Tiago Jost

Yves Durand

Christian Fabre

Albert Cohen
email: albertcohen@google.com

Frédéric Pétrot
email: frederic.petrot@univ-grenoble-alpes.fr

VP Float: First Class Treatment for Variable Precision Floating Point Arithmetic

Keywords: Software and its engineering → Source code generation, Imperative languages, Data types and structures, Dynamic compilers Floating point arithmetic, compiler optimization, LLVM, MPFR

Optimizing compilers for high performance computing only support IEEE 754 floating-point (FP) types and applications needing higher precision involve cumbersome memory management and calls to external libraries. We introduce an extension of the C type system to represent variable-precision FP arithmetic, supporting both static and dynamically variable precision. We design and implement a compilation flow bridging the abstraction gap between this type system and hardware FP instructions or software libraries. We demonstrate the effectiveness of our solution by enabling the full range of LLVM optimizations and leveraging two backend code generators: one for the ISA of a variable precision FP arithmetic coprocessor, and one for the MPFR multi-precision FP library. Both targets support the static and dynamically adaptable precision of our type system. On the PolyBench suite, our optimizing compilation flow targeting MPFR is shown to outperform the Boost programming interface for the MPFR library.

vpfloat < mpfr , 16 , 100 > *X , Listing 1: axpy kernel with mpfr type hardware FP units ubiquitous. While hardware support is paramount to the performance of numerical applications, compilers play a major role in leveraging these units efficiently. Compiler optimizations handle FP representations supported by common hardware, at best the 16, 32, 64, 80 and 128 bits IEEE formats as well as bf16. However, a growing number of applications [START_REF] Carson | Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions[END_REF][START_REF] Nicholas | Accuracy and Stability of Numerical Algorithms[END_REF] are better suited to operate on different formats.

Finer control of exponent and precision sizes allows the numerical analyst to explore suitable trade-offs between accuracy and execution time (and/or energy consumption). This goal can be achieved through the use of external libraries, yet multi-precision code is difficult to write and maintain. More than the performance gap, the productivity gap of variable precision FP arithmetic makes it unaccessible to its main potential users.

We address this challenge through a variable precision FP type system and language extension of standard C through the introduction of a template type named vpfloat. The syntax for this type system captures most of the expressiveness needed by numerical analysts while enabling highly efficient in-place execution, stack allocation and the full range of compiler optimizations expected for the C language. This is made possible by extending the LLVM intermediate representation [START_REF] Lattner | LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation[END_REF], allowing classical compiler optimizations to operate on multi-precision FP types with few modifications. In particular, we enable multiple FP formats to coexist in a single numerical kernel with full procedural abstraction. For each format that supports it, we also enable computations over multiple variables of different precision and memory footprints, including dynamically-varying precision and footprints. This allows to explore multiple numerical configurations within a single program source or even across successive iterations of a tuning or convergence loop.

Every VP variable declaration must provide a type attribute which defines if subsequent attributes are needed and which information they carry. Attributes are specified in the following order: type, exponent, precision, and size. With the exception of type, vpfloat attributes can all be defined with integral constant literals or identifiers. This generic type supports not only constant-size but also dynamically-sized types, which is always a technical hurdle in languages with unmanaged memory like C, and its associated intermediate representations and ABIs.

We designed and implemented a full compilation flow in LLVM supporting (1) mpfr types, which hold the number of bits of exponent and mantissa in the second and third fields, respectively; and (2) unum [START_REF] Gustafson | The end of error: UNUM computing[END_REF] types with second and third fields, ess and fss, respectively, with an optional size field that holds the maximum number of bytes used to represent the number. Listing 1 shows the implementation of the axpy kernel, a level-1 BLAS [START_REF] Chuck L Lawson | Basic linear algebra subprograms for Fortran usage[END_REF] routine operating on vectors, for constant and dynamically-sized mpfr types.

EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our type system and compiler implementation by comparing the variable-precision MPFR type vpfloat<mpfr, ...> with the Boost library for multi-precision. Both approaches rely on the MPFR library and execute code with identical precision [START_REF] Fousse | MPFR: A Multiple-precision Binary Floating-point Library with Correct Rounding[END_REF]. We compiled the PolyBench suite version 4.1 [START_REF] Pouchet | PolyBench: The polyhedral benchmark suite[END_REF] at optimization level -O3, and enabling or disabling Polly's polyhedral loop nest optimizations [START_REF] Grosser | Polly -Polyhedral optimization in LLVM[END_REF]. The nussinov benchmark results are missing due to erroneous computations (NaN) in the Boost baseline, we are investigating the issue. Overall, results show an average speedup of 1.70× for the Intel Xeon E5-2637 with 128GB of RAM.

To evaluate the portability of our approach, we also demonstrate our LLVM implementation targeting a coprocessor for a RISC-V Rocket core accelerating FP arithmetic in the UNUM format [START_REF] Bocco | SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing[END_REF]. Unfortunately we hit hardware bugs when executing some benchmarks: gesummv and adi failed to run when compiled with Polly and 3 more benchmarks failed at the highest precision with Polly (3mm, ludcmp, nussinov). This is due to an issue in the co-processor memory subsystem that we were not able to address at this time. Nevertheless, we were able to achieve at the highest precision (150 digits), speedups of 18.03× and 27.58× for -O3, and -O3 + Polly, respectively, when using our vpfloat<mpfr, ...> as baseline.

CONCLUSION

We propose an extension to the C type system to operate on variable precision FP formats. Our extension supports FP arithmetic of arbitrary representation whose precision and exponent size can be configured at compilation time or runtime. We demonstrate the productivity benefits of our programming model and its ability to leverage the full range of optimizations of LLVM. Experiments on the PolyBench suite yield strong speedups at all optimization levels in comparison to the Boost Multi-precision library for MPFR.

This work was partially funded by the French Agence nationale de la recherche (ANR) for project IMPRENUM under grant n°ANR-18-CE46-0011.

3 vpfloat 5 Y 7 8

 357 < mpfr , 16 , 100 > * Y) { 4 for (unsigned i = 0; i < N ; ++ i) [i] = alpha * X [i] + Y [i]; 6 } void vaxpy (unsigned prec , int N , 9 vpfloat < mpfr , 16 , prec > alpha , 10 vpfloat < mpfr , 16 , prec > *X , 11 vpfloat < mpfr , 16 , prec > * Y) { 12 for (unsigned i = 0; i < N ; ++ i) 13 Y [i] = alpha * X [i] + Y [i]; 14 }

c h o le s k y c o r r e la t io n c o v a r ia n c e d e r ic h e d o it g e n d u r b in f d t d -2 d f lo y d g e m m g e m v e r g e s u m m v g r a m s c h m id t h e a t _ 3 d ja c o b i_ 1 d ja c o b i_ 2 d lu lu d c m p m v t n u s s in o v s e id e l_ 2 Figure 1 :

 21 Figure 1: Speedup of (1) vpfloat<mpfr, ...> over the Boost library for multi-precision on x86, and (2) of vpfloat<unum, ...> over vpfloat<mpfr, ...> on an UNUM-accelerated RISC-V processor -PolyBench suite