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Abstract—The operating environment can be significant for an 

applied change on a software artifact to propagate its  mpact 

on the other components of the system. We present a modeling 

approach for tracing the reliable qualitative change impact 

flow during the software evolution. The approach is 

implemented as a framework including software specific 

information data gathering and automatic mechanism 

providing both structural and qualitative change impact 

analysis. This facilitates the decision making during the 

software evolution and maintenance processes.  
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I.  INTRODUCTION  

To control software evolution within the constraints of 
time and resources without quality degradations when 
constant changes make software larger, more sophisticated 
and more complex is a significant challenge. Changes in 
software structure may affect the original software quality. It 
is observed that the software quality tends to erode with the 
increase in size and complexity due to the addition of new 
functionality and changed structure. The Software Quality 
Assurance (SQA) has always been a complicated task and 
deriving formulations to evaluate the whole software quality 
is more complicated without traceability information. 

The software quality engineering community has been 
studying quality evaluation issues for a significant amount of 
time and made much progress in quality metrics. There have 
been proposed many theoretical and numerical frameworks 
to assess the software quality. The software quality models 
proposed by B. Bohem [1] and Mc. Call [2], [3] are known 
to be the historical models to represent, conceive, and 
evaluate the software quality. They have investigated the 
involvement of multiple quality factors to assess the whole 
software quality. Several variations have been formulated to 
the Boehm-McCall Model since its proposition [4], [5], [6], 
[7], [8], [9], [10], [11]. These address the analysis of 
software quality factors and their qualitative or quantitative 
metrification. The increased complexity in quality 
assessment models makes it more difficult to analyze basic 
causal flows. 

A successful software change incorporation process may 
require to understand the change impact propagation 

considered from several aspects to prevent the software 
decay. In the context of software applications, the 
propagation of change impact can be considered from 
structural, qualitative, functional, logical, or behavioral point 
of views [12]. We particularly focus on qualitative change 
impact flow caused by a structural modification in a software 
artifact. This cannot be achieved without having an 
exploitable knowledge, describing exhaustively software 
artifacts and the different kind of relationships linking them. 
Improving the software evolution control without quality 
degradation issues is directly related to understand software 
dependencies. An exhaustive information regarding different 
software artifacts should help to analyze qualitative aspects 
of incorporated changes. In this article, we discuss analysis 
of structural and qualitative impact propagation of an 
intended change. Our approach aims at understanding the 
software evolution. This is achieved by means of 
formalization of the software artifacts and their various 
interactions. The objective is to provide a systematic 
approach for successful change incorporation in the 
developed software and thus to minimize risks generated by 
the change.  

The article is organized as follows. Section 2 explains an 
insight to the qualitative evaluation of software systems. 
Section 3 further explores the qualitative model for the 
software evolution and its mapping with the structural one. 
Section 4 shows a part of the platform implementing our 
approach. In section 5, we give some concluding remarks 
and highlight the perspectives of our work. 

II. QUALITATIVE MODEL FOR SOFTWARE EVOLUTION 

The number of modifications of an artifact can be an 
important indicator of artifact fault rate, stability, and 
subsequently artifact complexity. The proposed qualitative 
model is coupled to another model called Structural Model 
of Software Evolution (SMSE) [13], [14]. SMSE serves as a 
prerequisite for the qualitative assessments regarding the 
change impact traceability and the software comprehension. 
We present Qualitative Model for Software Evolution 
(QMSE) to better analyze the causal flow links in software 
quality attributes. It particularly refers to the traceability 
links in qualitative assessment of software as a result of any 
structural change. 



A. A quality sub-graph of phase 

In structural aspect, software development phases 
connect to each other with inter-phase relationships. 
Generally, the Factors and the Criteria represent the quality 
attributes of an individual phase of software life cycle, the 
Metrics destined to their evaluations are represented to 
traverse a specific sub-graph instead of a global 
representation in the general graph. 

The artifacts from different software development life 
cycle phases, which principally targeted by the quality 
assurance, are primarily evaluated across the individual 
phases during their development. Then, these are considered 
in their particular evaluations in correspondence with 
artifacts from other phases, or in a global evaluation from 
multiple phases.  

This representation not only considers the special 
formalisms and applied method for each phase but also it 
allows to separately manage the quality per phase for the 
medium and larger sized projects. 

The QMSE considers the quality graph of a software built 
on several artifact levels in respective software phases. The 
root of the model, denoted as QG(ΣΦ .Art), represents the 
general quality of the software artifacts. We denote the 
individual quality of the phase j as Qi(Φj ) and the number of 
phases of the development model as |ΣΦ|. The node 
(QG(ΣΦ.Art)) is then defined such as the descendant set 
(Dsc): 
Dsc(QG(ΣΦ .Art)) = {Qi(Φ1.Art), Qi(Φ2 .Art), 

. . . , Qi(Φ|ΣΦ| .Art} 
In the same way, descendants contain the roots of the 

sub-graphs of the quality of software artifacts from each 
phase. We consider the common phases as shared by all 
major development models [15] (waterfall, V, Spiral, 
Incremental, Evolutionary, Transformational, Agile, Rapid 
Prototyping etc.). The table I links each descendant of 
QG(ΣΦ .Art) to the corresponding phase. 

The sub-graph of qualitative synthesis (Qs(ΣΦ.Art)) is as 
each node represents a qualitative view of a set of phases 
specific to the quality expert. This view is based on the 
occurrence of qualitative attributes across the software 
artifacts from individually designated phases. It refers to the 
factors, criteria and the sub-criteria of sub-graphs of quality 
associated to the different phases. The descendants of a node 
of Qs(ΣΦ .Art) may either refer to the node ∈ Qi(Φj ), i = 1 . 
. . |ΣΦ| or represent another node ∈ Qs(ΣΦ .Art) (Fig. 1). 

TABLE I.  ROOTS OF THE SUB-GRAPHS OF THE INDIVIDUAL 

PHASES OF DEVELOPMENT LIFE CYCLE 

Root of the sub-graph 

of the quality 
Concerned phase 

of the development life cycle 
Qi(Φ0.Art) Feasibility Study 

Qi(Φ1.Art) Requirements Definition 

Qi(Φ2.Art) Functional Specification 

Qi(Φ3.Art) Primary Design 

Qi(Φ4.Art) Detailed Design 

Qi(Φ5.Art) Coding 

Qi(Φ6.Art) Unit Testing 

Qi(Φ….Art) … 

Qi(Φx.Art) Evolution 

Qs(ΣΦ.Art) sub-graph of qualitative synthesis 

 
Figure 1.  Graph of the quality of artifacts of individual phases. 

B. Graph of profound variability 

The global software quality is generally assessed as a 
result of quality evaluation on three different levels (factor, 
criterion, and metric). Factor represents the quality attribute 
from external view. Criteria evaluate the factor from an 
internal or developer aspect. The only separated refinement 
level are the brief and global terms of the quality (factors), 
and their qualitative and/or quantitative evaluation by some 
metrics. While in practice, the only refinement of factors into 
criteria is an immediate transition to the recognized meaning- 
ful quantification, and it is often found that the criteria 
involves various underlying attributes. This general 
quantification by metrics may cause a lack of precise and 
certain evaluation. In consequence, applying sufficient 
number of refinements, seems necessary to allow an 
exhaustive representation of the software quality. This can 
make its evaluation preciser and more detailed. 

Let G = (X, U) the Factor Criterion Metric (FCM) graph 
of the quality established for an application: The set X of 
nodes is the union of subsets of nodes representing the 
various elements of the FCM graph as: 

X = X0 ∪ F ∪ C ∪ M 

• X0 is the root of the graph, It represents the most 
abstract element of the quality, or the general quality of 
the software, and corresponds to the level 0 of the 
refinement; 

• F = {f1, f2, … , fm} is the set of factors constructing the 
primary refinement of the general quality or the level 1 
of the refinement; 

• C = {c1, c2, … cp} represents the set of criteria which 
refine the factors. It compounds the level 2 of the 
refinement; 

• M = {m1, m2, … , mn} represents the set of metrics 
permitting the quantitative and/or qualitative evaluation 
of criteria. 



We adopt a profound variability, in which the numbers of 
refinement levels (of a factor or criteria) vary in function of 
the complexity of the concerned factor or criteria. The 
refinement of a criterion in sub-criteria and then recursively 
their sub- criteria into more detailed versions is an expert 
activity of the quality modeling. The quality engineer drives 
this process recursively until (s)he accomplishes the precise 
attributes that can be evaluated in consideration of relevance 
and therefore interpretable, with one or more metrics. In the 
same way, the Metrics destined to their evaluations, traverse 
a specific sub-graph recursively until the assessment of a 
global quality of the software system. We also intend to 
define the related change impact propagations between 
quality factors, criteria and the sub-criteria of the same level 
of refinement. The representation of these horizontal 
relations allows to consider the contradictions which can 
exist between different quality attributes. It then permits to 
define an evolutionary construction of the quality.  

It will be useful to underline that there is no conceptual 
difference between criteria and descending sub-criteria. Both 
represent the technical attributes linked by a composition 
relation, implying that all the sub-criteria help to directly 
evaluate their ascendants (and indirectly their ancestors). 

Practically, in all software applications the related levels 
of factors and criteria are identical, these describe the general 
properties, contributing each, in the certain measure to the 
assurance of the global quality. This refinement of criteria 
into further sub-criteria allows to pass from a generality 
shared by a family of languages, formalisms, methods to the 
particularity of each individual artifact expressed from its 
specific use in the application. The same refinement reflects 
the knowledge of the quality expert to define the relations 
between criteria and sub-criteria. It also reflects the desired 
importance of each factor, as a function of comparative 
priorities of other factors. This expertise is therefore in 
relevance to design “how to detail the quality?” by which it 
shows the general description of qualitative objectives to the 
expression of sub-objectives in condition to their 
accomplishments. Between criteria and the metrics, multiple 
levels Si of sub- criteria can exist (Fig. 2). The set X (of 
nodes) of the FCM graph is then be defined as:  

X = X0 ∪ F ∪ S ∪ M where: 
S = {s1, s2, . . . , sz } represents the set of different levels 

of sub-criteria, and 
si = {ci,1, ci,2, . . . , ci,n} denotes the set of sub-criteria of 

the i
th
 refinement. 

C. Classification of metrics in layers 

For changing evaluations, a layered model has been 
adopted based on the QMSE and it is comprised of a core 
and two layers. The core constitutes a set of metrics of BMS 
(Basic Metric Set) base, such that each metric of this set may 
neither calculate nor reduce from multiple metrics. 
Moreover, like all metrics, a base metric is destined to test 
the presence of a quality attribute in one or more artifacts, to 
qualify or quantify this attribute. The choice of attributes is 
pragmatic and it is based on the experience in qualitative 
evaluation of application. 

 
Figure 2.  Tree like quality criteria, sub-criteria, and metrics 

The base metrics are insufficient for the divers 
evaluations of quality attributes, two layers of metrics have 
been defined above the core: 

WUM denotes the set of Widely-Used Metrics. These are 
proposed metrics in the literature comprising the evaluation 
of quality attributes. These metrics are comparatively largely 
applied, in the industry. These metrics are formulated by the 
functions like parameters of base metrics and making call to 
certain number of operators. 

UDM denotes the set of User-Defined Metrics. The 
difference between these metrics and the set of precedent is 
to justify by the fact that an expert can, through experience, 
define a certain metric, although it does not belong to the set 
of basic metrics or Widely-Used Metrics. It can be 
pertinence to the measurement of a specific aspect of the 
project or to put in evidence certain particulars found in the 
distinct context of development. The UDM then respond to 
the specific needs in observation and in evaluation putting 
the specific data to the project from an expert point of view. 
The definition of these metrics is based globally on the two 
layer metrics. These metrics needs the evident that quality 
expert, defining these metrics provides the conditions of their 
usage, then it define and refresh the interpretation of 
numerical results issued from the application. 

Therefore, an element of WUM is a function parameter 
by: 

1) one or more artifacts targeted for the evaluation, 
2) one or more metrics belonging to BMS. 

Each element of UDM is a function parameter by: 
1) one or more artifacts targeted for evaluation, 
2) one or more metrics belonging to BMS ∪ WUM. 



 

Figure 3.  Structural graphs of artifacts and associated qualitative graphs 

III. MAPPING BETWEEN SMSE AND QMSE 

Each set Φi .Art of artifacts of a software development 
life cycle phase corresponds to a multi-graph constructed 
according to the instantiated structural model (Fig. 3). The 
qualitative set Φi.Art corresponds to a quality graph denoted 
by Qi(Φi.Art) which is elaborated by the quality expert and 
which allows to evaluate the artifacts of Φi of multiple 
qualitative points of view represented as the quality factors 
and criteria. 

Any structural change(∆S ) invoked on an artifact may 
cause a relative qualitative change (∆Q) in the corresponding 
quality criteria. The impact of ∆Q propagated progressively 
to the precedent criteria and then to factors can be traced up 
to the global quality of software. 

We can determine the qualitative change ∆Q affected by 
structurally changed artifact Cx . So, the notation ⇒∆S  ∆Q 
means that the structural change ∆S implies a qualitative 
change ∆Q . Let us consider some qualitative metrics set M 
= {m1, m2, m3, . . . mn} associated to the artifact Cx. The 
values associated to these metrics may be represented by the 
set V = {v1, v2, v3, . . . vn}. A structural change ∆S applied to 
the artifact Cx may result in a new set of the metric values 
represented by V = {v1, v2, v3 , . . . vn}. This is shown as 
below: 

m1, m2, m3, . . . mn (Cx ) = v1, v2 , v3, . . . vn ⇒ M (Cx ) = V 
After the change, ∆Q(Cx’) = ∆Q(Cx) + ∆Q(change), then 

we get the set V’ as: 
m1, m2, m3, . . . mn(Cx’) = v’1, v’2, v’3 , . . . v’n ⇒ M (Cx’ ) = V’ 

The difference in metrics values (∆M = V’ − V) denotes 
a variation of the corresponding quality criterion. It could be 
measured by applying specific metric mi. The corresponding 
difference of values from concerned metrics ∆mi, ∆mi+1, ∆mp 
represents the change in quality criterion as ∆C . The change 
in a criterion can affect the value of other related criteria 
(∆cj, ∆cj+1, … ∆cq ) on the same level. This identified 
difference with other related criteria yields the obvious 
change in their describing quality factor. In the same way, 
the combinations of changes in overall quality factors 
represent quality variation of the whole software product.  

IV. PROTOTYPE OF IMPLEMENTATION 

For an operational validation of the proposed models of 
software evolution, we have implemented a prototype 
allowing  friendly experimentation of quality graphs 
associated to a software development project. The prototype 
is built as a set of  Eclipse IDE plug-ins. This prototype 
contains a graph editor which provides in a very simple way 
the nodes and arcs of the structural graph. We have used the 
Java Universal Network/Graph (JUNG) Framework. This is 
a software library that can be re-used for the modeling, 
analysis, and visualization of data as a graph or network. 
This library allows to define the structure of data Graph and 
also to use certain graph primitives for the construction of 
user interfaces associated with the graph manipulation tools. 
We used it in interaction with the built-in capabilities of Java 
API, as well as those of other existing third party Java 
libraries i.e Drools. We have specialized the class Graph 
available in the JUNG library in a class that we called 
ArchitectGraph. The large quality information can be stored 
and manipulated through a semi-automated knowledge-based 
system. The Drools is a business logic platform which 
provides an integrated unified platform for Rules, Workflow 
and Event Processing. We make use of it in writing quality 
expert rules as well as rules of propagation to improve the 
interactivity of quality graph.  

The developed prototype is able to parse the information 
from distributed applications built on Java 2 Platform, 
Enterprise Edition (also including XML mappings and 
database schemas) to demonstrate the structural graph based 
on the underlying interactions of the artifacts. In case of an 
invoked change on a software artifact, the affected artifacts 
are identified by an automotive analysis of the change impact 

 
Figure 4.  The Java Code Snip 



 

Figure 5.  The performance graph of example code (before structural 

change) 

 
Figure 6.  The performance graph of example code (after structural 

change) 

conductivity of the relationship (edge), which connects the 
different artifacts (nodes) in the graph. This impact 
propagation is also followed in software code, 
simultaneously with the help of integrated textual messages 
and notifications of warnings, tasks, or errors inside the 
Eclipse IDE. It helps in tracing the impact of change on a 
particular software artifact and supports decision making 
during incorporation of changes. To illustrate the impact of a 
structural change to qualitative model, we present the code 
snip as in Fig. 4. For the purpose of explaining the 
qualitative impact propagation, we measured and observed 
the performance of the method findEdge. We invoked a 

change on the line # 12 of this code snip from ArrayList data 

to Vector in line #13. We observed the performance measure 

of the method findEdge by executing it 5 times each before 
and after the structural change. We found a great difference 
of execution time of the method (qualitative impact) whereas 
there wasn’t any structural change impact propagation. The 

Fig. 5 shows the bar graph of the performance with ArrayList 

whereas the Fig. 6 shows the bar graph with Vector datatype.  

V. CONCLUSION 

We presented an integrated software modeling approach 
intended to deal with the change impact analysis from 
different point of views including both structural and 
qualitative ones. The approach allows enhanced traceability 
of the change impact flow. 

We particularly address the representation of software 
quality attributes related to artifacts belonging to the 
different software life cycle phases. This result in a graph 
based representation of the software quality that is mapped to 
the structural representation of the software artifacts also 
represented by a graph. This makes it possible to implement 
automatic tools providing the artifact change impact analysis 
from a qualitative view. 

We are continuing this approach, also to consider the 
possibility of a quality expert to define and apply the metrics 
for an assessment of the qualitative changes experienced by 
different features in an evolving software application. 
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