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ABSTRACT
Optimizing compilers for high performance computing only sup-
port IEEE 754 floating-point (FP) types and applications needing
higher precision involve cumbersome memory management and
calls to external libraries. We introduce an extension of the C type
system to represent variable-precision FP arithmetic, supporting
both static and dynamically variable precision. We design and im-
plement a compilation flow bridging the abstraction gap between
this type system and hardware FP instructions or software libraries.
We demonstrate the effectiveness of our solution by enabling the
full range of LLVM optimizations and leveraging two backend code
generators: one for the ISA of a variable precision FP arithmetic
coprocessor, and one for the MPFR multi-precision FP library. Both
targets support the static and dynamically adaptable precision of
our type system. On the PolyBench suite, our optimizing com-
pilation flow targeting MPFR is shown to outperform the Boost
programming interface for the MPFR library.
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• Software and its engineering→ Source code generation; Im-
perative languages; Data types and structures; Dynamic compilers.
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1 INTRODUCTION
Floating-point (FP) computation has been around long before its
standardization, but the adoption of the IEEE 754 standard in
1985 [10] along with the progress of integration technology made
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1 void axpy100(int N, vpfloat <mpfr , 16, 100> alpha ,
2 vpfloat <mpfr , 16, 100> *X,
3 vpfloat <mpfr , 16, 100> *Y) {
4 for (unsigned i = 0; i < N; ++i)
5 Y[i] = alpha * X[i] + Y[i];
6 }
7
8 void vaxpy(unsigned prec , int N,
9 vpfloat <mpfr , 16, prec > alpha ,
10 vpfloat <mpfr , 16, prec > *X,
11 vpfloat <mpfr , 16, prec > *Y) {
12 for (unsigned i = 0; i < N; ++i)
13 Y[i] = alpha * X[i] + Y[i];
14 }

Listing 1: axpy kernel withmpfr type

hardware FP units ubiquitous. While hardware support is para-
mount to the performance of numerical applications, compilers
play a major role in leveraging these units efficiently. Compiler
optimizations handle FP representations supported by common
hardware, at best the 16, 32, 64, 80 and 128 bits IEEE formats as
well as bf16. However, a growing number of applications [2, 6] are
better suited to operate on different formats.

Finer control of exponent and precision sizes allows the nu-
merical analyst to explore suitable trade-offs between accuracy
and execution time (and/or energy consumption). This goal can be
achieved through the use of external libraries, yet multi-precision
code is difficult to write and maintain. More than the performance
gap, the productivity gap of variable precision FP arithmetic makes
it unaccessible to its main potential users.

We address this challenge through a variable precision FP type
system and language extension of standard C through the intro-
duction of a template type named vpfloat. The syntax for this
type system captures most of the expressiveness needed by nu-
merical analysts while enabling highly efficient in-place execution,
stack allocation and the full range of compiler optimizations ex-
pected for the C language. This is made possible by extending the
LLVM intermediate representation [7], allowing classical compiler
optimizations to operate on multi-precision FP types with few mod-
ifications. In particular, we enable multiple FP formats to coexist
in a single numerical kernel with full procedural abstraction. For
each format that supports it, we also enable computations over
multiple variables of different precision and memory footprints,
including dynamically-varying precision and footprints. This al-
lows to explore multiple numerical configurations within a single
program source or even across successive iterations of a tuning or
convergence loop.
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2 GENERIC VP TYPES
Every VP variable declaration must provide a type attribute which
defines if subsequent attributes are needed and which information
they carry. Attributes are specified in the following order: type,
exponent, precision, and size. With the exception of type, vpfloat
attributes can all be defined with integral constant literals or iden-
tifiers. This generic type supports not only constant-size but also
dynamically-sized types, which is always a technical hurdle in
languages with unmanaged memory like C, and its associated in-
termediate representations and ABIs.

We designed and implemented a full compilation flow in LLVM
supporting (1) mpfr types, which hold the number of bits of expo-
nent and mantissa in the second and third fields, respectively; and
(2) unum [5] types with second and third fields, ess and fss, respec-
tively, with an optional size field that holds the maximum number
of bytes used to represent the number. Listing 1 shows the imple-
mentation of the axpy kernel, a level-1 BLAS [8] routine operating
on vectors, for constant and dynamically-sized mpfr types.

3 EXPERIMENTAL RESULTS
We demonstrate the effectiveness of our type system and compiler
implementation by comparing the variable-precision MPFR type
vpfloat<mpfr, ...>with the Boost library for multi-precision. Both
approaches rely on the MPFR library and execute code with identi-
cal precision [3]. We compiled the PolyBench suite version 4.1 [9] at
optimization level -O3, and enabling or disabling Polly’s polyhedral
loop nest optimizations [4]. The nussinov benchmark results are
missing due to erroneous computations (NaN) in the Boost baseline,
we are investigating the issue. Overall, results show an average
speedup of 1.70× for the Intel Xeon E5-2637 with 128GB of RAM.

To evaluate the portability of our approach, we also demonstrate
our LLVM implementation targeting a coprocessor for a RISC-V
Rocket core accelerating FP arithmetic in the UNUM format [1].
Unfortunately we hit hardware bugs when executing some bench-
marks: gesummv and adi failed to run when compiled with Polly
and 3 more benchmarks failed at the highest precision with Polly
(3mm, ludcmp, nussinov). This is due to an issue in the co-processor

memory subsystem that we were not able to address at this time.
Nevertheless, we were able to achieve at the highest precision (150
digits), speedups of 18.03× and 27.58× for -O3, and -O3 + Polly,
respectively, when using our vpfloat<mpfr, ...> as baseline.

4 CONCLUSION
We propose an extension to the C type system to operate on vari-
able precision FP formats. Our extension supports FP arithmetic
of arbitrary representation whose precision and exponent size can
be configured at compilation time or runtime. We demonstrate the
productivity benefits of our programming model and its ability to
leverage the full range of optimizations of LLVM. Experiments on
the PolyBench suite yield strong speedups at all optimization levels
in comparison to the Boost Multi-precision library for MPFR.
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Figure 1: Speedup of (1) vpfloat<mpfr, ...> over the Boost library for multi-precision on x86, and (2) of vpfloat<unum, ...> over
vpfloat<mpfr, ...> on an UNUM-accelerated RISC-V processor — PolyBench suite
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