
HAL Id: hal-03108865
https://hal.science/hal-03108865v1

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CHANGE PROPAGATION PROCESS FOR
DISTRIBUTED SOFTWARE ARCHITECTURE
M. Oussama Hassan, Laurent Deruelle, Henri Basson, Adeel Ahmad

To cite this version:
M. Oussama Hassan, Laurent Deruelle, Henri Basson, Adeel Ahmad. A CHANGE PROPAGATION
PROCESS FOR DISTRIBUTED SOFTWARE ARCHITECTURE. 5th International Conference on
Evaluation of Novel Approaches to Software Engineering(ENASE 2010), Jul 2010, Athens, Greece.
�hal-03108865�

https://hal.science/hal-03108865v1
https://hal.archives-ouvertes.fr

A CHANGE PROPAGATION PROCESS FOR DISTRIBUTED
SOFTWARE ARCHITECTURE

Mohamed Oussama Hassan, Laurent Deruelle, Henri Basson, Adeel Ahmad
Université Lille Nord de France

Laboratoire d’Informatique, Signal et Image de la Côte d’Opale
50 rue Ferdinand Buisson BP 719, 62228 Calais Cedex, France

{hassan,deruelle,basson,ahmad}@lisic.univ-littoral.fr

Keywords: Distributed Software Architecture analysis, Change Propagation, Knowledge-Based System.

Abstract: In the context of software architecture evolution, understanding the impacts of a change to be applied on a
distributed software architecture is necessary for various activities related to maintenance and change man-
agement. In this paper, we propose formal models and a platform based on eclipse plugins for modeling and
analysis of the software architecture description and their related source codes. The proposed models aim at
the construction of graph representation based on the architecture description and the software source codes.
The graph implementation is mapped with facts of a distributed knowledge-based system, which performs
change propagation rules to evaluate the impact of a change performed on distributed components.

1 INTRODUCTION

Nowadays practices of software engineering are often
asked to respond to development or evolution of dis-
tributed applications on heterogeneous platforms with
less delay, lower cost, and better quality. The applica-
tions are continuously growing in size and complex-
ity making the change more difficult to control and
to manage. Moreover, it is largely admitted that the
quality of large applications can be improved using
formalized architectural models at the earlier phases
of requirements specifications and design. There-
fore, over the past decade software architecture has
received increasing attention as an important subfield
of software engineering aiming to face the growing
size and complexity of software (Taylor et al., 2009).

It is inevitable that a software undergoes some
changes in its lifetime. A change introduced to one
component of an application has often effects on sev-
eral others parts. If this process is uncontrolled,
changes may have unexpected side effects or com-
plex implications on the behavior of the whole sys-
tem. The cost to fix an error or an incoherence, result-
ing from changes during requirements, or early de-
sign phases, is largely lower than the cost of correct-
ing the same error found during system testing or in
production (Clements et al., 2002). The change im-

pact analysis refers to track the effects of a change
by providing visibility of the potential effects of the
proposed change before it is implemented. It greatly
helps maintainers to determine appropriate actions to
take with respect to change in decisions, schedule
plans, cost and resource estimations.

2 OBJECTIVES

In this paper, we propose a model, called Ar-
chitecture Software Components Model (ASCM), to
represent and to unify the major concepts defined in
a large number of existing architecture description
languages (ADL). The ASCM is coupled to another
model called Source Code Structural Model (SCSM)
(Deruelle et al., 2001; Deruelle et al., 2007) in order to
represent relationships between components from the
architecture level and those of the source code level.
The two models represent the architecture and the
source codes as graphs, in which the nodes are com-
ponents and the edges are relationships. The graphs
are distributed according to the location of the archi-
tecture specification and the relevant source codes.
The main purpose of our models is to provide a ba-
sis to track the change propagation process using ad-
equate graphs on which we define formal propagation

rules.

The rest of the paper is organized as follows : Sec-
tion 3 presents related works for distributed software
architecture evolution. Section 4 describes our formal
model ASCM to represent the common concepts de-
fined in the major ADLs. Section 5 proposes a typol-
ogy of formalized change operations applied on soft-
ware architecture and permitting the change impact
analysis. Section 6 defines a formal process to deal
with the change propagation process for distributed
software. Section 7 presents our integrated platform
that implements the formal models and a knowledge-
based system to support the change propagation pro-
cess. Section 8 gives a scenario of a change impact
analysis performed on a distributed software architec-
ture. Finally, section 9 provides some conclusions and
perspectives.

3 DISTRIBUTED SOFTWARE
ARCHITECTURE EVOLUTION
: RELATED WORKS

Software architecture has emerged as an area of
intense research over the last decade. Many ap-
proaches have been proposed to deal with architec-
tural specification and analysis (Medvidovic and Tay-
lor, 2000; Bass et al., 1998; Clements and Shaw,
2009). In these approaches, a large number of ADLs
have been developed to represent different aspects of
distributed software architectures based on the mid-
dlewares. The ADLs do not provide features to deal
with the evolution management of architecture de-
scription in a distributed environment.
Many works have been done for studying the evolu-
tion mechanism in the ADLs. We note that the spec-
ification of the evolution is realized by the ADL that
serves for the architecture description. Therefore, the
evolution management is included in the architectural
specification, and so it will be difficult to be distin-
guished. Moreover, it is almost impossible to iden-
tify all possible evolutions operations that may occur
when specifying architecture.
It is hard to deal with the non planned evolution,
considering the difficulty to study and analyze au-
tomatically the changes impact without incoherence.
The number of propositions dealing with architecture
change impact analysis is very restricted.

4 DISTRIBUTED SOFTWARE
ARCHITECTURE MODELING :
ASCM

Many resarch works have been done to provide
architectural modeling (Garlan et al., 1997), in which
the following common high-level :

1. the Components are units of computation or a
data stores. For example, a component can be a
Thread, a Procedure or a whole application. An
instance of a component may be distributed on
many sites and may interoperate with other dis-
tributed components.

2. the Connectors are architectural building blocks
used to represent the interactions between lo-
cal and distributed components. For example, a
T hread deployed on one site can be connected to
another T hread deployed on another site to send
messages. The second component may treat mes-
sages using local components.

3. the Configurations are connected graphs of local
and distributed components and connectors that
describe the structure of the distributed architec-
ture.

Although these concepts define a high-level common
structure for the distributed software architecture, we
need to refine them in a more accurate model to de-
scribe more precisely the structure of a distributed ar-
chitecture.

The model ASCM leads to represent the dis-
tributed software architecture, based on architecture
specifications described using different ADLs. Our
work consists to represent in a model the common
high-level concepts defined in the major ADLs. This
allows us to analyze various architectural description
documents, which specify distributed software archi-
tectures, in order to extract the elements and to repre-
sent them using ASCM.

By comparing in more detail the definition of the
ADLs, we can refine these elements to provide a more
precise model. Let us describe the ASCM model pre-
sented in figure 1 :

• The interface defines the services that other com-
ponents wants to invoke. An interface may define
ports used by a connection. A port can be used by
several connectors. In the ADLs, an interface is
mandatory to describe a distributed component in
the architecture.

• The implementation reflects the source codes of
the services defined in the interface. For exam-
ple, the implementation can describe how a com-
ponent calls sub-programs to realize the services.

Figure 1: ASCM: UML-based representation of Architecture Description Languages

• the connection provides a link mechanism be-
tween distributed components to exchange infor-
mation. The link is usually managed using a mid-
dleware that allows a component deployed on one
system to access programs and data on another
one.

• the middleware is a set of services that allows in-
teractions between multiple components running
on many sites. It helps to solve heterogeneity, in-
teroperability and distributed computed problems.

• The instance represents a sub-component belong-
ing to a component. The sub-component is instan-
tiated from the interface or the implementation of
another component.

• The site is the element on which the instances of
a component will be deployed on. It defines the
hardware and software requirements for the in-
stances running.

• The properties can specify constraints on the
interface or the implementation of a component.
The constraints may be functional or not, such as
related source code of a component, performance,
reliability and availability.

We coupled ASCM with SCSM, which is fully
described in (Deruelle et al., 2001; Deruelle et al.,
2007) by formalizing a generic relationship that may
exist between their respective elements. The rela-
tionship will be used for propagating the impact of a

change done on the architectural description to its cor-
responding source code and reciprocally. The models
SCSM and ASCM are coupled by a projection rela-
tionship. When a projection relationship exists, the
software modeling is more precise and the change im-
pact analysis is performed on the architectural level
and the source codes one.

Hereafter, we propose a typology of formalized
change operations applied on the distributed archi-
tecture, which are represented by ASCM model in-
stances.

5 TYPOLOGY OF CHANGE
OPERATIONS

A typology of change operations is presented in
the table 1, using the assertion formalism. Assertions
are widely used in the software community to formal-
ize the programs behavior (Mens, 2001). For each
operation, we specify a pre-condition to be checked
in order to allow the execution of the operation. The
post-condition indicates the operation results. The in-
variants represent the propositions to be verified be-
fore and after the operation execution.
Hereafter, we describe a change operation to illus-
trate the assertion formalism and the impact on the
distributed architecture and on the source codes.

Let us to consider the operation
del comp imp(c,cimp), which consists to delete the

Table 1: Typology of change operations applied on Software Architecture
Name Operation Pre-condition Post-condition Invariant
Component interface
adding

add int comp(c, t) −c
+t

+c −edge(∗,c)

Component imple-
mentation adding

add imp comp(cimp,c) −cimp +cimp
+edge(∗,c,cimp)

+c

Port adding add port(a, p) −p +p
+type(p, port)
+edge(hasPort∗,a, p)

+a

Subcomponent
adding

add sub comp(a,s, t) −s ∨
(+s ∧ −edge(e,a,s))

+s
+edge(e,a,s)
+type(e,hasSubComp)

+a
+t

Component interface
deletion

del comp int(a) +a −a
−impl(∗,a)
−edge(∗,a)

−subComp(∗,a)
(−subComp(∗,ai),
+ impl(ai,a))

Component imple-
mentation deletion

del comp imp(c,cimp) +cimp −cimp
−edge(∗,cimp)

+c
−subComp(∗,cimp)
−source(hasSubComp∗,

cimp)
Connector deletion del conn(cn,c,a,b) +cn

+edge(hasConn∗,c,r)
+edge(usePortSrc∗,cn,a)
+edge(usePortDst∗,cn,b)

−cn
−edge(∗,cn)

+a
+b
+c

Port deletion del port(a, p) +p
+type(p, port)
+edge(e,a, p)

−p
−edge(∗, p)

+a
−dest(usePortSrc∗, p)
−dest(usePortDst∗, p)

Subcomponent dele-
tion

del subcomp(a,s) +s
+edge(hasSubComp∗,a,s)

−s
−edge(∗,s)

+a
−connSubComp(∗,s)

Table 2: Assertions list for the graph marking

Assertion Signification
mark(el) ∀el ∈ E ∨ el ∈ N, state(el) = a f f ected
mark(v,op) ∀e ∈ E,v1 ∈ N : ((+edge(e,v,v1) ∨ +edge(e,v1v)) ∧ +conductivity(op,e,v,v1))

−→ mark(e) ∧ mark(v1)

mark(source(t∗,v),op) ∀e ∈ E,v1 ∈ N : (type(e) = t ∧ +edge(e,v,v1) ∧ +conductivity(op,e,v,v1))

−→ mark(e) ∧ mark(v1)

mark(target(t∗,v),op) ∀e ∈ E,v1 ∈ N : (type(e) = t ∧ +edge(e,v1,v) ∧ +conductivity(op,e,v,v1))

−→ mark(e) ∧ mark(v1)

implementation cimp associated to the component
interface c. To allow the operation, the implementa-
tion of the component had to exist in the architecture
and therefore a corresponding node must be present
in the ASCM graph. The invariant stipulates that
the existence of the interface component c must be
verified before and after the operation realization. No
instance of cimp should be defined in the architecture
(−subComp(∗,cimp)). cimp should not contain any
subcomponents (−source(hasSubComp∗,cimp)).
The result of the operation is the deletion of the
component implementation and all of its input and
output edges. In the case of at least one invari-
ant is not respected, an impact is propagated locally
to the linked nodes (components) in the ASCM graph.

Considering the distributed environment, and dur-
ing software analysis, the graphs are constructed on
each site and are interconnected. Then, the implemen-
tation deletion may have an impact on other nodes
belonging to an ASCM graph which is distributed
on a remote site. This is done by the distributed
knowledge-based system.

6 CHANGE IMPACT
PROPAGATION IN
DISTRIBUTED SOFTWARE
ARCHITECTURE

The change impact propagation process refers to
the process of actually carrying out a set of initial
modifications to the software components, and to re-
establish the system consistency, by making a set of
estimated consequent changes. This process would
involve advising the user the software components to
be changed and the types of the changes.

Our approach is based on the ECA formalism
(Event - Condition - Action) to describe the change
impact propagation rules (Hassan et al., 2009). It con-
sists of analyzing the impact on the distributed archi-
tecture by defining generic rules. These could be ap-
plied, independently of ADLs, to propagate the im-
pact locally from the architecture to its corresponding
source codes and then to the distributed ones.

6.1 Knowledge-Based System for
Change Impact Propagation

The change impact analysis is based on a knowledge-
based system to manage evolution rules for dis-
tributed architecture and source codes. These rules
estimate the impact of a change performed on any
component belonging to the architecture or to the
source codes. The knowledge-based system consists
of three main components : the facts base, the rules
base and the inference engine. The facts base consti-
tutes the working memory and the dynamic part of the
knowledge-based system (KBS). It contains the facts
set that allows firing change propagation rules. A Fact
represents a graph node or edge representing the ele-
ments of ASCM or SCSM models. These are added
to the facts base during the analysis phase of the ar-
chitecture specification and related source codes. Ap-
plying a change on a node is reflected in the fact base
and may cause the inference engine to fire rules to
perform change impact analysis.

6.2 Change Propagation Rules
Definition

The change propagation rules describe formally the
impact of the change operations performed on the el-
ements of the ASCM model. The fact correspond-
ing to the changed node or edge is updated in the
knowledge-based system. This starts the change
propagation process by selecting the set of rules hav-
ing the updated fact in their pre-condition.

The table 2 shows the formalization of the mark-
ing assertions, which consists to identify the compo-
nents and the relationships affected by a change oper-
ation. The impact propagation to the neighborhood of
a marked component is defined following the nature
of incoming and outgoing relationships. This refers to
the impact conductivity of each relationship. The as-
sertion +conductivity(op,e,A,B) formalizes the im-
pact conductivity of a relationship e : A−→ B, with A
is the source component of e, B the destination com-
ponent of e and op is the change operation applied on
A.The marking assertions are defined as follows :

• The assertion mark(el) consists to change
the state of components and relationships as
a f f ected, in the facts base.

• The assertion mark(v,op) indicates for an oper-
ation op applied on v, that the edges of v are
marked as affected, according to the conductivity
of the relationship.

• The assertions mark(source(t∗,v,op)) and
mark(target(t∗,v,op)) consists to mark the

relationships e of type t having v as a source node
or target node and to mark the related target node
or source node of each relationship e following
its conductivity for the operation op.

The process of marking nodes and propagating the
impact stops when all rules are fired and there is no
more candidate facts.

We define three generic rules to deal with the
change impact propagation :
Rule Execute Operation(Op,el){

T RUE(Op.Pre−Condition)∧T RUE(Op.Invariant)
−→ Op.Post−Condition

}
The rule Rule Execute Operation(Op,el) con-

sists to perform the change operation op on an archi-
tectural element el when the pre-conditions and in-
variants of op are satisfied. There is no impact on the
distributed architecture.
Rule Impact Operation(Op,el){

T RUE(Op.Pre−Condition)∧FALSE(Op.Invariant)
−→ mark(el)

}
The rule Rule Impact Operation(Op,el)

changes the state of el to a f f ected in order to
identify the impact of op when at least one invariant
is not respected for op.
Rule Propagate Impact(Op,el){

+ state(el,′ a f f ected′)
−→ mark(el,op)}

}
The rule Rule Propagate Impact(Op,el) propa-

gates the impact to the neighborhood of an affected
element el. The propagation is based on the marking
assertions in order to change the state of the edges and
of the linked nodes.

7 CHANGE IMPACT
PROPAGATION IN
DISTRIBUTED SOFTWARE
ARCHITECTURE

The figure 2 presents the global architecture of our
platform based on Eclipse which is extended for the
change impact analysis. The extensions of our plat-
form are divided into four main components :

The multi-languages analyzer allows analyzing
the source codes and the architectural description of
a software. The analysis is based on the grammar of
each language used to write a project file. The multi-
languages analyzer is based on parsers which are gen-
erated through the Java Compiler Compiler (JavaCC).

Figure 2: The architecture of the eclipse-based platform

The multi-languages analysis result consists of pro-
ducing XML descriptions that are used for the graph
construction by the second plugin.

The software modeler is the second Eclipse plu-
gin that contains the implementation of both SCSM
and ASCM models. It provides an XML flow an-
alyzer that matches the components or relationships
defined in our model with the XML tags provided by
the multi-language analyzer. The two models are in-
stantiated as graph where nodes represent the com-
ponents and edges their relationships. The software
modeler performs fact assertions in the knowledge-
based system, which is the central component of our
implementation and provides the change impact prop-
agation mechanism.

The expert system engine is the third plugin
and represents the implementation of the knowledge-
based system. It allows implementing the change
impact propagation process and manages the change
propagation rules.

The user interface is the forth Eclipse plugin that
allows the graph visualization and the execution of
change operations on it. It allows maintainer to man-
age interactively the evolution and the maintenance of
a software system.

Hereafter, we propose a scenario to illustrate the
graph representation of a software architecture and
the change propagation process.

8 CHANGE PROPAGATION
SCENARIO

The proposed scenario illustrates the change im-
pact analysis on a distributed and multi-threaded ap-
plication. The application defines client threads that
send messages using Remote Procedure Call protocol
(RPC). The messages are consumed by threads de-
ployed on a server. This application architecture is
specified using the AADL language, presented in list-
ings on the Figure 3.

The scenario consists to delete the server
port in msg using the change operations called
del port(a, p). Regarding the operation invariants
and the ASCM graph, an edge exists between the
node EDPname = in msg and the node EDCname =
C1. This edge provides conductivity of the impact of
the port component. The rule ImpactDeletePort, de-
scribed below marks and changes the state of the port
node to a f f ected. This fires the second rule, called
PropagateImpactDeletePort to mark the edges en-
tering in the port and the related target nodes. These
marked nodes are sent to the Eclipse client to be in-
serted in the distributed fact base and which will fire
the rules for propagating locally the impact. The
propagation is done through relationships according
to theirs conductivity. The result of the change prop-
agation process can be shown in figure 3. The nodes
and the edges, which have been marked by our expert

Figure 3: Distributed Architecture evolution and related graphs resulting from the port deletion operation

system, are shown with the a f f ected label. The re-
sult shows the projection relationship which leads the
impact to the source codes.
rule "ImpactDeletePort"
when
n : ArchitectNode(
stateNode==ArchitectNode.STATE_DELETED,
typeNode=="EDP"

)
n1: ArchitectNode()
e : ArchitectEdge()
eval((e.getNodeDest()==n && e.getNodeSrc()==n1)

||
(e.getNodeSrc()==n && e.getNodeDest()==n1)

)
then
n.setLabel("AFFECTED "+n.getLabel());
n.setStateNode(ArchitectNode.STATE_IMPACTED);

end

rule "PropagateImpactDeletePort"
when
n : ArchitectNode (

stateNode==ArchitectNode.STATE_IMPACTED,
typeNode=="EDP"

)
n1: ArchitectNode()
e : ArchitectEdge()
eval((e.getNodeDest()==n && e.getNodeSrc()==n1)

||
(e.getNodeSrc()==n && e.getNodeDest()==n1)

)
then
e.setState(ArchitectEdge.STATE_IMPACTED);
n1.setStateNode(ArchitectNode.STATE_IMPACTED);

end

9 CONCLUSIONS AND FUTURE
WORKS

In this paper, we have presented a ASCM model
and a distributed knowledge-based system approach
to deal with the change impact analysis on distributed
software architecture. Our model represents the infor-
mations extracted from architectural descriptions, in-
dependently of the ADLs, as distributed graphs which

are stored as facts in the distributed knowledge-based
system. The facts fire the change propagation rules in
order to identify the impact of a change and to propa-
gate it to linked nodes. Our approach is implemented
as many plugins in Eclipse Environment.

Perspectives of our work consists to enhance our
change impact analysis approach to deal with qualita-
tive aspects of a software at the architecture level.

REFERENCES

Bass, L., Clements, P., and Kazman, R. (1998). Software
Architecture in Practice. Addison Wesley.

Clements, P., Kazman, R., and Klein, M. (2002). Evaluat-
ing Software Architectures: Methods and Case Stud-
ies. Addison Wesley.

Clements, P. and Shaw, M. (2009). ”the golden age of soft-
ware architecture” revisited. IEEE Software, 26:70–
72.

Deruelle, L., Basson, H., Bouneffa, M., and Hattat, J.
(2007). An eclipse platform extension for analysis and
manipulation of multi-language software code. pages
174–179.

Deruelle, L., Bouneffa, M., Melab, N., and Basson, H.
(2001). A change propagation model and platform for
multi-database applications. Software Maintenance,
IEEE International Conference on, pages 42–51.

Garlan, D., Monroe, R., and Wile, D. (1997). Acme: An
architecture description interchange language. In in
Proceedings of CASCON97, pages 169–183.

Hassan, M. O., Deruelle, L., and Basson, H. (2009).
Towards a change propagation process in software
architecture. In 18th International Conference on
Software Engineering and Data Engineering (SEDE-
2009), pages 85–90, Las Vegas, Nevada, USA.

Medvidovic, N. and Taylor, R. (2000). A classification and
comparison framework for software architecture de-
scription languages. IEEE Transactions on Software
Engineering, 26:70–93.

Mens, T. (2001). Transformational software evolution by
assertions. Workshop on Formal Foundations of Soft-
ware Evolution, CSRM 2001.

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2009).
Software Architecture: Foundations, Theory, and
Practice. Wiley Publishing.

