N

N

VP Float: First Class Treatment for Variable Precision
Floating Point Arithmetic
Tiago Trevisan Jost, Yves Durand, Christian Fabre, Albert Cohen, Frédéric
Pétrot

» To cite this version:

Tiago Trevisan Jost, Yves Durand, Christian Fabre, Albert Cohen, Frédéric Pétrot. VP Float: First
Class Treatment for Variable Precision Floating Point Arithmetic. International Conference on Parallel
Architectures and Compilation Techniques (PACT 2020), Oct 2020, Atlanta, United States. pp.355-
356, 10.1145/3410463.3414660 . hal-03108836v2

HAL Id: hal-03108836
https://hal.science/hal-03108836v2
Submitted on 3 Feb 2021 (v2), last revised 5 Mar 2021 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal.science/hal-03108836v2
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Seamless Compiler Integration of
Variable Precision Floating-Point Arithmetic

Tiago Trevisan Jost, Yves Durand, Christian Fabre
Univ. Grenoble Alpes
CEA LIST
Grenoble, France
tiago.trevisanjost@cea.fr, yves.durand @cea.fr
christian.fabrel @cea.fr

Abstract—Floating-Point (FP) units in processors are generally
limited to supporting a subset of formats defined by the IEEE 754
standard. As a result, high-efficiency languages and optimizing
compilers for high-performance computing only support IEEE
standard types and applications needing higher precision involve
cumbersome memory management and calls to external libraries,
resulting in code bloat and making the intent of the program
unclear. We present an extension of the C type system that
can represent generic FP operations and formats, supporting
both static precision and dynamically variable precision. We
design and implement a compilation flow bridging the abstraction
gap between this type system and low-level FP instructions or
software libraries. The effectiveness of our solution is demon-
strated through an LLVM-based implementation, leveraging
aggressive optimizations in LLVM including the Polly loop nest
optimizer, which targets two backend code generators: one for
the ISA of a variable precision FP arithmetic coprocessor, and
one for the MPFR multi-precision floating-point library. Our
optimizing compilation flow targeting MPFR outperforms the
Boost programming interface for the MPFR library by a factor
of 1.80x and 1.67x in sequential execution of the PolyBench
and RAJAPerf suites, respectively, and by a factor of 7.62x on
an 8-core (and 16-thread) machine for RAJAPerf in OpenMP.

Index Terms—TFloating-point arithmetic, compiler optimiza-
tion, LLVM, MPFR, UNUM.

I. INTRODUCTION

The standardization of the IEEE 754 floating-point (FP)
format in 1985 [1] and progress with VLSI ever since
led to generalized usage of hardware computing units for
FP. These units are essential to obtain good performance
from numerical applications, as long as compilers use them
efficiently. However, an increasing number of applications are
better served by more suitable FP formats. Linear solvers, n-
body problems [2], and other applications in mathematics and
physics [3] have shown to benefit from higher-than-standard
representations since (1) they may not converge with fewer
bits of precision or (2) they can converge faster with higher
precision [4], [5].

A finer control of exponent and precision sizes allows for
finding the right trade-off between the accuracy of the results
and the time taken and/or energy consumed for the compu-
tations. Table I illustrates how precision impacts the results
of some benchmarks selected from the PolyBench suite [6], a
popular benchmark for evaluating compiler optimizations on
numerical computations. One notices gains in resulting accuracy

albertcohen @google.com

Albert Cohen
Google
Paris, France

Frédéric Pétrot
Univ. Grenoble Alpes, CNRS
Grenoble INP, TIMA
Grenoble, France
frederic.petrot@univ-grenoble-alpes.fr

TABLE I
RESIDUAL ERROR FOR SOME POLYBENCH APPLICATIONS
Mini Small Medium Large Xlarge
Dataset Dataset Dataset Dataset Dataset
gemm | IEEE 32 | 1.5e-5 2.1e-4 4.1e-3 2.3e-1 1.45¢0
IEEE 64 | 3.1e-14 | 4.0e-13 | 7.7e-12 | 4.33e-10 | 2.69¢e-9
128 bits* | < 1e-600 | < 1e-600 | < 1e-600 | 1.49e-34 | 2.6e-33
512 bits™ | < 1e-600 | < 1e-600 | < 1e-600 | < 1e-600 | < 1e-600
3mm | IEEE 32 | 6.7¢-07 1.1e-04 | 3.1e-02 | 4.4e+01 998.4
IEEE 64 | 1.3e-15 | 2.1e-13 | 5.8e-11 8.2e-08 1.8e-06
128 bits* | 3.5e-38 | 5.6e-36 1.5e-33 | 2.13e-30 | 4.8e-29
512 bits™ | < T1e-600 | < 1e-600 | < 1e-600 | < 1e-600 | < 1e-600
covar | IEEE 32 | 5.8e-5 5.6e-3 2.1e-1 41.02 5.7e+02
IEEE 64 | 1.2e-13 | 2.5e-12 | 2.37e-10 | 7.2e-8 1.0e-06
128 bits™ | 3.2e-36 | 6.6e-35 | 6.3e-33 1.9e-30 | 2.6e-29
512 bits® | 9.1e-152 | 1.8e-150 | 1.6e-148 | 4.8e-146 | 6.7¢-145
gram | IEEE 32 28 71 220 616 868
1IEEE 64 9.1 76 231 584 849
128 bits™ | 1.Te-21 7.0e-21 3.5¢-20 1.7e-19 3.6e-6
512 bits® | 4.6e-137 | 2.1e-136 | 7.5e-136 | 1.1e-134 | 1.3e-121

*bits of mantissa. IEEE 32 has 24 bits of mantissa. IEEE 64 has 53.

significantly higher than the number of extra bits of precision
in the intermediate computation. Some kernels are also actually
numerically unstable for the 32 and 64 IEEE data types, even
with small datasets, while higher precision reaches stability (e.g.
gramschmidt). If one strives for accuracy, it is paramount that
higher-than-standard precision be adopted. Practically, high
precision is only supported through software libraries [7], [8],
and high-efficiency languages in high-performance computing
do not provide any higher level abstraction. This leads to
tedious, error-prone and library-dependent implementations
involving explicit memory management. Multi-precision code is
difficult to write and maintain, and more than the performance
gap of a software FP implementation, the productivity gap
makes this approach unaccessible to potential users.

We address this challenge through a generic type system
and language extension of standard C for variable precision FP
formats. We provide an intuitive syntax for this type system,
suiting the expressiveness needs of numerical analysis while
enabling highly efficient in-place execution, stack allocation
and compiler optimizations expected for the C language. This
is made possible by extending an industry-standard compiler
intermediate representation (IR), allowing classical compiler
optimizations to operate on multi-precision FP types. We
enable multiple FP formats to coexist in a single numerical
kernel, with full procedural abstraction and application binary

978-1-7281-8613-9/21 (©) 2021 IEEE 65 CGO 2021, Virtual, Republic of Korea

Accepted for publication by IEEE. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

interface (ABI) compatibility. For each format that supports
it, we also enable computations over multiple variables of
different, possibly dynamically varying, precision and mem-
ory footprints. This provides the ability to explore multiple
numerical configurations within a single program run, without
code duplication or even without recompilation, as well as
dynamically varying precision to adjust at runtime to the
propagation of error or numerical instabilities. We demonstrate
our approach with two backend code generators targeting (1) a
coprocessor implementing native UNUM instructions [9] and
(2) the MPFR [7] reference library for arbitrary precision FP
arithmetic. In summary, our contributions are the following:

1) a C type-system extension for declaring FP numbers of
arbitrary representation and size. This generic class of
FP types has attributes, such as the size of mantissa or
exponent, or the size of the field encoding the mantissa
or exponent, and overall memory footprint. These may
be known statically or only at runtime,

an IR embedding of the runtime and compile time aspects
of generic FP types. Thanks to a tight integration within
the LLVM infrastructure [10], this embedding allows
to benefit from most existing compiler optimizations
supporting high-performance numerical computing,
while most of this is transparent to optimization passes,
some key optimizations are modified and extended to offer
notable performance benefits compared to a higher-level
abstraction in C++ with no specific compiler support [11],
support for multi-threaded and parallel programming in
synergy with LLVM’s code generator and runtime for
OpenMP [12],

two backend code generators: (1) a backend for the UNUM
instruction set architecture (ISA) proposed by [9]. The
runtime-configurable attributes of our proposed generic
types makes it a good fit for the UNUM format. All
optimization passes, including the lower level register
allocation and instruction selection, operate on variable
precision UNUM values the same way as on primitive
IEEE data types. (2) a backend for the MPFR library [7]
with a transformation pass that lowers operations on values
of the generic type system into MPFR calls. The pass
automatically manages the allocation of MPFR objects,
and enables classical optimizations to operate on MPFR
calls as if they were plain IEEE arithmetic and performs
in-place operation and stack allocation that would not be
accessible to a numerical analyst with little experience in
low level memory management.

2)

3)

4)

5)

The paper is organized as follows. Section II presents
background material on higher precision FP arithmetic in
numerical applications. Section III describes the proposed
compilation flow for generic FP computations, covering aspects
of the type system, IR, and target-specific backends, as well
as their integration in the LLVM infrastructure and the related
optimizations. Section IV evaluates the compilation flow on
a number of applications, and shows how we are able to

leverage optimization passes already included in the compiler.

66

Section V discusses existing language and compiler support for
variable precision arithmetic. Finally Section VI summarizes
our proposal and findings.

II. BACKGROUND

While the IEEE 754 standard met immense success across
diverse areas, some applications require alternative representa-
tions to approximate real numbers. The prototypical example
would be a linear algebra solver, computing a vector x solution
of the matrix equation Az = b. Among the algorithms to solve
this ubiquitous problem in scientific computing, direct solvers
such as Gaussian elimination or Cholesky benefit from extended
precision arithmetic to reduce the residual error [4], [5]. More
generally, higher precision arithmetic greatly simplifies the
solution of ill-conditioned problems, making it possible to
retain the well-known ‘‘classical’’ algorithms and avoiding the
need for costly workarounds such as ad-hoc preconditioners.
Extended precision is even more beneficial for iterative
methods, which are preferred for large problems. It compensates
the accumulation of roundoff error during iterations, which
may slow down or even hinder convergence. As a result,
increasing the precision of the intermediate residual vector
is an effective means to reduce the number of iterations. It
enables the solver to address larger problems than with lower
precision arithmetic [4], [5].

This strategy is called ‘‘mixed precision’ [13] when it
uses double-precision FP numbers within a computational
scheme dominated by single-precision £loat. However, when
the required precision exceeds the possibilities of the double
type, the numerical analyst may be left with no choice but
to resort to a higher-precision approximation of real vectors.
Of course, this approximation must still be parsimonious in
computing and memory.

As a result, while a variable-precision algorithm may be
superficially very similar to its standard model, it is also
responsible for estimating and configuring its precision (the
length of the fractional part) for part or all of the arithmetic
operations, resulting from the problem characteristics such
as its conditioning and required accuracy. This estimation is
generally complex to compute, and may lead to unnecessary
over-provisioning of fractional bits. A practical alternative is to
adapt precision dynamically: instead of computing the necessary
precision a priori, the modified kernel uses an outer loop to
systematically check the result for accuracy at predefined points.
If the residual is above a predefined threshold, or if convergence
is too slow, the solver increases its internal precision and re-
sumes the computation. This approach, called ‘‘transprecision’’,
has recently motivated research initiatives [14]--[16] and [17].
Taking again the example of direct or iterative solvers, this
adds strong requirements on the software engineering and tool
flow supporting variable or transprecision computing:

« the kernel source code must be unique, therefore the
programming style must be agnostic of the underlying
precision of its variable precision data,

« the required precision depends on the conditioning of data:
it may be defined at kernel initiation time or dynamically
and gradually increased in the case of adaptive methods.

One may add a third, practical adoption requirement:

« avariable-precision implementation should be as similar as
possible to its original reference model in C with standard
IEEE arithmetic; in particular, extended precision should
be used only when necessary, which implies that appli-
cations may smoothly transition between legacy support
libraries (e.g., double-precision BLAS) and extended or
adaptive precision solutions when required.

A programming environment meeting these requirements
effectively makes variable precision an extension of mixed
precision. This is the general motivation for our work.

III. COMPILATION FLOW FOR GENERIC FP OPERATIONS

Programming languages struggle with alternative FP formats,
missing on the essential data-flow, control-flow and algebraic
optimizations available for IEEE-compatible arithmetic, and
also missing opportunities to leverage hardware implementa-
tions for alternative FP arithmetic. The numerical analyst is left
with the choice between a high-level managed language like
Julia [18] whose abstractions and type systems provides a high-
productivity variable-precision interface but fails to deliver
competitive performance, and using an efficient language like
C with hand-optimized memory management and calls to
a software library such as MPFR [7], or sacrificing much
precision control by relying on a mixed-precision paradigm
based on IEEE-compatible formats.

We propose a type system extension for the C language and
for the IRs of C compilers to provide first-class support to
programming with mixed-precision FP arithmetic. It enables
hardware support when available and offers the flexibility of
numerical libraries that can operate with multiple precisions.
The remainder of this section reviews the main aspects of the
language and IR extensions, their syntax and semantics, and
two backends demonstrating the retargetability and genericity
of the approach.

A. Language Extension

Approximate representations of real numbers in which the
sizes of mantissa and exponent may vary according to the
user’s needs require runtime capabilities that are not easily
expressed with the semantics of the C primitive data types.
Therefore, we propose an extended type system capable of
manipulating FP operations with different representations
and formats, along with memory management and calling
conventions to support dynamic variations of precision and
memory footprint compatible with typical ABIs. Our type
system captures FP types with constant attributes, i.e., those
known at compile time, as well as attributes known only at
runtime. It differs from the C standard through the introduction
of a parameterized type for multiple representations named
vpfloat, borrowing the syntax of C++ template.

1) Syntax: The new primitive type vpfloat is parameter-
ized with attributes to control a given FP implementation, such
as its specific format, exponent, precision and/or size. The
syntax aims at providing a generic way for different formats
to coexist within the same generic type, with the possibility of
adding new formats or representations as they are proposed:

I vpfloat-declaration:

vpfloat vpfloat—-attributes declaration

vpfloat-attributes:

type exp-info prec—-info size-info
6
7 type:
8 unum | mpfr | posit | bfloatl6 |
9
10 exp—info:
11 integer-literal | identifier
12
13 prec-info:
14 integer-literal | identifier
15
16 size—-info:
1 integer-literal | identifier

Every declaration must provide a fype attribute which defines
if subsequent attributes are needed and which information
they carry. Attributes are specified in the following order:
type, exponent, precision, and size. With the exception of fype,
vpfloat attributes can all be defined with integral constant
literals or identifiers. This generic type supports constant-size
and dynamically-sized types, which is always a technical hurdle
in unmanaged languages like C and its associated IRs and ABIs.

2) Semantics: During semantic analysis, our compiler
checks for declarations to guarantee that attributes are well-
formed and respect the semantics required by the specific type
attribute. We designed and implemented a full compilation flow
supporting unum and mpfr types, with attributes interpreted
accordingly.

typedef struct ({

int _mpfr_prec;
int _mpfr_sign;
int _mpfr_exp;
int x_mpfr_d;

} __mpfr_ struct, *mpfr_ptr;

Listing 1. MPFR variable type as defined in [7]

Variables declared as mpfr hold the number of bits of
exponent and mantissa in the second and third fields of
the declaration, respectively. These values are used later to
set up MPFR objects created during our MPFR backend
transformation pass (see Section III-C1). An MPFR object
is of type __mpfr_struct (see Listing 1). The MPFR API
is particularly well suited to low-level code generation as
the functions globally follow the pattern mpfr_op (dest,

srcll, ., 1 [rounding mode]), in which the
dest and src parameters are mpfr_ptr. Op can be a basic
operation (+, —, X, <), a fused operation (fma, fms), or one
of many possible mathematical functions (3/> €08, sin, log, ...).
The parameters may have different exponent and precision
sizes, and the destination parameter can be identical to a source
parameter. They need (destination included) to be allocated

src2,

67

I void axpy_mpfrconst (int N,

vpfloat<mpfr, 16, 256> alpha,
vpfloat<mpfr, 16, 256> xX,

4 vpfloat<mpfr, 16, 256> xY) {

for (unsigned i = 0; i < N; ++1)
6 Y[i] = alpha * X[i] + Y[i];
}

8

9 void axpy_mpfr (unsigned prec, int N,

10 vpfloat<mpfr, 16, prec> alpha,

1 vpfloat<mpfr, 16, prec> *X,

12 vpfloat<mpfr, 16, prec> *Y) {

13 for (unsigned i = 0; i < N; ++1)

14 Y[i] = alpha * X[i] + Y[1];

15}

17 void axpy_unumconst (int N,

18 vpfloat<unum, 4, 6, 8> alpha,
19 vpfloat<unum, 4, 6, 8> %X,
20 vpfloat<unum, 4, 6, 8> xY) {
21 for (unsigned i = 0; i < N; ++1i)
Y[i] = alpha % X[1i] + Y[i];
no}
5 void gemm_unum(unsigned prec, int M, int N,
26 double =*A,
vpfloat<unum, 4, prec> alpha,
28 vpfloat<unum, 4, prec> *X,
29 vpfloat<unum, 4, prec> beta,
30 vpfloat<unum, 4, prec> *Y) {
(unsigned 1 = 0; 1 < M; ++i) {

31 for

// From III.A.5 "Dynamically-sized Types":

33 // alphaAX’s dynamic size is computed by

34 // __sizeof_vpfloat (4, prec).

3 vpfloat<unum, 4, prec> alphaAX = 0.0;

36 for (unsigned j = 0; Jj < N; ++3j)

3 alphaAX += A[i*N + j] = X[3J];

38 Y[i] = alpha » alphaAX;

39 // Free memory of alphaAX back to stack.

40 }

i}
Listing 2. Sample BLAS functions reimplemented with mpfr and unum
types

and have their precision defined with mpfr_init before being
used and freed with mpfr_clear once useless. These functions
have a high performance penalty and should thus be called
wisely. The value of an MPFR variable is set using mpfr_set,
which is useful in particular for spilling variables.

Listing 2 shows examples of the axpy, a level-1 BLAS
[19] routine for vector multiplication, for different mpfr types.
Function axpy_mpfrconst implements axpy with constant-
size mpfr type of 256 bits of mantissa, and axpy_mpfr
illustrates the support for dynamically-sized types, as the
number of mantissa bits (the precision) is not known at compile-
time. In this function, the number of mantissa bits will be
the one provided by the caller, and a simple analysis of the
dynamic attributes is implemented to finalize the type-checking
of function calls at runtime.

The UNUM format, on the other hand, requires rethinking the
semantics of attributes. As defined in the format specification,
meta-data information ess and fss not only act as parameters
bounding the number of bits of exponent and precision, but
also contribute to defining the size of a UNUM value [20].
It should also be highlighted that the language syntax does
not specify the number of bits of exponent and precision,

68

respectively exp-info and prec-info: the UNUM format derives
this information from ess and fss, i.e., the second field of a
unum declaration holds the size of exponent and the third field
holds the size of mantissa.

We provide a backend to generate code targeting a simplified
version (interval arithmetic instructions are left aside) of the ISA
of Bocco et al. [9], [21]. Our frontend semantically analyzes
unum types and follows the requirements of the target ISA. In
particular, values of ess and fss range between 1 and 4, and 1
and 9, respectively, which allows exponents between 1 and 16
bits and mantissas between 1 and 512 bits. Considering that
ess and fss produce exponent and mantissa values that grow
exponentially, unum types may be declared with an optional
size-info attribute that holds the maximum number of bytes
used to represent the number. This attribute value must be in
the range 1..68.

Declarations with no size-info convey that sizes are calcu-
lated according to the values of ess and fss as (2 + 2% +
2% 4 7) /8. The presence of size-info implicates the truncation
of a declaration to a maximum of size bytes. Since the
mantissa is the last field specified in the format, the size
attribute may truncate bits of the mantissa. The formula used
to calculate the number of mantissa bits in this case is given
by min(2", size * 8 — (2 + 2¢° + 2/%)). Table II illustrates
different UNUM representations, showing the corresponding
values of exponent, mantissa and total size.

TABLE 1T
SAMPLE UNUM DECLARATIONS AND THEIR RESPECTIVE EXPONENT,
MANTISSA, AND SIZE VALUES

vpfloat <unum,ess,fss> or exponent | precision size
vpfloat<unum,ess,fss,size> (in bits) (in bits) (in bytes)
vpfloat<unum,3,6> 8 64 11
vpfloat<unum,3,6,6> 8 29 6
vpfloat<unum,3,8,60> 8 256 60
vpfloat<unum,4,9,20> 16 129 20
vpfloat<unum,4,9> 16 512 68

The ability of our language extension to handle the flexibility
of UNUM illustrates its generic nature and runtime capabilities.
Listing 2 also shows the implementation of two functions:
(1) axpy implemented using a constant-size unum type, and
(2) the General Matrix Multiplication (GEMM) from BLAS
implemented with a dynamically-sized type. There are no
restrictions on using dynamically-sized types for mpfr or unum
representations as long as compatible backends are provided.
More specifically, backends are responsible for implementing
the runtime capabilities, either through library calls (as is the
case of vpfloat<mpfr, ...>),or through a compatible ISA
(as for vpfloat<unum, ...> in our examples).

3) Type Comparison, Casting and Conversion: Types are
only considered equal if they hold the exact same attributes.
Also, our type system does not implement any form of sub-
typing or implicit conversion, except for plain variable assign-
ments. Implicit conversions over more general expressions
would be too ambiguous when determining the types of
intermediate values. If types are not equal, it is the user’s

responsibility to insert the appropriate cast or type conversion.

Casting exposes the underlying array of bytes implementing a
given format, and vice versa.

Our toolchain enables the configuration of type sizes at
byte granularity, in other words, we support non-power of
two FP types sizes. In Section IV, experiments were executed
with vpfloat<unum, ..> of 25 and 67 bytes of size. There
are many other properties of the language and the IR that
only apply to constant- or dynamically-sized types. In the
next sections, we survey their characteristics and differences,
highlighting the differences between mpfr and unum types if
they exist.

4) Constant-Size Types: Our language extension allows
the declaration of constant-size types in the same fashion as
standard primitives types. As the name indicates, constant-type
variables are declared by only specifying attributes known at
compile-time. They can be declared as global, local variables,
and arguments, just like any constant-size variable in C.

Variables of a constant-size type can be initialized providing
a FP literal. A v suffix is used to denote a literal of vpfloat<
unum, ...> types, and a y suffix is used for vpfloat<mpfr
, ...>types. They can also be initialized with a IEEE 754
FP literal, i.e., using float and double FP literals, however
an implicit conversion is performed by the compiler in those
cases which may incur loss of precision through rounding.

Table III represents the FP literal 1.3 for different vpfloat

unum and mpfr types. Representations are in hexadecimal,
with the V prefix for UNUM types and Y for MPFR types.
Each format shows a different representation for the closest
approximation of the same value. Values are displayed chunks
of 64 bits such that the last chunk always contains the value
of the sign bit and other fields, with the mantissa being the
last field of the format. If the representation exceeds 64 bits,
the remaining chunks contains the rest of the mantissa. Values
are biased according to the maximum exponent value, similar
to the IEEE formats.!

TABLE III
FLOATING-POINT (FP) LITERAL 1.3 REPRESENTED IN DIFFERENT TYPES

vpfloat<unum, ...> or Representation of 1.3
vpfloat<mpfr, ..> (hexadecimal)
vpfloat<unum,3,6,6> 0xV0O01FE999999A
vpfloat<unum,4,9,20>|0xV999999999999999A9999
9999999999990001FFFE

vpfloat<mpfr,8,48> 0xYOFF4CCCCCCCCCCDh
vpfloat <mpfr,8,64> 0xY4CCCCCCCCCCCCCCDOFF
vpfloat<mpfr,16,100> OxYCCCCccceeeeececececece
DOFFFF4CCCCCCCC

5) Dynamically-Sized Types: One challenging feature of
variable precision FP formats is the need to declare types

whose memory footprint is not known until runtime evaluation.

IThe 0s shown in UNUM formats are reserved for ess and fss values which
are only properly set later in the compilation flow. Indeed, constants are
created everywhere in the compilation flow, and these fields depend on the
evaluation context. This behavior is specific to the UNUM format. Since it
would be too intrusive to modify every LLVM pass, we added a dedicated
finalization pass instead to properly set up all UNUM constant literals.

69

Such functionality is an important aspect of our extension,
since it allows users to programmatically explore multiple
configuration of exponent and mantissa in a single run.

The runtime memory management of dynamically-sized
types is done in the same way as for Variable Length Arrays
(VLA) in C [22], through ad-hoc generated code. A VLA
is an array declaration where its number of elements is not
known at compile time, and is, therefore, evaluated at runtime.
VLAs shall only be declared as local variables and function
parameters, and their lifetime extends from the declaration of
the object until the program leaves their declaration scope. The
compiler generates code that evaluates the size of the array
at runtime and allocates it on the stack. Likewise, dynamic
vpfloat types can only be declared as local variables and
function parameters, and their life cycle follows the one of
VLAs. Just as for VLAs, since it is not possible to guarantee
that all attributes of a dynamically-sized vpfloat are know at
the beginning of the function, they are stack-allocated within
their declaration scopes.

Additionally, this aspect of the language adds extra com-
plexity to dynamically-sized types as dynamic values for the
attributes are not assured to respect the limits for each specific
type. For instance, the C standard defines the allocation of a
VLA with a negative size as undefined behavior. Adopting the
same behavior for vpfloat declarations ease the role of the
compiler as no verification is needed at runtime in order to
ensure the programmer uses a valid expression. On the other
hand, no guarantees would be given that the executed code
will perform the correct computation if runtime attributes have
not been checked for consistency.

We choose to err on the side of correctness, and compliance
with the underlying numerical libraries when relying on
them (such as MPFR), and implement runtime verification
functions to ensure that all parameters and the size of each
declaration respect the boundaries defined by the representation.
Each dynamically-sized type declaration generates a call to
__sizeof_vpfloat, a function from our runtime library that
checks for consistency of attributes and returns the number
of bytes needed for the specific type. Generating a call
to this function ensures all attributes are well-defined and
respect boundaries for the type. In Listing 2, variable alphaax

of function gemm_unum is allocated and freed in every
iteration of the loop, with its allocation size given by calling
__sizeof_vpfloat. A better solution would be to declare
the variable outside of the loop, that way only one call to the
function is required. However, the purpose of the example is not
to show the optimal solution but to illustrate when our runtime
library checks types and how memory management occurs. A
call to the _ sizeof_vpfloat function is generated for each
sizeof computation of a dynamically-sized type, allowing to
obtain the size of the type at runtime and providing support for
memory allocation in general. Additionally, our compiler also
generates verification calls for vpfloat parameters passed
through a function call in order to guarantee that values passed
as attributes still hold the same value upon creation.

I void example_dynamic_type (unsigned p) {

200> a, X[10], YI[10];
X and Y here

vpfloat<mpfr, 16,
4 // here initialize a,

6 vpfloat<mpfr, 16, p> a_dyn;
vpfloat<mpfr, 16, p> X_dyn[10], Y_dyn[1l0];
8 // initialize a_dyn, X_dyn and Y_dyn here
9
10 vaxpy (100, 10, a, X, Y); // ERROR
1" vaxpy (200, 10, a, X, Y); // OK
1
13 // OK if p == 200
14 vaxpy (200, 10, a_dyn, X_dyn, Y_dyn);
15 vaxpy (p, 10, a_dyn, X_dyn, Y_dyn); // OK
16 ++p;
17 vaxpy (p, 10, a_dyn, X_dyn, Y_dyn); // ERROR
18}
19
w0 vpfloat<mpfr, 16, prec> // OK

(unsigned prec) {
1.3;

21 example_dyn_type_return
vpfloat <mpfr, 16, prec> a =
return a;

)

6 vpfloat<mpfr,

16, prec> // ERROR
example_dyn_type_return_error (unsigned p) {
28 vpfloat <mpfr, 16, p> a = 1.3;

29 return a;
30}

Listing 3. Uses of dynamically-sized types in function call and return

Listings 2 shows that programmers can also make use of
dynamically-sized types as function parameters, as long as
attributes are known declarations for the specific context. In
that case, a valid runtime attribute may come from a global
integer variable declaration or a previously declared parameter,
as shown in the examples. Our compiler parses and analyzes
the given attributes in order to ensure that known attributes
are being used. It is important to highlight that dynamically-
sized types are only valid within the scope in which they were
created. In other words, functions do not share dynamically-
sized types, but dynamic size attributes are bound to formal
arguments so that (dependent) types from different functions
can be passed through function calls.

Function example_dynamic_type in Listing 3 shows
examples of how types interact in a function call. Similarly to
VLAs, the compiler ensures that each type attribute in a formal
argument of the callee depends on attributes properly bound
in the declaration. Any inconsistency found by the compiler
is reported back to the user through our compile-time and
runtime checks. A compile-time error is raised at line 10, since
values of a, X, and Y were created with a constant value of 200,
instead of 100. Lines 14 and 17 show examples of how runtime
verifications can guarantee correctness between attributes and
vpfloat declaration in function calls. In line 14, a runtime
error is reported back to the user if p is not equal to 200, while
in line 17 an error is raised since the value of p has changed.

Dynamically-sized types can also be declared as return
types and their semantics are similar to function arguments.
Our language allows attributes of return types to be bound
to function arguments, even though arguments are not yet
available when parsing the return type. Our compiler checks

and builds a function’s return type after all arguments are
processed, and semantic analysis verifies that attributes given
in a declaration exist and can be used to build a return
type. While a parameter requires attributes to be declared
previous to its declaration, this is not the case for return
types. For example, example_dyn_type_return shows how
to use dynamically-sized types with a function argument as an
attribute, and example_dyn_type_return_error is caught
by syntax analysis since prec is not declared in that context.

FP literal support is also provided. Constant-size types
have the advantage of having a fixed memory footprint, and
thus constant values can be represented as soon as values
of the exponent and mantissa are known. Dynamically-sized
types pose another challenge as attributes are only known at
runtime, which makes it impossible to represent a constant
value according to its statically unknown attributes. We handle
them by creating a fixed size representation of the constant
in a maximum configuration at compile time,” and cast it at
runtime to the dynamically-sized type in use.

B. Intermediate Representation (IR)

We provide an extension to the LLVM IR Type System that
enables vpfloat FP types in the intermediate code. Similar
to the language-level type system, vpfloat IR types also
keep the information about attributes, so that expressiveness is
maintained even in a lower level of the compilation process.
Attributes are declared as value? objects, since attributes
can be represented by an instruction, a constant, or function
parameter.

Our deep integration with LLVM allows vpfloat types to
interact with optimizations available in the infrastructure. The
following paragraphs cover the modifications necessary in the
toolchain in order to add vpfloat types compatibility.

e One important aspect of our design is that types and
attributes are not linked through a def-use relation. In other
words, a vpfloat type cannot be obtained by traversing
the def-use chain of an attribute. This approach was not
considered due to requiring modification of many key
components of the compiler. Instead, we keep a list of
all objects being used as types attributes. If an object is
replaced by a new one, our type system makes sure to
update any type that uses it. An object deletion, on the
other hand, can potentially invalidate types. The compiler
makes sure vpfloat attributes are not deleted by adding
a mark through an intrinsic call. Although this may have
a negative impact on the generated code, we ensure that
vpfloat types are not invalid. Notice that constant values
do not require tracking, since they will never change,

o Loop Idiom Recognition is an optimization that transforms
simple loops into a non-loop form. Two of its optimiza-
tions are the generation of memset calls to initialize

2For unum types, the maximum configuration is 16 bits of exponent and
512 bits of mantissa; for mpfr types the maximum configuration is 16 bits of
exponent and 240 bits of mantissa.

3Value is an LLVM base class to define arguments, instructions, constants,
etc., in the IR.

70

objects in an array and memcpy calls to copy objects from
a location to another. We have modified this pass to take
into consideration dynamically-sized types where sizes
cannot be known in compile time. If a dynamically-sized
type is found, the compiler uses the __sizeof_vpfloat
function to calculate the size of the type in use. Due to
the requirements of mpfr types (see Section III-C1), this
optimization can only be enabled for unum types,

e Inline Expansion replaces a function call site by the
body of the function. Dynamically-Sized types require
additional work during inline expansion as they are only
considered valid inside a function. We have expanded
the pass to include support for dynamically-sized types.
Values with dynamically-sized types have their types
changed (or mutated) in order to comply to the current
function where they are being used.

C. Backends

We designed and implemented two backend code generators
that both support dynamically-sized vpfloat variables to
evaluate the effectiveness of our language extensions.

1) MPFR Library: The MPFR code generator takes the form
of a middle-end transformation pass that lowers the vpfloat
<mpfr, ...> type into MPFR references. It runs at a late
stage of the middle-end LLVM compiler to guarantee that the
main optimizations, if enabled, have already been executed.
Although the pass is used for MPFR code generation, we
made it generic enough to handle any type expressible with
vpfloat.

The pass traverses functions in the compilation unit (or mod-
ule) searching for vpfloat<mpfr, ...> types and recreate
them as MPFR objects. Lowering to MPFR calls and references
involves the following transformations:

1) MPEFR represents its objects by a C struct (see Listing 1)
that must be allocated and initialized before first use. Of
course, MPFR C++ wrappers already exist to abstract these
allocations and deallocations away from programmers.
We provide a similar functionality by monitoring LLVM
IR alloca instructions and their enclosing scope.* This
enables fully transparent creation and deletion of MPFR
objects. In addition, any optimization pass reducing the
number of live variables will translate into more efficient
memory management after lowering to MPFR. The pass
is also in charge of generating proper object initialization,
translating constant and dynamically-sized types to the
appropriate MPFR configurations and calls. In particular,
the size of the exponent and mantissa are set up during ini-
tialization. Our pass detects single and multi-dimensional
arrays and structs of variable-precision values, generating
the appropriate calls to allocate multiple MPFR objects if
needed. Moreover, it supports the creation and deletion
of MPFR objects through dynamic memory allocation
(malloc, new, etc.), and transparently manages objects
created with these functions,

4Since vpfloat variables are typed as first-class scalar values, they are
modeled as stack-allocated in upstream passes.

71

2) Arithmetic IR instructions fadd, fsub, fmul, fdiv are
converted to mpfr_{add,sub,mul,div} or any of their
derivative functions (mpfr_{add,sub,mul,div}_{si,ui,d}).
Comparisons, negation, and conversions all have corre-
sponding functions in the MPFR library. Store instructions
are converted to mpfr_set or any of its derivative functions
(mpfr_set_{si,ui,d}). We try to leverage MPFR functions
specialized for the case where one or more operand is a
primitive data type, e.g. double, unsigned,

3) Functions with vpfloat MPFR arguments are cloned
and re-created as MPFR objects. The pass respects the
C standard for argument passing, such as, pass by value,
pass by reference, etc. Return types are handled through
LLVM’s StructRet attribute and returning the value as the
first argument of the function,

4) Load instructions, ¢ Nodes, dereferencing (element-
indexing) instructions, and constant values of vpfloat
arguments are all rewritten to use the MPFR struct type.

5) C++ imposes particular challenges for MPFR code
generation due to some object-oriented features, such
as VTables, lambda functions, and classes. Our code
generator supports all these features for constant size
types, while dynamically-sized types support is part of a
future work. Compound types (class, struct, and function
types, etc.) that make use of vpfloat<mpfr, ...>
and its compound-type variances (pointers, arrays, etc.)
are reconstructed as MPFR struct types. VTables are
all updated to the newly recreated references so that
the C++ polymorphism feature is supported. Although
Loop Idiom Recognition is disabled for vpfloat<mpfr
, ...>, the compiler can still make use of memory-
related functions (memcpy, memmove, etc.) through the
C++ standard library, or when capturing lambda functions
by value. Our code generator detects these functions and
generates an additional set of functions that provides full
support for them. Essentially, we are able to guarantee
that the pointer to the mantissa field is not overwritten,
only its content is copied/moved accordingly,

6) OpenMP support is included almost out-of-the-
box. The only special treatment lies on handling
omp atomic directives, which generates a call to
atomic_compare_exchange that implements an
atomic compare-and-swap.’> Since MPFR objects
cannot be atomically modified with a single IR
intrinsic or instruction (they use a library call) our
code generator enforces atomicity by inserting a
critical section and calling our implementation of
compare_and_exchange. The critical section uses a
dedicated mutex, properly nested to avoid interference
with any other synchronization,

7) Eventually, the MPFR code generation pass attempts
to optimize the number of dynamically created MPFR
objects by reusing old references if it is guaranteed
that their values will no longer be needed. Notice that

Shttps://en.cppreference.com/w/c/atomic/atomic_compare_exchange

the pass operates on SSA form, making this step differ
from a traditional copy elimination and coalescing, both
implemented in target-specific backend compilers. Instead,
we follow a backward traversal of use-def-chains to
identify MPFR objects that may be shared across variable
renaming of invariant values, and across convergent paths
with mutually exclusive live intervals.

In summary, the pass rewrites all vpfloat<mpfr, ...>
operands by replacing with MPFR objects and the appropriate
initialization. Unlike higher level MPFR abstractions such as
the C++ Boost library for multi-precision arithmetic [11], we
are able to leverage the compiler toolchain and its existing
optimizations, with MPFR objects only being created at the

end of the middle-end compilation flow.

2) UNUM-Based ISA: Our second backend makes use of
the vpfloat<unum, ...> representation in order to partially
implement the RISC-V ISA [23] extension for UNUM variable
precision arithmetic of [9]. This ISA extension supports generic
FP instructions with precision ranging from 8 to 512 bits. Since
the UNUM format [20] is used to represent values stored in
memory, loads and stores must be parameterized according to
the variable size and positioning of the UNUM fields in the
highly flexible format. Two control registers hold the ess and
fss fields of the UNUM formats, defining the number of bytes
read and written into memory. The ISA also defines concepts
of WGP (Working G-layer precision) and MBB (Memory
Byte Budget), which are, respectively, the precision used in
computation and the maximum number of bytes read and
written during load and store operations.

We designed and implemented two passes to properly handle
the generation of generic FP operations with the UNUM ISA:

1) FP configuration: the first pass analyzes functions in the
call graph and configures values of ess, fss, WGP and
MBB as to convey the high level type information. The
pass keeps track of values that come in and go out of basic
blocks. By analyzing the control flow graph, it guarantees
that values are being properly assigned. If any change is
needed when entering a basic block, a new instruction is
added.

Array address computation: the second pass is applicable
only to dynamically-sized types and aims at providing
proper array addresses. Since LLVM provides no support
for dynamically-sized types, additional care is needed to
compute the addresses of values whose sizes are only
known at runtime. The _ sizeof_vpfloat function
allows to perform this task. The pass traverses every
function searching for GetElementPtr instructions. These
instructions are replaced by the appropriate low level
address computation, accumulating over the number of
elements and the dynamic size of every element.

2)

IV. EXPERIMENTAL RESULTS

We conducted a series of experiments to compare our
solution to state-of-the-art approaches.

72

A. MPFR vpfloat vs. Boost for Multi-Precision

The first experiment consists of a comparison of our MPFR
type vpfloat<mpfr, ...> with the Boost library for multi-
precision. Both approaches rely on the MPFR library and
execute code with identical precision. The difference resides in
how optimizations can improve performance on applications
when lowering to MPFR calls takes place at a late optimization
stage, as is the case for our solution.

We compiled the Polybench suite version 4.1 [6] at optimiza-
tion level -O3, enabling and disabling Polly’s polyhedral loop
nest optimizations [24] for both vpfloat<mpfr, ...> and
Boost. The execution time reference for each application is the
best of both (with and without Polly). We also compiled the
RAJAPerf suite [25] at optimization level -O3, with 6 different
variants: three that explore sequential execution, and three with
OpenMP Support. Tests were conducted on a system with two
Intel Xeon E5-2637v3 with 128GB of RAM, for a total of 8
cores and 16 hardware threads.

Figure 1 shows the speedup for each benchmark using Boost
as the baseline in (1) the Polybench suite, and (2) RAJAPerf.
We observe speedups over most of the test suite. Jacobi 1D and
2D have similar performance to Boost at the lower precision
settings. The only slowdowns are for adi and deriche in
Polybench, at lower precisions only, and some RAJAPerf
variants. These results are due to the complexity of the array
access patterns in the stencil kernel, hitting limitations of the
MPFR lowering pass in reusing MPFR objects over invariant
or mutually exclusive values. In other cases, the measures show
that a late MPFR lowering dramatically improves performance,
especially on computationally intensive kernels benefiting from
greater cache locality and a proportionally more significant
decrease of MPFR memory management overhead.

Interestingly, RAJAPerf shows that our solution scales much
better than Boost in a multi-threaded environment. Hardware
counter measurements indicate that speedups in the 7-9x range
with OpenMP stem from the reduction of memory accesses
and cache misses, with up to 90x reduction in last-level cache
misses. The Boost implementation often converts compute-
bound kernels into memory-bound ones as memory transactions
exceed the off-chip bandwidth. Deep integration with the
compiler and its optimizations and the reuse of old MPFR
objects contribute to reduce the memory pressure and allow our
solution to scale much better in multi-threaded environments.

Overall, results show an average performance speedup
of 1.80x for the Intel Xeon processor when comparing
vpfloat<mpfr, ...> to the Boost library for MPFR in
Polybench. For RAJAPerf, we observed average speedups
of 1.74x, 1.61x, and 1.65x, for sequential execution vari-
ants (Base_Seq, Lambda_Seq, and RAJA_Seq, respectively),
and 7.98x, 7.16x, and 7.72x for the OpenMP variants
(Base_OpenMP, Lambda_OpenMP, and RAJA_OpenMP).

B. UNUM vpfloat with Hardware Support vs. MPFR vpfloat

We also demonstrate the effectiveness of our type extension
and its integration with LLVM on a hardware implementation
of the UNUM format. To the best our knowledge, until

I 100 bits (= 30 dec. digits) 170 bits

(= 50 dec. digits)

I 500 bits (=~ 150 dec. digits)

g0
L
a
w
100
PO FA ISV IO o2 FELAIPLRL,ILISEINLARILLLILS S Q Q
SFIF S I “19*‘2{;%@%29%@@@/\@”&“@*&\@‘\@%@%@g@”@{;& S S S e
VS SRS FEF &\9‘5’&@‘@{‘ CATEE Vo \F’o %&@@Qg&&v A
90\<§ P NS POE™S ®\$\\é&x\ y & LY qu)o S
9 & E & S °
9 QY &
N
S
I Base_Seq [Lambda_Seq I RAJA Seq Il Base_OpenMP I Lambda_OpenMP N RAJA_OpenMP

Fig. 1. Speedup of vpfloat<mpfr,
suite, and (2) the RAJAPerf benchmark suite.

.. .> over the Boost library for multi-precision both targeting MPFR library calls for (1) the Polybench benchmark

10
o
=
3 10!
(=7
wn
10°
FEEP TP T EF ST LS
S A T VN E N NS
) é\o\b éz}fb R q§\{b 6@(\ N & & S B %Q}Q
%)

B -03 (=30 dec. digits)

[-03 + Polly (=30 dec. digits) N -03 + Pol

Fig. 2. Speedup of vpfloat<unum,

now, UNUM’s functionality could only be evaluated with
software libraries since no hardware implementation supported
a software stack capable of running representative benchmarks.
Owing to the better performance observed in Section IV-A
when compared to Boost, we used our vpfloat<mpfr, >
implementation as the baseline for comparison with the UNUM
COprocessor.

Our target platform consists of an FPGA implementation
of a RISC-V Rocket processor [26] connected to the UNUM
coprocessor of [9]. All benchmarks including baseline MPFR
implementations have been compiled to the RISC-V ISA.
Indeed, our MPFR backend is target independent: i.e., ap-
plications with vpfloat<mpfr, ...> types can potentially
be executed on any LLVM-compatible platform with MPFR
support.

Figure 2 shows the speedup of applications normalized to
the baseline MPFR performance (note the logarithmic scale).
Unfortunately we hit hardware bugs when executing some

73

I -03 (=50 dec. digits)

...>overvpfloat<mpfr,

-03 (=150 dec. digits)

Ily (=50 dec. digits) -03 + Polly (=150 dec. digits)

. . .> on the PolyBench suite

benchmarks: gesummy and adi failed to run when compiled
with Polly and 3 more benchmarks failed at the highest preci-
sion with Polly (3mm, ludcmp, nussinov). This is due to an issue
in the coprocessor memory subsystem.We notice that Polly is
able to significantly improve performance for many applications
in the test suite. This is solid validation of the robustness of our
design and implementation, given the complexity of polyhedral
compilation methods and their sensitivity to efficient memory
management. It further validates the benefits of making variable
precision FP arithmetic transparent to upstream optimization
passes. Notably, gemm, 2mm and 3mm show speedup of more
than 20x over the baseline, benefiting from cache and register
reuse through polyhedral loop optimization with downstream
loop unrolling and scalar promotion. Average speedups at the
highest precision (150 digits) are 18.03x and 27.58x for -
03, and -O3 + Polly, respectively. The rare slowdowns with
Polly are caused by suboptimal heuristic tuning, a well known
challenge with loop nest optimizations in general.

C. Dynamically-Sized Types

Dynamically-sized types are a great exploration tool for
precision-awareness in numerical applications. They are also
essential to adaptive or variable precision computing. Although
high-level languages like Julia [18] or Python [27] provide
dynamic type systems amenable to this kind of research,
our type system has the great advantage of enabling C-level
performance, as well as supporting both hardware and software
targets.

To demonstrate how dynamically-sized types can be bene-
ficial, we implemented the Conjugate Gradient (CG) method
[28], an iterative solver for linear systems, using our vpfloat
<mpfr, ...> type. CG is a good example to illustrate the
influence of arbitrary precision in an application’s output, since
the number of iterations needed for the algorithm to converge
depends on the chosen precision. The pseudo-code for the
algorithm is given by Algorithm 1, where line 6 shows how
error controls the number of iterations.

Algorithm 1 conjugate gradient: original Hestenes and Stiefel
algorithm [28]

1: po:=19:=b— Axg

2: while iteration count not exceeded do

. . T Tk
Booapi= pi Apk
4 Tpyl =T+ Qppk
5: Tktl =Tk — OzkApk
6: if || rgr1 ||< tol then break
T
) e Tk1TR41
7: 61@ = "“E”"k
8 D41 = The1 + BrPk
9: k+ +

10: end while

Listing 4 shows the headers of the functions created using our
language extension, and needed to implement the CG algorithm.
We only replace: (1) vector-scalar products by vaxpy, (2)
matrix-vector products by vgemv, (3) dot products by vdot,
and (4) products of a vector by a scalar by vscal. Moreover,
our implementation is precision-generic: the core CG iteration
takes a precision parameter, and every run of the function can
make use of a different precision value. Hence a single run of
the application, without recompilation, enables programatically-
driven experimentations with multiple precision configurations.

Figure 3 shows the impact of precision on a standard matrix
taken from the Matrix Market suite [29], [30]. Our experiments
confirm a well-established result: the higher the precision, the
fewer iterations it takes to converge. Although it may initially
sound paradoxical, this demonstrates that higher precision may
actually reduce the execution time of a numerical application.

The impact of precision on the number of iterations, due to
accumulation of rounding errors [31], is not linear for CG, and
the rapid drop in execution time stems from faster convergence.
Increasing precision beyond 700 bits, the speedup plateau
for this example, (slowly) negatively impacts performance,
although the number of iterations continues to reduce. These
findings enable us to further investigate the impact of precision

void vaxpy (unsigned precision, int n,

2 vpfloat<mpfr, 16, precision> alpha,
3 vpfloat<mpfr, 16, precision> xX,
4 int incx,

vpfloat<mpfr, 16, precision> xY,

6 int incy);

8 void vgemv (unsigned precision, int m, int n,

9 vpfloat<mpfr, 16, precision> alpha,
10 double A, int *rowInd, int %colInd,
1 vpfloat<mpfr, 16, precision> =X,

12 vpfloat<mpfr, 16, precision> beta,
13 vpfloat<mpfr, 16, precision> x*Y);

14

15 vpfloat<mpfr, 16, precision>

16 vdot (int precision, int n,

17 vpfloat<mpfr, 16, precision> xX,

18 int incx,

19 vpfloat<mpfr, 16, precision> «Y,

20 int incy);

2 void vscal (unsigned precision, int n,

23 vpfloat<mpfr, 16, precision> alpha,
24 vpfloat<mpfr, 16, precision> xX,

25 int incx);

Listing 4. Function headers for a variable-precision BLAS library used
to implement algorithm 1

in iterative methods. In addition, our experiments once again
confirm that our vpfloat implementation outperforms the
Boost library for multi-precision in this benchmark by a factor
of 1.51x, and the Julia version by more than 9x.

10°
Kgggé?o ® VP (from 50 to 2000, step = 50)
A Double
® 5405

10* 4

Number of iterations

10° 4

0 250 500 750 1000 1250 1500 1750 2000

—8— VP (from 50 to 2000, step = 50)

Execution time (in seconds)
']
S
;

(=]

750 1000 1250 1500 1750 2000

precision in bits

0 250 500

Fig. 3. Conjugate Gradient (CG) iterations and precision on the bcsstk20
matrix

V. RELATED WORK

Mixed precision algorithms [13] have been highly successful
in saving energy and accelerating scientific codes, and more
recently, machine learning models [32], [33]. Obviously, re-
ducing precision without caution may harm numerical stability

74

and magnify error propagation: this motivates analyses and
heuristics to determine a suitable FP representation for all
input, output and temporary values in a numerical application
[34]--[36]. However, as discussed in Section II, the immaturity
of software and systems for non-IEEE formats hinders the
exploration of the most suitable representation beyond the
standard IEEE 16-128 bits formats.

This partly motivated the design and implementation of
the MPFR library [7], addressing the bottom layers of the
software infrastructure. It is highly optimized and portable for
higher precision FP arithmetic. It underlines numerous research
and applications, from numerical analysis to computational
geometry. At the higher layers of the stack, multi-precision
abstractions have been adopted in C++ [11], Python [27]
and Julia [18], following much earlier language and compiler
support for Ada [37]. The former is the natural baseline for
our performance comparisons: it offers a similar abstraction
and productivity level as our vpfloat generic type but lacks
first-class compiler support for downstream optimization and
backend code generation. The latter three provide near seamless
transition across format and precision, but lack optimizing
compiler support for their multi-precision abstractions (Python
and Julia also suffer from runtime memory management
overhead and dynamic typing).

UNUM [20] and Posit [38] are two variable precision formats
proposed to tackle limitations of IEEE standard. They provide
variable-length exponent and mantissa fields: (1) UNUM
through two extra fields ess and fss, the exponent size and
mantissa size, respectively, and (2) Posit through regime bits
providing tapered accuracy which changes the size of exponent
field. Recent work evaluated the potential of these alternative
formats in scientific computing [39], [40] as well as machine
learning [41], [42]. Hardware accelerators and FP coprocessors
[9], [43]--[45] have also been proposed to facilitate perfor-
mance comparison across formats. Several studies specifically
addressed the comparison of these alternative representations
with the IEEE standard [46]--[49], but they all lack of an
integrated flow to compare numerical benchmarks across
formats, precision control schemes, and hardware/software
implementations.

Tiwari et al. [43] proposed to address the issue by inter-
preting float or double types as Posit computing. Bocco et
al. [40] introduced a new data type as to more transparently
integrate IEEE and non-IEEE format computations at the ISA
level. Flytes [50] enabled the use of lower precision formats
for reducing the cost of data transfer volume and storage space
requirements. To the best of our knowledge, no previous work
tackled the integration with an optimizing compilation flow,
taking into consideration format-specific attributes, and how
the compiler can efficiently generate code for formats that may
not have statically fixed size. Unlike flytes which converts
non-IEEE types early on into standard types, we provide IR
support for multiple representations, without depending on
IEEE types internally. This has never been achieved before,
not even on statically sized FP types. Our solution also provides
comparable or better expressiveness than other approaches that

75

rely on high-level abstractions, like the C++ Boost library
or the Julia language, with hardware support compatibility
when it exists. Moreover, support for larger-than-standard FP
types is a novelty not easily found in state-of-the-art compilers
nowadays (except from POWER9 double-double (128 bit),
and x86 FP80 formats). Finally, Ansel et al. [51] provides
numerical analysts an exploration tool for tuning the precision
of non-IEEE types. It also helps to motivate our work on
multi-precision FP types, and we provide a more thorough
experimentation platform, fully-integrated with an industry-
standard compiler.

VI. CONCLUSION AND FUTURE WORK

We propose a type system, an embedding into the compiler’s
intermediate representation, and lowering and backend code
generation strategies to provide both high-productivity and high-
performance with variable precision FP formats. Our extension
supports FP arithmetic of arbitrary representation and precision,
whose precision and exponent can be configured at compilation
time and runtime.

We implemented this extension into LLVM to benefit from
all optimizations available on its intermediate representation.
We also modified specific optimizations such as Loop Idiom
Recognition and Inlining to handle types whose memory foot-
print can vary at runtime. We developed two code generators:
a backend for the MPFR multi-precision FP library which
lowers operations on our abstract data type to MPFR calls and
manages the allocation of MPFR objects, and a backend for
the ISA of a UNUM coprocessor.

We demonstrate the productivity benefits of our intuitive
programming model and its ability to leverage an existing
optimizing compiler framework. Experiments on PolyBench
and RAJAPerf suites yield strong speedups for both software
and hardware targets.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their thorough and valuable comments. This work was
partially funded by the French Agence nationale de la recherche
(ANR) for project IMPRENUM (Improving Predictability of
Numerical Computations) under grant n® ANR-18-CE46-0011.

REFERENCES

[1]1 D. Zuras et al., IEEE standard for floating-point arithmetic, ser. IEEE
Std 754, 2008.

[2] A. M. Frolov and D. H. Bailey, ‘‘Highly accurate evaluation of the few-
body auxiliary functions and four-body integrals,”” Journal of Physics
B: Atomic, Molecular and Optical Physics, vol. 37, no. 4, pp. 955--955,
Feb. 2004.

[3] D. H. Bailey and J. M. Borwein, ‘‘High-precision arithmetic in mathe-
matical physics,”” Mathematics, vol. 3, no. 2, pp. 337--367, 2015.

[4] N.J. Higham, Accuracy and Stability of Numerical Algorithms. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 1996.

[5] E. Carson and N. Higham, ‘‘Accelerating the solution of linear systems
by iterative refinement in three precisions,”” SIAM Journal on Scientific
Computing, vol. 40, pp. A817--A847, Jan. 2018.

[6] L.-N. Pouchet et al., ‘‘PolyBench: The polyhedral benchmark suite,”’
2012, http://www.cs.ucla.edu/pouchet/software/polybench.

[7]1 L. Fousse, G. Hanrot, V. Lefevre, P. Pélissier, and P. Zimmermann,
““MPFR: A multiple-precision binary floating-point library with correct
rounding,”” ACM Trans. Math. Softw., vol. 33, no. 2, Jun. 2007.

http://www.cs.ucla.edu/pouchet/software/polybench

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]
[30]

T. Granlund, ‘‘GNU multiple precision arithmetic library 6.1.2,”” Dec.
2016, https://gmplib.org/.

A. Bocco, Y. Durand, and F. De Dinechin, ‘‘SMUREF: Scalar multiple-
precision unum risc-v floating-point accelerator for scientific computing,”’
in Proceedings of the Conference for Next Generation Arithmetic, 2019,
pp. 1--8.

C. Lattner and V. Adve, ““LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,”” in Proceedings of the International
Symposium on Code Generation and Optimization, 2004, pp. 75--86.
J. Maddock and C. Kormanyos, Boost.Multiprecision, 2020, https://www.
boost.org/doc/libs/1_74_0/libs/multiprecision/doc/html/index.html.

L. Dagum and R. Menon, ‘‘Openmp: an industry standard api for shared-
memory programming,’”’ IEEE computational science and engineering,
vol. 5, no. 1, pp. 46--55, 1998.

M. Baboulin, A. Buttari, J. J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov, ‘‘Accelerating scientific computations with
mixed precision algorithms,”” Computer Physics Communications, vol.
180, pp. 2526--2533, 2009.

J. K. Lee, ‘“Air: Adaptive dynamic precision iterative refinement,”” Ph.D.
dissertation, University of Tennessee, 2012.

J. K. Lee, H. Vandierendonck, M. Arif, G. D. Peterson, and D. S.
Nikolopoulos, ‘‘Energy-efficient iterative refinement using dynamic
precision,”” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 8, no. 4, pp. 722--735, 2018.

H. Anzt, J. Dongarra, G. Flegar, N. Higham, and E. S. Quintana-Orti,
“‘Adaptive precision in block-jacobi preconditioning for iterative sparse
linear system solvers: Adaptive precision in block-jacobi preconditioning
for iterative solvers,”” Concurrency and Computation: Practice and
Experience, vol. 31, p. e4460, Mar. 2018.

A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagli-
avini, A. Emerson, A. Tomds, D. S. Nikolopoulos, E. Flamand, and
N. Wehn, ““The transprecision computing paradigm: Concept, design,
and applications,”” in Design, Automation Test in Europe Conference &
Exhibition, 2018, pp. 1105--1110.

J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, ‘‘Julia:
A fast dynamic language for technical computing,”’ arXiv preprint
arXiv:1209.5145, 2012.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ‘‘Basic
linear algebra subprograms for fortran usage,”” ACM Transactions on
Mathematical Software (TOMS), vol. 5, no. 3, pp. 308--323, 1979.

J. L. Gustafson, The end of error: UNUM computing, 2017.

A. Bocco, Y. Durand, and F. de Dinechin, ‘‘Dynamic precision numerics
using a variable-precision UNUM type I HW coprocessor,”” in 2019
IEEE 26th Symposium on Computer Arithmetic (ARITH). 1EEE, 2019,
pp. 104--107.

ISO/IECIJTC 1/SC 22, Information technology -- Programming languages
-- C, Geneva, Switzerland, Jul. 2018, cancels and replaces ISO/IEC
9899:2011. [Online]. Available: https://www.iso.org/standard/74528.html
A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, ‘‘The RISC-V
instruction set manual, volume i: User-level ISA,”” CS Division, EECE
Department, University of California, Berkeley, 2014.

T. Grosser, H. Zheng, R. Aloor, A. Simbiirger, A. GroBlinger, and L.-N.
Pouchet, ‘‘Polly -- polyhedral optimization in LLVM,’ in Proceedings of
the First International Workshop on Polyhedral Compilation Techniques
(IMPACT), 2011, pp. 1--6.

“‘Rajaperf.”” [Online]. Available: https://github.com/LLNL/RAJAPerf
K. Asanovi¢, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards,
C. Schmidt, S. Twigg, H. Vo, and A. Waterman, ‘‘The Rocket Chip
Generator,”” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, Apr. 2016. [Online]. Available: http:
/Iwww?2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

M. R. Hestenes et al., ‘‘Methods of conjugate gradients for solving linear
systems,”” Journal of research of the National Bureau of Standards,
vol. 49, no. 6, pp. 409--436, 1952.

‘‘Matrix market repository,”’ https://math.nist.gov/MatrixMarket/, 2007.
R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J.
Dongarra, ‘‘Matrix market: A web resource for test matrix collections,”’
in Proceedings of the IFIP TC2/WG2.5 Working Conference on Quality

76

[31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

of Numerical Software: Assessment and Enhancement.
Hall, Ltd., 1997, pp. 125--137.

E. Carson and Z. Strako§, ‘‘On the cost of iterative computations,”’
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 378, no. 2166, p. 20190050,
Mar. 2020. [Online]. Available: https://royalsocietypublishing.org/doi/10.
1098/rsta.2019.0050

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, ‘‘Deep
learning with limited numerical precision,”” in Proceedings of the 32nd
International Conference on Machine Learning. JMLR.org, 2015, pp.
1737--1746.

Z. Li, Y. Ma, C. Vajiac, and Y. Zhang, ‘‘Exploration of Numerical
Precision in Deep Neural Networks,”” arXiv e-prints, May 2018.

C. Rubio-Gonzdlez, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, ‘‘Precimonious: Tuning
assistant for floating-point precision,”” in SC’13: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2013, pp. 1--12.

W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrishnan,
and Z. Rakamari¢, ‘‘Rigorous floating-point mixed-precision tuning,’’
ACM SIGPLAN Notices, vol. 52, no. 1, pp. 300--315, 2017.

S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuiliere, ‘‘Auto-
tuning for floating-point precision with discrete stochastic arithmetic,’’
Journal of Computational Science, vol. 36, p. 101017, 2019.

R. P. Leavitt, ‘‘Adjustable precision floating point arithmetic in Ada,”’
ACM SIGAda Ada Letters, vol. VII, pp. 63--78, 1987.

J. L. Gustafson and I. Yonemoto, ‘‘Beating floating point at its own
game: Posit arithmetic,”” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71--86, 2017.

J. Hou, Y. Zhu, S. Du, and S. Song, ‘‘Enhancing accuracy and dynamic
range of scientific data analytics by implementing posit arithmetic on
FPGA,”’ Journal of Signal Processing Systems, vol. 91, no. 10, pp.
1137--1148, 2019.

A. Bocco, T. T. Jost, A. Cohen, F. de Dinechin, Y. Durand, and C. Fabre,
“‘Byte-aware floating-point operations through a UNUM computing
unit,”” in IFIP/IEEE 27th International Conference on Very Large Scale
Integration (VLSI-SoC), 2019, pp. 323--328.

J. Johnson, ‘‘Rethinking floating point for deep learning,”” arXiv preprint
arXiv:1811.01721, 2018.

Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson,
and D. Kudithipudi, ‘‘Deep positron: A deep neural network using
the Posit number system,”” in Design, Automation & Test in Europe
Conference & Exhibition. 1EEE, 2019, pp. 1421--1426.

S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti, ‘‘PERI: A posit enabled
RISC-V core,”” arXiv preprint arXiv:1908.01466, 2019.

M. K. Jaiswal and H. K.-H. So, ‘‘Pacogen: A hardware posit arithmetic
core generator,”” [EEE access, vol. 7, pp. 74 586--74 601, 2019.

F. Glaser, S. Mach, A. Rahimi, F. K. Giirkaynak, Q. Huang, and
L. Benini, ‘“An 826 MOPS, 210uW/MHz UNUM ALU in 65 nm,”
in IEEE International Symposium on Circuits and Systems. 1EEE, 2018,
pp. 1--5.

F. De Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, ‘‘Posits: the
good, the bad and the ugly,”” in Proceedings of the Conference for Next
Generation Arithmetic, 2019, pp. 1--10.

P. Lindstrom, S. Lloyd, and J. Hittinger, ‘‘Universal coding of the reals:
alternatives to IEEE floating point,”” in Proceedings of the Conference
for Next Generation Arithmetic, 2018, pp. 1--14.

S. W. Chien, I. B. Peng, and S. Markidis, ‘‘Posit NPB: Assessing the
precision improvement in HPC scientific applications,”” arXiv preprint
arXiv:1907.05917, 2019.

J. Hou, Y. Zhu, Y. Shen, M. Li, Q. Wu, and H. Wu, ‘‘Enhancing
precision and bandwidth in cloud computing: Implementation of a novel
floating-point format on FPGA,”’ in IEEE 4th International Conference
on Cyber Security and Cloud Computing, 2017, pp. 310--315.

A. Anderson and D. Gregg, ‘‘Vectorization of multibyte floating point
data formats,”” in 2016 International Conference on Parallel Architecture
and Compilation Techniques (PACT), 2016, pp. 363--372.

J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and
S. Amarasinghe, ‘‘Language and compiler support for auto-tuning
variable-accuracy algorithms,”” in International Symposium on Code
Generation and Optimization (CGO 2011), 2011, pp. 85--96.

Chapman &

https://gmplib.org/
https://www.boost.org/doc/libs/1_74_0/libs/multiprecision/doc/html/index.html
https://www.boost.org/doc/libs/1_74_0/libs/multiprecision/doc/html/index.html
https://www.iso.org/standard/74528.html
https://github.com/LLNL/RAJAPerf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0050
https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0050

