on the original data.

– The computation time for counterexamples retrieval on the reduced data.

The results of these experimentations are presented on figure 6. The first
observation is that on the original data, the computing time is quickly too long
even on relatively small instances. On the opposite, on the reduced data, it
increases very slowly with the number of tuples, allowing for a reasonable time
for retrieving the counterexamples. This is tightly linked with the reducing ratio,
that increases significantly with the number of tuples: the more tuples there are,
the more the original data is reduced with respect to its original size.

On datasets on which our approach would not be sufficient to scale, it is
always possible to apply blocking [4] or parallelization [13], but this is out of the
scope of this paper.

2 https://www.lsst.org/
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Dataset # tuples before #tuples after reduction ratio

Titanic 2201 24 98.9%
Abalone 4177 242 94.2%
Adult 48842 10176 79.2%
Bank 4521 4031 10.8%

Table 4: Reduction ratio for some datasets from table 2

Fig. 6: Validation of G3 computing time, on both original and reduced data, in
parallel with the reducing ratio

6 Related work

This related work section has been organized according to three axes: data de-
pendencies for machine learning, extension of functional dependencies and data
dependencies for data cleaning.

6.1 Data dependencies for machine learning

Many research papers make use of principles from the database community to
tackle machine learning problems, and vice versa (see for example [6, 3, 1]). Re-
cently, relational learning has been proposed [25, 20], an alternative machine
learning approach based on declarative relational representations paired with
probabilistic models.

Functional dependencies are used in [27] to build decision trees, leading to
more accurate classifiers with a more compact structure. In [1], the authors pro-
pose to perform in-database learning, and use functional dependencies to tackle
optimization problems. More generally, there is a raising interest for integrated
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key database theory concepts into machine learning, such as in [41] that builds
least squares regression models over training datasets defined by arbitrary join
queries on database table. It is also worth mentioning [50] where an entire ma-
chine learning library has been adapted so that it is compatible with a storage
of data in a DBMS. There is also [45] which is a SQL extension for data min-
ing. Similar approach was used in [31] with an implementation of the K-means
algorithm using SQL queries.

In [26], the authors show that if there is a functional dependency between
features, it is likely to affect the classifer negatively. Similarly in [40], functional
dependency are used to build a graph of dependency among the classification
attributes, that is used to cluster the attributes, and therefore reduce total num-
ber of attributes in the dataset, which is a form of feature selection.
In comparison to these papers, to the best of our knowledge, we notice that
the main observation made in this paper – a function has to exist between the
features and the class to be predicted before using ML methods to determine
that function – despite its simplicity and its common sense, appears to be new,
not explicitly stated in previous works. We argue that it has many consequences
for trusting trendy ML techniques.

6.2 Extension of functional dependencies

Although many other types of data dependencies exist, such as inclusion [10]
and multivalued dependencies [17], functional dependencies proved to be the
most appropriate for the given problem, as they capture the notion of function
between two sets of attributes.

Many extensions of functional dependencies exist, among which we quote
[22, 12, 7, 34, 11]. Approximate functional dependencies [22] allow to define de-
pendencies that almost hold in a relation, so that not all tuples have to be looked
at, as long as enough support the dependency. Relaxed functional dependencies
[9] and RQL [12] are general frameworks to extend functional dependencies.
Fuzzy functional dependencies [7, 34] introduce a fuzzy resemblance measure to
compare two values on the same domain. Similarly, [11] defines similarity over
complex attributes over a multimedia database.
In comparison, our clustering technique on every attribute appears as a trick
allowing to both 1/ take into account complex similarities, that can be fully au-
tomated if the domain expert does not exactly know how to define the similarity
and 2/ reduce the size to the database to enumerate efficiently counterexamples.

6.3 Data dependencies for data cleaning

Data cleaning is a crucial part in most of data science application, as data sci-
entist actually spend around 80% of their time on cleaning the data [49]. As a
consequence, many research has be done on addressing this problem [33]. For
instance, [47] proposes a semantic data profiler that can compute samples that
satisfy the same constraints than a given dataset. As the limited expressiveness
of functional dependencies did not always adapt well to the need of data cleaning
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on real datasets, specific dependencies have been proposed to identify inconsis-
tencies in a dataset, and eventually repair it. Conditional dependencies [5] are
functional dependencies that hold only on a subset of the dataset. Matching
dependencies [18] for data repairing uses matching rules to relax the equality
on functional dependencies and assign values for data repairing. In Holoclean
[35], dependencies are used to clean automatically a dataset. In [37], a formal
framework is proposed to bridge the gap between database theory and learn-
ability theory, and is applied to three applications: data cleaning, probabilistic
query answering, and learning. It can even be used to clean dataset in order to
provide fairness [38]. [14] introduces denial constraints, allowing to declaratively
specify logical formulae to exclude counterexamples. This work acknowledges the
importance of counterexamples for data cleaning, in collaboration with domain
experts.
There is a tight relationship between denial constraints and our counterexamples.
Indeed, counterexamples of functional dependencies are no more than a special
case of denial constraints, i.e. 6 ∃t1, t2 such that t1[X] = t2[X] and t1[Y ] 6= t2[Y ].
Due to our data reduction techniques, our counterexamples are clearly much
more general and complex than those of crisp FDs. Interestingly, we do not rely
on expert users to specify logical statements for defining denial constraints, and
thus counterexamples. Our proposition is fully automatic, and the counterexam-
ples we provide at the end are complex and do not require any user input. The
price to be paid is that we cannot express the induced denial constraints.

7 Conclusion

In this paper, we have proposed to estimate the feasibility of a classification
over a given dataset. To do so, we have used functional dependencies, a well-
known concept in the database community, and checked whether the dataset
satisfies a dependency between the features and the class to predict. When it
does not, which is not unusual for real life datasets, measures exist to estimate
the proportion of counterexamples to the dependency, and therefore estimate
whether or not it is reasonable to perform classification on the dataset. We argue
that this is a way to bring more interpretability to classification, by explaining to
domain experts the limitations of the model, that come from the dataset itself.
This could help them to better accept the produced model, by demystifying their
performances.

In addition, we have provided a tight upper-bound for the accuracy any
classifier could reach on the dataset. We have proposed an algorithm and showed
consistent results on well-known classification datasets. In addition, we have
devised an algorithm to generate difficult datasets for classification. Finally, we
have designed a hybrid approach based on single attribute clustering and on a
data reduction technique, allowing to both deal with dirty data and scale the
enumeration of counterexamples. Experimental results have been conducted with
very good compression ratio and scalability.
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The results obtained in this paper provide guarantees on the classification
dataset. They can be used to decide whether or not it is worth trying to fit a
model, or if more time should be spent on the dataset itself. This is very useful
for companies starting with new classification problems on data that might not
be yet ready for classification. In addition, the counterexamples of functional
dependencies are very useful to engage the discussion with domain experts, to
understand the dataset into details, and therefore give them a better under-
standing of what can be done classification-wise.
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Answer to reviewer’s comments

Marie Le Guilly, Jean-Marc Petit and Marian Scuturici

June 2020

We would like to thank the three reviewers for their thorough and relevant
comments regarding our manuscript. We have addressed below each of them,
and explained the changes made with respect to reviewer’s remarks.

1 Comments from reviewer 1

Comment What is exactly the contribution of the paper wrt G3 computation
(section 3.3), compared to existing methods?

Answer We are considering discrete data with crisp functional dependencies.
In that sense, the basic algorithm to compute G3 is not new (see ref Tane
in 1999), even if we propose a specific efficient implementation. For non
crisp FDs, computing G3 is as hard as the minimal vertex cover problem,
and is therefore NP-complete. We made this clearer in the paper.

Comment Please clarify the interest of measures in table 2, you demonstrated
accuracy is lower than G3, and if the difference to G3 is interesting, there
are not enough insights on that (what classification methods are good/bad
on that data and why)

Answer As we used the accuracy measures given by Fernández-Delgado et al.,
we mainly focused on the accuracy, and not on the classifiers used to
achieve these results: our main concern was indeed to study if the up-
per bound given by G3 is reached or not. We therefore added a small
paragraph regarding how this could then be used to compare different
classification methods in future works, for example to see if some are of-
ten closer to the upper bound than others.

Comment Please give some details about the parameters of classifiers tested
in experiments from 4.2

Answer We added some precision regarding the parameters of the classifiers,
that are the ones used by default in the scikit-learn library, that are suited
for a first accuracy estimation as required in our experimentations.
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Comment The preprocessing techniques in 5.3 are common for learning, what
is specific in the paper besides the clustering part?

Answer It is indeed common to perform discretization as part of data prepro-
cessing in a machine learning scenario: in our case, it allows us to (1)
Consider crisp functional dependencies and therefore the strict equality
no matter the initial domain of the features and (2) Reduce the size of
the initial datasets, and therefore be able to retrieve the counterexample
faster, as there are less pairs to consider. We highlighted this more in the
paper, to reflect why we use these techniques in a different setting that
for traditional machine learning ones.

Comment There are many typos to be fixed: p2: their → there, reason’s
→ reasons, understand → understanding, C is the class to be predicted
→ C values represent the class to be predicted, there does not exist a
function → no function exists, p3: built → build, Not → No, passenger →
passengers, p4: of classifier → of classifiers, p5: the definition of a tuple t
over, p6: label → labels, p13: note 1: value → values, p16: computing →
computing time, influence → influences, decrease → decreases, p19: Fig 5
is too large, p22: showing → show, p24: vae → have?

Answer We have corrected all these typos.

Comment G1 measure is false, it should be 12/100

Answer There was indeed a mistake in the computation of G1 in the example,
it was corrected.

Comment p10: why the complexity is O(|r|log|r|) and not O(|r|)?

Answer This has been corrected as the complexity is indeed O(|r|)

Comment p14: so it does not affect G3: actually |r| increases, so G3 is affected

Answer The formulation was indeed not clear. We changed the sentence to
underline that the number of counterexamples is not changed, but G3 is
affected (and decreases) as the total number of tuples increases.

Comment There are sf-1 duplications, not sf, also i < k should be i < k and
i > k should be i >= k

Answer This mistake was corrected.

Comment p15: in algorithm 2, the lines if A1..An is not a key. . . .goto line 4
are unclear (why this condition) and there are no line numbers
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Answer We added line numbers to the algorithm. We also added a comment
to explain the the line ”A1..An is not a key” is here to ensure that each
row in the dataset is unique.

2 Comments from reviewer 2

Comment Page 11, it is said ”in order to validate the theoretical upper bound”.
I think that this should be stated differently since one has no doubt with
a proven result. I suggest to say something like showing experimentally
how far is accuracy from G3. The closer the two values, the better is the
classifier.

Answer We have rephrased this sentence, to reflect that this is indeed not a
validation, but an experiment to assess the upper bound and classifier’s
performances on real datasets.

Comment In ML, it is often the case that the input dataset is partitioned into a
training and a test set. This partitioning makes G3 higher in both sets (the
two subsets have individually less counter examples because some tuple
pairs are separated. Therefore, one may obtain a high accuracy value on
the test set (higher than G3 of the original one). How should practitioners
deal with this situation ? (the impression that they’ve obtained a quite
accurate classifier) ?

Answer One of the limitations of our approach is that we only consider the
available data, contrary to other measures such as Bayes error as we men-
tion in the paper. We therefore consider our approach as a general indi-
cation over all the available data, that should be used to see if there are
may counterexamples that are likely to ”confuse” the classifier. But it is
true that the upper bound for accuracy is only valid if G3 is computed for
the data on which the accuracy is estimated, i.e the test set. We tried to
make this clearer in the new version of the paper.

3 Comments from reviewer 3

Comment The second step uses the first and develops an algorithm generat-
ing from a core data set satisfying a fd a larger data set with counter
examples, based on different parameters. These parameters are investi-
gated through experiments. This part may need some few changes to get
a clearer presentation.

Answer We reformulated part of this section to make it clearer, and fixed some
errors that might have make the prensentation not clear enough.

3



Overall the other comments from reviewer 3 were also adressed by the other
reviewers and have been answered in the above responses.
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