
HAL Id: hal-03108857
https://hal.science/hal-03108857

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Integrated Quality-Oriented Modeling
Approach for Software Evolution Control

Adeel Ahmad, Henri Basson, Laurent Deruelle, Mourad Mohamed Bouneffa

To cite this version:
Adeel Ahmad, Henri Basson, Laurent Deruelle, Mourad Mohamed Bouneffa. Towards an Integrated
Quality-Oriented Modeling Approach for Software Evolution Control. 2nd International Conference
on Software Technology and Engineering (ICSTE 2010), Oct 2010, San Juan, Puerto Rico, United
States. �10.1109/ICSTE.2010.5608798�. �hal-03108857�

https://hal.science/hal-03108857
https://hal.archives-ouvertes.fr

Towards an Integrated Quality-Oriented Modeling

Approach for Software Evolution Control

Adeel Ahmad, Henri Basson, Laurent Deruelle, Mourad Bouneffa

Univesité Lille Nord de France

Laboratoire d’Informatique, Signal et Image de la Côte d’Opale

BP-719 62228 CALAIS Cedex FRANCE

Email: {ahmad, basson, deruelle, bouneffa}@lisic.univ-littoral.fr

Abstract—The operating environment can be significant for an

applied change on a software artifact to propagate its mpact

on the other components of the system. We present a modeling

approach for tracing the reliable qualitative change impact

flow during the software evolution. The approach is

implemented as a framework including software specific

information data gathering and automatic mechanism

providing both structural and qualitative change impact

analysis. This facilitates the decision making during the

software evolution and maintenance processes.

Keywords-change impact analysis; software modeling;

software quality; software structure; software evolution;

I. INTRODUCTION

To control software evolution within the constraints of
time and resources without quality degradations when
constant changes make software larger, more sophisticated
and more complex is a significant challenge. Changes in
software structure may affect the original software quality. It
is observed that the software quality tends to erode with the
increase in size and complexity due to the addition of new
functionality and changed structure. The Software Quality
Assurance (SQA) has always been a complicated task and
deriving formulations to evaluate the whole software quality
is more complicated without traceability information.

The software quality engineering community has been
studying quality evaluation issues for a significant amount of
time and made much progress in quality metrics. There have
been proposed many theoretical and numerical frameworks
to assess the software quality. The software quality models
proposed by B. Bohem [1] and Mc. Call [2], [3] are known
to be the historical models to represent, conceive, and
evaluate the software quality. They have investigated the
involvement of multiple quality factors to assess the whole
software quality. Several variations have been formulated to
the Boehm-McCall Model since its proposition [4], [5], [6],
[7], [8], [9], [10], [11]. These address the analysis of
software quality factors and their qualitative or quantitative
metrification. The increased complexity in quality
assessment models makes it more difficult to analyze basic
causal flows.

A successful software change incorporation process may
require to understand the change impact propagation

considered from several aspects to prevent the software
decay. In the context of software applications, the
propagation of change impact can be considered from
structural, qualitative, functional, logical, or behavioral point
of views [12]. We particularly focus on qualitative change
impact flow caused by a structural modification in a software
artifact. This cannot be achieved without having an
exploitable knowledge, describing exhaustively software
artifacts and the different kind of relationships linking them.
Improving the software evolution control without quality
degradation issues is directly related to understand software
dependencies. An exhaustive information regarding different
software artifacts should help to analyze qualitative aspects
of incorporated changes. In this article, we discuss analysis
of structural and qualitative impact propagation of an
intended change. Our approach aims at understanding the
software evolution. This is achieved by means of
formalization of the software artifacts and their various
interactions. The objective is to provide a systematic
approach for successful change incorporation in the
developed software and thus to minimize risks generated by
the change.

The article is organized as follows. Section 2 explains an
insight to the qualitative evaluation of software systems.
Section 3 further explores the qualitative model for the
software evolution and its mapping with the structural one.
Section 4 shows a part of the platform implementing our
approach. In section 5, we give some concluding remarks
and highlight the perspectives of our work.

II. QUALITATIVE MODEL FOR SOFTWARE EVOLUTION

The number of modifications of an artifact can be an
important indicator of artifact fault rate, stability, and
subsequently artifact complexity. The proposed qualitative
model is coupled to another model called Structural Model
of Software Evolution (SMSE) [13], [14]. SMSE serves as a
prerequisite for the qualitative assessments regarding the
change impact traceability and the software comprehension.
We present Qualitative Model for Software Evolution
(QMSE) to better analyze the causal flow links in software
quality attributes. It particularly refers to the traceability
links in qualitative assessment of software as a result of any
structural change.

A. A quality sub-graph of phase

In structural aspect, software development phases
connect to each other with inter-phase relationships.
Generally, the Factors and the Criteria represent the quality
attributes of an individual phase of software life cycle, the
Metrics destined to their evaluations are represented to
traverse a specific sub-graph instead of a global
representation in the general graph.

The artifacts from different software development life
cycle phases, which principally targeted by the quality
assurance, are primarily evaluated across the individual
phases during their development. Then, these are considered
in their particular evaluations in correspondence with
artifacts from other phases, or in a global evaluation from
multiple phases.

This representation not only considers the special
formalisms and applied method for each phase but also it
allows to separately manage the quality per phase for the
medium and larger sized projects.

The QMSE considers the quality graph of a software built
on several artifact levels in respective software phases. The
root of the model, denoted as QG(ΣΦ .Art), represents the
general quality of the software artifacts. We denote the
individual quality of the phase j as Qi(Φj) and the number of
phases of the development model as |ΣΦ|. The node
(QG(ΣΦ.Art)) is then defined such as the descendant set
(Dsc):
Dsc(QG(ΣΦ .Art)) = {Qi(Φ1.Art), Qi(Φ2 .Art),

. . . , Qi(Φ|ΣΦ| .Art}
In the same way, descendants contain the roots of the

sub-graphs of the quality of software artifacts from each
phase. We consider the common phases as shared by all
major development models [15] (waterfall, V, Spiral,
Incremental, Evolutionary, Transformational, Agile, Rapid
Prototyping etc.). The table I links each descendant of
QG(ΣΦ .Art) to the corresponding phase.

The sub-graph of qualitative synthesis (Qs(ΣΦ.Art)) is as
each node represents a qualitative view of a set of phases
specific to the quality expert. This view is based on the
occurrence of qualitative attributes across the software
artifacts from individually designated phases. It refers to the
factors, criteria and the sub-criteria of sub-graphs of quality
associated to the different phases. The descendants of a node
of Qs(ΣΦ .Art) may either refer to the node ∈ Qi(Φj), i = 1 .
. . |ΣΦ| or represent another node ∈ Qs(ΣΦ .Art) (Fig. 1).

TABLE I. ROOTS OF THE SUB-GRAPHS OF THE INDIVIDUAL

PHASES OF DEVELOPMENT LIFE CYCLE

Root of the sub-graph

of the quality
Concerned phase

of the development life cycle
Qi(Φ0.Art) Feasibility Study

Qi(Φ1.Art) Requirements Definition

Qi(Φ2.Art) Functional Specification

Qi(Φ3.Art) Primary Design

Qi(Φ4.Art) Detailed Design

Qi(Φ5.Art) Coding

Qi(Φ6.Art) Unit Testing

Qi(Φ….Art) …

Qi(Φx.Art) Evolution

Qs(ΣΦ.Art) sub-graph of qualitative synthesis

Figure 1. Graph of the quality of artifacts of individual phases.

B. Graph of profound variability

The global software quality is generally assessed as a
result of quality evaluation on three different levels (factor,
criterion, and metric). Factor represents the quality attribute
from external view. Criteria evaluate the factor from an
internal or developer aspect. The only separated refinement
level are the brief and global terms of the quality (factors),
and their qualitative and/or quantitative evaluation by some
metrics. While in practice, the only refinement of factors into
criteria is an immediate transition to the recognized meaning-
ful quantification, and it is often found that the criteria
involves various underlying attributes. This general
quantification by metrics may cause a lack of precise and
certain evaluation. In consequence, applying sufficient
number of refinements, seems necessary to allow an
exhaustive representation of the software quality. This can
make its evaluation preciser and more detailed.

Let G = (X, U) the Factor Criterion Metric (FCM) graph
of the quality established for an application: The set X of
nodes is the union of subsets of nodes representing the
various elements of the FCM graph as:

X = X0 ∪ F ∪ C ∪ M

• X0 is the root of the graph, It represents the most
abstract element of the quality, or the general quality of
the software, and corresponds to the level 0 of the
refinement;

• F = {f1, f2, … , fm} is the set of factors constructing the
primary refinement of the general quality or the level 1
of the refinement;

• C = {c1, c2, … cp} represents the set of criteria which
refine the factors. It compounds the level 2 of the
refinement;

• M = {m1, m2, … , mn} represents the set of metrics
permitting the quantitative and/or qualitative evaluation
of criteria.

We adopt a profound variability, in which the numbers of
refinement levels (of a factor or criteria) vary in function of
the complexity of the concerned factor or criteria. The
refinement of a criterion in sub-criteria and then recursively
their sub- criteria into more detailed versions is an expert
activity of the quality modeling. The quality engineer drives
this process recursively until (s)he accomplishes the precise
attributes that can be evaluated in consideration of relevance
and therefore interpretable, with one or more metrics. In the
same way, the Metrics destined to their evaluations, traverse
a specific sub-graph recursively until the assessment of a
global quality of the software system. We also intend to
define the related change impact propagations between
quality factors, criteria and the sub-criteria of the same level
of refinement. The representation of these horizontal
relations allows to consider the contradictions which can
exist between different quality attributes. It then permits to
define an evolutionary construction of the quality.

It will be useful to underline that there is no conceptual
difference between criteria and descending sub-criteria. Both
represent the technical attributes linked by a composition
relation, implying that all the sub-criteria help to directly
evaluate their ascendants (and indirectly their ancestors).

Practically, in all software applications the related levels
of factors and criteria are identical, these describe the general
properties, contributing each, in the certain measure to the
assurance of the global quality. This refinement of criteria
into further sub-criteria allows to pass from a generality
shared by a family of languages, formalisms, methods to the
particularity of each individual artifact expressed from its
specific use in the application. The same refinement reflects
the knowledge of the quality expert to define the relations
between criteria and sub-criteria. It also reflects the desired
importance of each factor, as a function of comparative
priorities of other factors. This expertise is therefore in
relevance to design “how to detail the quality?” by which it
shows the general description of qualitative objectives to the
expression of sub-objectives in condition to their
accomplishments. Between criteria and the metrics, multiple
levels Si of sub- criteria can exist (Fig. 2). The set X (of
nodes) of the FCM graph is then be defined as:

X = X0 ∪ F ∪ S ∪ M where:
S = {s1, s2, . . . , sz } represents the set of different levels

of sub-criteria, and
si = {ci,1, ci,2, . . . , ci,n} denotes the set of sub-criteria of

the i
th
 refinement.

C. Classification of metrics in layers

For changing evaluations, a layered model has been
adopted based on the QMSE and it is comprised of a core
and two layers. The core constitutes a set of metrics of BMS
(Basic Metric Set) base, such that each metric of this set may
neither calculate nor reduce from multiple metrics.
Moreover, like all metrics, a base metric is destined to test
the presence of a quality attribute in one or more artifacts, to
qualify or quantify this attribute. The choice of attributes is
pragmatic and it is based on the experience in qualitative
evaluation of application.

Figure 2. Tree like quality criteria, sub-criteria, and metrics

The base metrics are insufficient for the divers
evaluations of quality attributes, two layers of metrics have
been defined above the core:

WUM denotes the set of Widely-Used Metrics. These are
proposed metrics in the literature comprising the evaluation
of quality attributes. These metrics are comparatively largely
applied, in the industry. These metrics are formulated by the
functions like parameters of base metrics and making call to
certain number of operators.

UDM denotes the set of User-Defined Metrics. The
difference between these metrics and the set of precedent is
to justify by the fact that an expert can, through experience,
define a certain metric, although it does not belong to the set
of basic metrics or Widely-Used Metrics. It can be
pertinence to the measurement of a specific aspect of the
project or to put in evidence certain particulars found in the
distinct context of development. The UDM then respond to
the specific needs in observation and in evaluation putting
the specific data to the project from an expert point of view.
The definition of these metrics is based globally on the two
layer metrics. These metrics needs the evident that quality
expert, defining these metrics provides the conditions of their
usage, then it define and refresh the interpretation of
numerical results issued from the application.

Therefore, an element of WUM is a function parameter
by:

1) one or more artifacts targeted for the evaluation,
2) one or more metrics belonging to BMS.

Each element of UDM is a function parameter by:
1) one or more artifacts targeted for evaluation,
2) one or more metrics belonging to BMS ∪ WUM.

Figure 3. Structural graphs of artifacts and associated qualitative graphs

III. MAPPING BETWEEN SMSE AND QMSE

Each set Φi .Art of artifacts of a software development
life cycle phase corresponds to a multi-graph constructed
according to the instantiated structural model (Fig. 3). The
qualitative set Φi.Art corresponds to a quality graph denoted
by Qi(Φi.Art) which is elaborated by the quality expert and
which allows to evaluate the artifacts of Φi of multiple
qualitative points of view represented as the quality factors
and criteria.

Any structural change(∆S) invoked on an artifact may
cause a relative qualitative change (∆Q) in the corresponding
quality criteria. The impact of ∆Q propagated progressively
to the precedent criteria and then to factors can be traced up
to the global quality of software.

We can determine the qualitative change ∆Q affected by
structurally changed artifact Cx . So, the notation ⇒∆S ∆Q
means that the structural change ∆S implies a qualitative
change ∆Q . Let us consider some qualitative metrics set M
= {m1, m2, m3, . . . mn} associated to the artifact Cx. The
values associated to these metrics may be represented by the
set V = {v1, v2, v3, . . . vn}. A structural change ∆S applied to
the artifact Cx may result in a new set of the metric values
represented by V = {v1, v2, v3 , . . . vn}. This is shown as
below:

m1, m2, m3, . . . mn (Cx) = v1, v2 , v3, . . . vn ⇒ M (Cx) = V
After the change, ∆Q(Cx’) = ∆Q(Cx) + ∆Q(change), then

we get the set V’ as:
m1, m2, m3, . . . mn(Cx’) = v’1, v’2, v’3 , . . . v’n ⇒ M (Cx’) = V’

The difference in metrics values (∆M = V’ − V) denotes
a variation of the corresponding quality criterion. It could be
measured by applying specific metric mi. The corresponding
difference of values from concerned metrics ∆mi, ∆mi+1, ∆mp
represents the change in quality criterion as ∆C . The change
in a criterion can affect the value of other related criteria
(∆cj, ∆cj+1, … ∆cq) on the same level. This identified
difference with other related criteria yields the obvious
change in their describing quality factor. In the same way,
the combinations of changes in overall quality factors
represent quality variation of the whole software product.

IV. PROTOTYPE OF IMPLEMENTATION

For an operational validation of the proposed models of
software evolution, we have implemented a prototype
allowing friendly experimentation of quality graphs
associated to a software development project. The prototype
is built as a set of Eclipse IDE plug-ins. This prototype
contains a graph editor which provides in a very simple way
the nodes and arcs of the structural graph. We have used the
Java Universal Network/Graph (JUNG) Framework. This is
a software library that can be re-used for the modeling,
analysis, and visualization of data as a graph or network.
This library allows to define the structure of data Graph and
also to use certain graph primitives for the construction of
user interfaces associated with the graph manipulation tools.
We used it in interaction with the built-in capabilities of Java
API, as well as those of other existing third party Java
libraries i.e Drools. We have specialized the class Graph
available in the JUNG library in a class that we called
ArchitectGraph. The large quality information can be stored
and manipulated through a semi-automated knowledge-based
system. The Drools is a business logic platform which
provides an integrated unified platform for Rules, Workflow
and Event Processing. We make use of it in writing quality
expert rules as well as rules of propagation to improve the
interactivity of quality graph.

The developed prototype is able to parse the information
from distributed applications built on Java 2 Platform,
Enterprise Edition (also including XML mappings and
database schemas) to demonstrate the structural graph based
on the underlying interactions of the artifacts. In case of an
invoked change on a software artifact, the affected artifacts
are identified by an automotive analysis of the change impact

Figure 4. The Java Code Snip

Figure 5. The performance graph of example code (before structural

change)

Figure 6. The performance graph of example code (after structural

change)

conductivity of the relationship (edge), which connects the
different artifacts (nodes) in the graph. This impact
propagation is also followed in software code,
simultaneously with the help of integrated textual messages
and notifications of warnings, tasks, or errors inside the
Eclipse IDE. It helps in tracing the impact of change on a
particular software artifact and supports decision making
during incorporation of changes. To illustrate the impact of a
structural change to qualitative model, we present the code
snip as in Fig. 4. For the purpose of explaining the
qualitative impact propagation, we measured and observed
the performance of the method findEdge. We invoked a

change on the line # 12 of this code snip from ArrayList data

to Vector in line #13. We observed the performance measure

of the method findEdge by executing it 5 times each before
and after the structural change. We found a great difference
of execution time of the method (qualitative impact) whereas
there wasn’t any structural change impact propagation. The

Fig. 5 shows the bar graph of the performance with ArrayList

whereas the Fig. 6 shows the bar graph with Vector datatype.

V. CONCLUSION

We presented an integrated software modeling approach
intended to deal with the change impact analysis from
different point of views including both structural and
qualitative ones. The approach allows enhanced traceability
of the change impact flow.

We particularly address the representation of software
quality attributes related to artifacts belonging to the
different software life cycle phases. This result in a graph
based representation of the software quality that is mapped to
the structural representation of the software artifacts also
represented by a graph. This makes it possible to implement
automatic tools providing the artifact change impact analysis
from a qualitative view.

We are continuing this approach, also to consider the
possibility of a quality expert to define and apply the metrics
for an assessment of the qualitative changes experienced by
different features in an evolving software application.

REFERENCES

[1] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation
of software quality,” in ICSE ’76: Proceedings of the 2nd

international conference on Software engineering. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1976, pp. 592–605. [Online].
Available: http://portal.acm.org/citation.cfm?id=800253.807736

[2] J. A. Mccall, J. P. Cavano, and G. Walters, “Factors in software
quality,” vol. 1, 2, and 3, November 1977.

[3] J. P. Cavano and J. A. McCall, “A framework for the measurement of
software quality,” SIGSOFT Softw. Eng. Notes, vol. 3, no. 5, pp. 133–
139, 1978.

[4] K. Ishikawa, What Is Total Quality Control?: The Japanese
Way. Prentice Hall, March 1985. [Online]. Available:

http://www.amazon.com/exec/obidos/redirect?tag=citeulike0720&path=ASIN/

0139524339

[5] Y. Akao, “Qfd: Past, present, and future,” in Transactions of the
Third International Symposium on Quality Function Deployment.
vol. 1. Plenary Session (downloadable from the QFD Institutes
website: http://www.qfdi.org), October 12, 1997.

[6] A. Yoji, “History of quality function deployment in japan,” in The
Best on Quality, IAQ Book Series Vol. 3. International Academy for
Quality, 1990, p. 183196.

[7] B. Kitchenham and L. Pickard, “Towards a constructive quality
model part 2: Statistical techniques for modeling software quality in
the esprit request project,” Softw. Eng. J., july 1987.

[8] P. Petersen and B. Kitchenham, “The development of a software
quality model,” in Proceedings of 1st European Conference on
Software Quality, Brussels, April 1988.

[9] S. Chulani and B. Boehm, “Modeling software defect introduction
and removal:coqualmo (constructive quality model),” 1999.

[10] V. C. University, “Cocomo ii model definition manual,” 1999.

[11] V. Basili, G. Caldiera, and D. Rombach, “Goal/question/metric
paradigm,” Encyclopedia of Software Engineering, vol. 1, pp. 528–
532, 1994.

[12] A. Ahmad, H. Basson, and M. Bouneffa, “Software evolution control:
Towards a better identification of change impact propagation,” in
ICET’08: Proceedings of the 4th IEEE International Conference on
Emerging Technologies. IEEE Computer Society, October 2008, pp.
286–291.

[13] A. Ahmad, H. Basson, L. Deruelle, and M. Bouneffa, “A knowledge-
based framework for software evolution control,” in INFORSID’09:
Actes du XXVII`eme Congr`es Informatique des organisation et
systmes d’information et de dcision. Toulouse, France: IRIT Press
(www.irit.fr), May 2009, pp. 111–126.

[14] A. Ahmad, H. Basson, and M. Bouneffa, “Rule-based approach for
software evolution management,” in IEEE APSSC 2009: IEEE Asia-
Pacific Services Computing Conference, December 2009.

[15] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 7th
edition. McGraw Hill Higher Education, January 2009

