
HAL Id: hal-03108828
https://hal.science/hal-03108828

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The impact of driving homogeneity due to automation
and cooperation of vehicles on uphill freeway sections
Michail Makridis, Ludovic Leclercq, Konstantinos Mattas, Biagio Ciuffo

To cite this version:
Michail Makridis, Ludovic Leclercq, Konstantinos Mattas, Biagio Ciuffo. The impact of driving homo-
geneity due to automation and cooperation of vehicles on uphill freeway sections. European Transport
Research Review, 2020, 12, 11p. �10.1186/s12544-020-00407-9�. �hal-03108828�

https://hal.science/hal-03108828
https://hal.archives-ouvertes.fr


ORIGINAL PAPER Open Access

The impact of driving homogeneity due to
automation and cooperation of vehicles on
uphill freeway sections
Michail Makridis1*, Ludovic Leclercq2, Konstantinos Mattas1 and Biagio Ciuffo1

Abstract

Background: This work presents a microsimulation study on the topic on an uphill network, regarding the
potential impact of AVs and Cooperative-AVs (Coop-AVs or CAVs), vehicles able to cooperate with the infrastructure.
The novelty of the proposed approach is that the simulation of all vehicles is performed with a common hybrid
car-following model that takes explicitly into account the variability in the vehicle dynamics and the driving
behaviors.

Methods: Simulation of longitudinal movement of the individual vehicles is performed with a common hybrid car-
following model that takes explicitly into account the variability in the vehicle dynamics and the driving behaviors.
Different homogeneity levels in the vehicles and drivers are tested, while the cooperation is explicitly assessed by
proposing a realistic Vehicle to Infrastructure (V2I) logic. Possible reduction in the response times of the vehicles is
also studied.

Results: Results with more homogenous vehicle movements have more consistent performance in terms of traffic
flow, that is independent of the order that the vehicles enter the network. Finally, the cooperation with the
infrastructure can limit high variations in the vehicles’ accelerations and thus potential traffic jams.

Conclusions: Homogenized flows can mitigate or even solve traffic-related problems related to the variability in
driving behaviors, such as bottlenecks and stop-and-go waves.

Keywords: Vehicle to Infrastructure, Automated Vehicles, Vehicle Dynamics, Traffic simulation, Driving behavior,
Traffic Flow

1 Introduction
Vehicle automation is progressively introduced in mod-
ern traffic networks with technologies that promise to
transform the transport sector. New driver assistance
technologies are constantly introduced and they will
evolve up to a point in which, the complete dynamic

driving task can be safely taken over by the vehicle, in
every driving situation possible (i.e. the ultimate SAE
level 5 full automation). However, achieving a sustainable
transport system becomes more and more challenging
given the expected increases in passenger and freight
transport (a growth by about 42% and 60% from 2010 to
2050, respectively), road transport being the main trans-
port mode used in the EU [6]. Automated Vehicle (AV)
technology alone, will not necessarily be smarter than
conventional vehicles driven by humans [1]. Introduction
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of automated functionalities is not expected to break the
existing interaction between traffic information and traffic
conditions and heterogeneity due to the different vehicles’
behavior will probably continue to exist, at least to a
certain extent, as each vehicle manufacturer will bring to
the market a different product [25]. An open question in
the literature is how any anticipated reduction in the
variability of the driving patterns can impact traffic flow.
Another essential dimension is the reaction time of the

drivers or automated vehicles. Adaptive Cruise Control
(ACC) system is already available in the market and cur-
rently, it is considered the closest proxy of full automation
regarding the longitudinal movement [11]. In theory, auto-
mated functionalities have the advantage to instantly re-
spond whenever needed, minimizing this way the reaction
time, which for humans is more than 1 s [10, 14]. How-
ever, empirical studies on the estimation of the observ-
able response time under non-critical conditions
(referred here as response time) of Adaptive Cruise
Control (ACC) systems currently available in the mar-
ket proposed by [19, 20], show that the response time
is lower but close to the corresponding human reaction
times. It should be clarified that observable response or
reaction time is different than brake reaction time [28].
This work considers reaction/response time as the time
from the moment that a leader performs an action in
the longitudinal direction (either acceleration or decel-
eration), until the moment that the follower reacts to it
(either decelerating or accelerating) under the following
conditions:

– The two vehicles are initially under stable car-following
conditions with similar speeds.

– The ACC system in the following vehicle is on.

The observable response time can be higher than the vehi-
cle’s response time under unsafe or critical conditions, e.g.
Emergency Braking. However, it directly impacts the traffic
flow and can play a significant role where there are oscilla-
tions under high density flows leading to traffic instabilities.
A third dimension is related with the vehicles cooperation

with the infrastructure. Vehicle automation offers new ways
of automated standardized cooperation with the infrastruc-
ture that are not feasible with human driven vehicles [5].
Microsimulation modeling can offer valuable insights

on the above dimensions but modeling the heterogeneity
in driving behaviors is still a novel and open topic in the
literature. Recently, the development of more precise
models taking into account the vehicle dynamics and the
driving aggressiveness offers new ways of assessment
that are not based only on injection of stochasticity in
car-following [7, 15, 18].
In parallel, one of the common reasons for capacity

bottlenecks in freeway networks is the sections uphill

[26]. Going uphill, drivers reduce speed while they enter
the section. When the demand is high they don’t compen-
sate for the speed loss and most importantly the perturb-
ation of the platoon leader creates a flow disturbance that
it is propagated upstream, leading in cases to a traffic jam.
Optimization of traffic flow at freeway uphill sections by
controlling the vehicle acceleration recently attracts a lot
of interest [8, 9]. Furthermore, in microsimulation studies
regarding the impact assessment of connected and auto-
mated vehicles, the models used for simulation do not ac-
count for the reproduction of realistic vehicle dynamics
[22, 23, 29]. In the literature, it has been mentioned that
the absence of models capable to reproduce realistic
vehicle power dynamics and driving behaviors in microsi-
mulation, can lead to questionable results regarding both
emissions-related studies and the study of traffic flow phe-
nomena [2, 13, 15, 21].
For the above reasons, an uphill simulation environ-

ment using a vehicle-dynamics-based model and simula-
tion of different driving styles accounting for different
drivers is proposed and studied in this work. AVs and
Coop-AVS are expected to reduce variability in driving
patterns and vehicle dynamics and reduce the human
observable reaction time. The main goal is to assess the
potential impact of such technologies on the traffic flow
of the future traffic networks and to showcase the potential
benefits that will come from the cooperation of vehicles
with the infrastructure (V2I). We use a simple one-lane
segment and a constant grade uphill in a segment part. We
propose a vehicle dynamics-based car-following model,
which accounts for different driver behaviors and can be
calibrated for different vehicle characteristics. Afterwards
we perform simulations using the Lead Vehicle Problem
principle [3, 4]. The demand of the network consists of dif-
ferent drivers/vehicles from a pool of 125 profiles including
both timid and aggressive driving styles. The simulations
are repeated for different random seeds in order to validate
the results. Since automation in the vehicle is expected to
reduce variability in the driver domain, we perform the
same simulations using a smaller pool of profiles for AVs
and Coop-AVs, considering that each vehicle has its own
driving style, similarly to existing commercial ACC systems
for the longitudinal movement of the vehicle (assuming
that each vehicle manufacturer implements its own ACC
logic). Moreover, we propose a simple yet efficient control
logic to showcase the impact of vehicle cooperation with
the infrastructure (V2I). The control logic is motivated by
the results presented by Goñi-Ros [8], identifying an accel-
eration maneuver uphill as the best strategy to minimize
total delay and facilitate flow. Finally, the sensitivity of the
results was tested using two different response times for
AVs and CAVs, one equal to the reaction time of the
human drivers and a second, reduced by 10% as it is empir-
ically found in our previous work [18].
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Results show that in the highly probable case that differ-
ent manufacturers will deploy different implementations
for their automated systems, the driving behavior variability
introduced by the driver-vehicle duo in future networks will
remain high. A reduction in the traffic delays can be ex-
pected, especially if the future ACC systems have response
times lower than those of humans but the improvement
will not be dramatic. On the other hand, cooperation of the
vehicles with the infrastructure can play a significant role in
future networks. Cooperation even on the basis of timid
driving behavior can bring significant improvement in the
network increasing the average speed and maximizing the
flow. Finally, reduction of the reaction time implies faster
reaction of the driver upon a perturbation event but also
faster propagation of the perturbation information up-
stream and in this work reveals mixed results for different
random seeds.
In the rest of the paper, the experimental setup is pre-

sented discussing the proposed car-following model for
the simulation of the vehicles dynamics and driving be-
havior, the network and the generation of different driv-
ing profiles and the cooperation logic. Then, follows the
description of proposed methodology, the results and fi-
nally the conclusions and future work.

2 Experimental setup
This section describes the experimental setup that was
used as a benchmark for this simulation study. The rest
of the section presents the model for the simulation of
power dynamics and driving behaviors, the network, the
algorithm for generation of variability in vehicle dynam-
ics and driving style, the simulation of different vehicle
types and the proposed cooperation control logic.

2.1 The car-following model
The proposed car-following model is based on the sim-
plified Lagrangian Godunov scheme, which is described
in the work of Leclercq [16] as follows:

X n; t þ Δtð Þ ¼ min X n; tð Þ þ vmΔt; 1−αð ÞX n; tð Þ þ αX n−1; tð Þ−wΔtð Þ
ð1Þ

where vm is the desired speed, w is the wave speed, km is
the jam density and a =wkmΔt. Equation 1 is the exact
solution of the LWR model [17–19].
In this work, the lightweight Microsimulation Free-

flow aCceleration model (MFC) [18] is incorporated
within the framework of the LWR model bounding the
free-flow acceleration based on the MFC output. More
specifically, based on the definition given, the proposed
model is:

q1 ¼ X n; tð Þ þ Δt� min vm;V n; tð Þ þ aMFC DS;GSthð ÞΔtð Þ
q2 ¼ X n−1; tð Þ−wΔt

X n; t þ Δtð Þ ¼ min q1; q2ð Þ
ð2Þ

where vm is the desired speed, aMFC is the acceleration
of the MFC model, w is the wave speed, km is the jam
density here set to 0.15veh/m and a = 1. V(n, t) is speed
of the vehicle n at time t.
The MFC takes as input common specifications of the

vehicle, such as mass, gear ratio, maximum torque etc.,
which can be found available online and two parameters
(DS,GSth) taking values in the range (0, 1] in order to simu-
late different drivers. Parameter values closer to zero, indi-
cate a timid driver, while when they take values closer to
one, an aggressive one. More details can be found in [18].
Figure 1 illustrates the acceleration potential for the same

vehicle and three different drivers as they are defined by the
different values of DS and GSth parameters. The figure de-
rives from the simulation of a free-flow acceleration from 0
km/h to maximum speed for a commercial vehicle with a
9-speed automatic gearbox. The simulation is performed
for three different drivers described by the different (DS,
GSth) parameter sets. The figure on the top illustrates the
acceleration over speed diagrams per driver from zero to
the vehicle’s maximum speed. The behavior of the MFC
model can be perceived by the reader intuitively if we con-
sider that the DS parameter adjusts how high the acceler-
ation on the Y-axis will be, while the will the GSth
parameter dictates how fast the driver will change gears
jumping from a gear to another with higher (upshift) or
lower (downshift) acceleration capability (X-axis). The fig-
ure on the bottom shows the speed over time trajectory
during a free-flow acceleration from zero to a desired
speed. The differences of the three drivers can be spotted
both regarding the time they need to reach the same speed,
and the speed oscillations due to the different gear shifting
strategies. From the implementation point of view, the ac-
celeration over speed curves shown in the figure can be
precomputed, leaving the proposed model computationally
inexpensive.

2.2 Network description
We consider a one-lane road segment with length of 1000
m. Starting on 500m. we introduce an upgrade for 300m.
The cooperation control logic is applied along a segment
with length 500m from 400m to 900m, as shown in
Fig. 2. The wave speed is set to 20 km/h, the jam density
to 150veh/km. The effect of the upgrade on the vehicle ac-
celeration is dictated by the following equation:

accg ¼ Fg

m
¼ −ð9:81� sin gð Þ�mþ F0� 1− cos gð Þð Þ

m
ð3Þ

where g is the gradient of the road, m is the vehicle’s mass
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and F0 factor is commonly used to characterize the road
load of vehicles and expresses the constant part of a vehi-
cle’s resistances (tire rolling resistances). A dedicated mod-
ule for the calculation of the vehicle’s road loads was
developed by Tsiakmakis et al. [31] and was adopted for
the needs of this study for the computation of F0 and the
free-flow acceleration output of the MFC model [18].

2.3 Driving profile generation
A driving profile is constructed and randomly assigned to
each vehicle entering the network. Each individual driving
profile is developed using the car technical characteristics
and the two parameters (DS,GSth) of the car-following
model taking values in the range (0, 1] in order to simulate

different drivers. Figure 3 illustrates the generation of differ-
ent driving profiles (vehicle and driving parameters). The
top row corresponds to five vehicle with different power
specifications, the second row correspond to five GSth
values that regulate how fast the driver changes gears (X-
axis) and the third row correspond to five DS values that
regulate the maximum desired acceleration (Y-axis). This
work uses five different vehicles from car segments B and C
(representative small and medium cars) [30] to cover the
most common passenger cars segments in use in Europe in
terms of mass, power, engine technology, and transmission.
The driver characteristics derive from randomly selected
values for the parameters (DS,GSth). In general drivers with
(DS,GSth) values closer to 0 have more timid driving

Fig. 1 Simulation of free-flow acceleration from 0 km/h to maximum speed for a commercial vehicle with a 9-speed automatic gearbox. Top:
Acceleration-Speed profiles for three different drivers with different driving styles. Bottom: The simulated speed profiles for the same drivers

Fig. 2 One-lane network, 1 km long with an uphill segment of 300 m. In the figure, it is shown also the area where the control logic is applied
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behavior, while drivers with (DS,GSth) values closer to one,
are more aggressive.
Consequently, each driving profile can be defined as

follows:

DPi ¼ Ck ;GSth;l;DSm
� �

where the i driving profile refers to car k, with gear shift-
ing value l and driving style value m.

2.4 Vehicle types
All the simulation experiments involve three different
types of vehicles, manually-driven (manual), automated
vehicles (AVs) and cooperative automated vehicles
(Coop-AVs). All types are simulated using the same car-
following model described by Eq. 2. The difference lies
in the variation of different driving styles that enter the
network and the existence of cooperation or not with
the infrastructure. More specifically:

2.4.1 Human-driven vehicles (CVs)
In simulation tests with CVs, a random driving profile is
assigned to each vehicle entering the network among all
the possible combinations of {Ck,GSth, l,DSm} values as
shown in Fig. 3 (125 in total).

2.4.2 AVs
In simulation tests with AVs, a fixed pair of assigned (DS,
GSth) values is assigned to each of the five vehicles shown in
the first row of Fig. 3. Consequently, each AV will have one
of the five different driving profiles (green vertical lines).

2.4.3 Coop-AVs
Cooperative automated vehicles have exactly the same
driving profiles as AVs. The difference lies that they
behave according to the proposed cooperation control

logic (see Section 2.5) for the network segment 400-900
m as illustrated in Fig. 2.

2.5 Cooperation control logic
In the literature, there are references that drivers underesti-
mate high driving speeds under freeway conditions [32].
Variable Speed Limit (VSL) strategies have been used as a
freeway metering mechanism or a homogenization scheme
to reduce speed differences, which most probably derive
from the variability in the vehicle specs and the driving style
[27]. Finally, in uphill areas it has been observed that the
drivers slow down reducing their speed [33]. An important
factor of traffic congestion uphill is that most drivers do not
accelerate enough and consequently, they do not compen-
sate instantaneously for the increase in resistance force
resulting from the increase in gradient, which limits the ac-
celeration of their vehicles. Considering that each vehicle has
different capabilities and each driver different response times,
gives a good explanation of the periodic formulation of stop-
and-go waves when the traffic demand is sufficiently high.
Here, a simple control logic in cooperation with the

infrastructure is proposed. More specifically, we assume
a central controller over an area, which imposes a uni-
fied DS parameter value (DScoop) for all the vehicles
within range. DScoop parameter regulates how much of
the vehicle potential the driver will use (see Fig. 1), i.e.
how hard the driver pushes the gas pedal. Since the
vehicle models have different power specifications, it can
be derived that each vehicle will have a different desired
acceleration, proportional to the vehicle’s individual cap-
abilities. However, by asking each automated vehicles to
use the same DScoop values, the controller unifies the
driving profiles without setting explicit desired acceler-
ation values per vehicle. This is a realistic strategy since
some vehicle might not be physically able to comply

Fig. 3 Creation of 125 individual driving profiles DPi by choosing from a pool of 5 different cars, 5 gear shifting strategies and 5 driving styles.
AVs are shown with green line and correspond to 5 individual profiles, one per each vehicle. The selection of the profiles during each simulation
is performed based on a normal distribution around the average profile, i.e. the second value of each parameter
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with a suggested desired acceleration value due to power
limitations.
Two cooperation strategies have been implemented

here, which corresponds to two DScoop values, 0.8 and
0.6. The first value corresponds to more aggressive driv-
ing and thus higher acceleration values, while the second
corresponds to a more conservative strategy for the vehi-
cles entering the central controller’s area.

3 Methodology
We propose 3 simulation scenarios, for each vehicle
type. Each simulation experiment lasts 60 min with ini-
tial conditions according to capacity inflow. For each
scenario, we run 100 simulation iterations per vehicle
type with different random seeds in order to validate the
results for different driving profile sequences in the
simulations.
Initially, we create a pool of potential driving profiles

as described in the Section 2.3. CVs are linked with 125
possible combinations, while AVs and Coop-AVs with 5
possible combinations (see Fig. 3.) Each time that a new
vehicle enters the network, a driving profile is assigned
to it from the corresponding pool of combinations. The
distribution of the driving profiles entering the network
is a normal distribution giving more probability to the
middle (normal parameter values) and less probability to
the extreme ones (timid or aggressive). The same distri-
bution holds for all parameters of the driving profile
DPi = {Ck,GSth, l,DSm}, the car, the gear shifting strategy
and the driving style.
Three scenarios have been implemented in this work.

Each scenario a pool of driving profiles is created based
on different {Ck,GSth, l,DSm} value sets. The proposed
cooperation logic is assessed with two possible cooper-
ation values, DScoop. Finally, CVs are simulated with
reaction time equal to 1 s, while the AVs and the Coop-
AVs with two different response times, one equal to the
CVs reaction time and another one equal to the 90% of
the average human reaction time.

3.1 Scenario 1 – basic
In the basic scenario, the (DS,GSth) parameters take
values between 0.1 (timid driver) and 0.9 (aggressive
driver) for all the vehicle types CVs, AVs and Coop-
AVs. For the last type, the cooperation value DScoop, is
set to 0.8. This indicates that within the central control-
ler’s regulation area, all Coop-AVs will have free-flow
DS value, as indicated in the MFC model, equal to 0.8.
As described above, the driving profile assigned to the
manually-driven vehicles uses a pool of 125 possible
combinations with normal distribution around the aver-
age driving profiles. The corresponding number for AVs
and Coop-AVs is 5 and also here, the distribution is a
normal one around the average driving profile. As it can

be inferred, this scenario implies that the driving behav-
ior operational space (most aggressive and most timid
drivers) is the same for all vehicle types ranging between
0.1 and 0.9 parameter values. However, AVs and Coop-
AVs induce homogeneity in the network because they
can choose from only 5 possible {Ck,GSth, l,DSm} combi-
nations. The goal here is to assess how reduction in the
available driving behaviors impact the traffic flow in the
network.

3.2 Scenario 2 – homogenized AV driving profiles
In the second scenario, the (DS,GSth) parameters take
values between 0.1 (timid driver) and 0.9 (aggressive
driver) for the CVs, while for AVs and Coop-AVs, the
corresponding range is 0.4 and 0.6. For Coop-AVs, the
cooperation value DScoop, is set to 0.8, indicating the
same driving behavior within the central controller’s area
as in the basic scenario. The lower (DS,GSth) parameter
values for automated vehicles indicate that extreme
human driving behaviors (very timid or very aggres-
sive) are filtered out. Consequently, it is assumed that
automated controllers will have more homogenous
free-flow acceleration values. The vehicles used in all
simulations are the same and therefore, this scenario
aims to study how the reduced driving profile variability
and exclusion of outlier driving behaviors impact the sta-
tus of the network.

3.3 Scenario 3 – mild cooperation
In the third scenario, similar to the previous one, the
(DS,GSth) parameters take values between 0.1 (timid
driver) and 0.9 (aggressive driver) for the CVs, while for
AVs and Coop-AVs, the corresponding range is 0.4 and
0.9. For Coop-AVs, the cooperation value DScoop, is set
to 0.6, indicating a more relaxed cooperation within the
central controller’s area than in the previous scenarios.
Due to the lower DScoop value, it can be expected that all
automated vehicles will have lower accelerations than in
previous scenarios. The goal here is to see if the ex-
pected cooperation benefits still hold for acceleration
values that are lower, close to the average human driver.
The parameters of all scenarios are summarized in

Table 1.

4 Results
This section presents the results and initiates a discus-
sion on the three main dimensions of this work, the im-
pact of increased homogeneity in the driving behavior
domain due to automation, the potential benefits of co-
operation and the role for anticipated reduced reaction
time in future vehicles. The results of each scenario refer
to 500 simulations with different parameter sets. Each
simulation corresponds to 1 h and each simulation step
is 1 s.
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In the figures below, for each scenario and each
vehicle type, 100 simulations were run with random
seeds. Each seed practically changes the order of vehicles
and drivers as they enter the network. As expected the
performance of each vehicle type depends to a degree to
the sequence of the vehicles/drivers that populate the
network. For the three scenarios and the five vehicle
types, the results are based to 1500 simulation. The
duration of each test is 60 min.
Figure 4 a) shows the speed over flow results for the

Scenario 1, as well as the flow distributions for 100
simulations with random seeds per vehicle type (five
distributions). In the speed over flow scatter plot, each
dot corresponds to the average speed and average flow
of all vehicles of the corresponding test run (random
seed and vehicle type). Fig .4 b) illustrates the distribu-
tions of the average flow values per test run and vehicle
type. Manually-driven and automated vehicles (with nor-
mal and reduced reaction time) have similar perfor-
mances. The first observation is that the variation in the
average flow for both vehicle types is high and obviously
related to the sequence of the vehicles entering the net-
work. More specifically, in a one-lane network, on car-
following conditions the power dynamics of the leader
affect all its followers. Each dot in Fig. 4 a) represents a
simulation iteration with a random seed that defines that
assignment of vehicles and driving profiles to the agents
entering the network. For comparison purposes, the

same set of seeds was used for all the simulations within
all scenarios. In general AVs with response time equal to
the reaction time of CVs seem to achieve lower speeds
and lower flow values but the differences are not consid-
ered significant. AVs with reduced response time, as
expected directly impact the capacity of the network and
thus perform slightly better than AVs with normal re-
sponse time. The most interesting results refer to the
performance of Coop-AVs. The proposed simple co-
operation logic seems to increase significantly both the
average speed and the average flow in the network for
any random seed. Moreover, the variation in the average
speed and flow values among different simulation itera-
tions decreases dramatically, reducing the uncertainty
regarding the simulation results. Coop-AVs with re-
duced response time perform on average slightly worse
than Coop-AVs with normal response time. For specific
seeds, they achieve the highest average flow values but
there is large variation among different tests. In the pro-
posed car-following model the reduction in the response
time is simulated by increasing the wave speed and thus
the propagation of any perturbation downstream. This
can be an explanation for these results. In the first sce-
nario, there is high uncertainty on the expected results
as it is shown in Fig. 4 b). Only Coop-AVs have a very
narrow distribution implying consistency on their
performance.
Figure 5 illustrates the corresponding results on the

second scenario. In this scenario, the pool of available
vehicles and drivers for AVs and Coop-AVs is con-
strained and therefore the distribution of vehicles and
drivers is more homogenous. Since, the same set of ran-
dom seeds was used, the results for CVs are the same as
in Fig. 4. In all simulation iterations within the second
scenario, AVs perform much better than Scenario 1,
reaching much greater average speed and flow values. In
fact, the performance of AVs approaches the one from

Table 1 Parameters per scenario and vehicle type

Manual AVs Coop-AVs

Scenario 1 (DS, GSth) ∈ [0.1,0.9] (DS, GSth) ∈ [0.1,0.9] (DS, GSth) ∈ [0.1,0.9]
DScoop = 0.8

Scenario 2 (DS, GSth) ∈ [0.1,0.9] (DS, GSth) ∈ [0.4,0.6] (DS, GSth) ∈ [0.4,0.6]
DScoop = 0.8

Scenario 3 (DS, GSth) ∈ [0.1,0.9] (DS, GSth) ∈ [0.4,0.6] (DS, GSth) ∈ [0.4,0.6]
DScoop = 0.6

Fig. 4 a) Average speed and average flow values per vehicle type and simulation test run, b) Distribution of the average flow for the different
test runs
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Coop-AVs, which is the best among the three type of ve-
hicles. This is the result of reducing the variability in the
driving profiles, and limiting the values of (DS,GSth) pa-
rameters in the range between 0.4 and 0.6. These values
practically mean that the driving behaviors of AVs and
Coop-AVs is more homogenous, i.e. not too aggressive
and not too conservative. The DS parameter value is dir-
ectly related with the power capabilities of the vehicles,
and thus the autonomous drivers at any given speed ex-
ploit between 40% and 60% of the vehicle’s acceleration
potential. The GSth parameter value is linked with the
rpm values of the engine when the driver shifts gears
(for more details please see [18]. From the results, it can
be inferred that an important factor for the impact of
AVs, will be their homogenous operation on the road or
not. Homogeneity in the controllers’ acceleration can
dramatically improve the status of such a network. This
is clear from both Fig. 5 a) and b). In Fig. 5 b) the distri-
butions of all types but human-driven vehicles are quite
narrow implying consistency for all vehicle orders in the
network. Reduced response time for both AVs and
Coop-AVs for some test leads to higher average flow
values. However, as in Scenario 1, the variability among
different simulation tests increases and thus there is less
consistency in the potential benefit.
The last scenario focuses on the impact of the cooper-

ation control logic of the Coop-AVs. Coop-AVs have the
best performance in Scenarios 1 and 2. However, the co-
operation can be either aggressive or more conservative
depending on the values of the parameter DScoop. In the
first two scenarios, this parameter is equal to 0.8, mean-
ing the within the cooperation region, Coop-AVs exploit
a lot of their power capabilities and thus produce high
acceleration values. In that sense, it is normal that the
situation is vastly improved in comparison with AVs and
certainly CVs. In this scenario, we lower the cooperation
value to 0.6, in order to observe if the benefits of the

V2I cooperation still hold and up to which extend. Low-
ering DScoop value means that some drivers will be
slower compared to the second scenario. However, by
adopting a global acceleration strategy we achieve the
homogenization of the accelerations within the range of
the central controller. The results are shown in Fig. 6.
Even with lowered cooperation parameter, Coop-AVs
still have the best performance. On average, the results
are similar to the second scenario.
Finally, regarding the impact of homogenization in

traffic flow, on the capacity of the network, the results
discussed above show clearly that more homogenous
driving behaviors lead to more homogenous flows and
greater capacity. Cooperation with the infrastructure
certainly helps, while the anticipated reduction in re-
sponse times of the vehicle does not seem to play a cru-
cial role. Table 2 shows the average speed and flow
values for the 100 simulation tests per scenario and per
vehicle type presented above. This table provides an easy
way for assessment and comparison between different
runs.
Figure 7 illustrates the vehicle’s average speed for three

random simulation tests, for Scenarios 1, 2 and 3 and
the corresponding empirical observations from the
NGSIM database [24]. The x-axis depicts the order of
the vehicles as they enter the network, while the y-axis is
their average speed after they exit the network. The goal
is to show how a perturbation propagates the informa-
tion upstream and creates oscillations on the basis of the
vehicles’ average speeds. In the first three figures, differ-
ent vehicle types introduce oscillations created from the
uphill. CVs are the most unstable with the larger oscilla-
tion amplitudes. For the second and third scenarios, that
the vehicles and drivers for the automated vehicles are
more homogenous, the oscillation amplitudes are lower
and the period is larger. Coop-AVs in all scenarios have
the best performance. Decrease in the response time

Fig. 5 a) Average speed and average flow values per vehicle type and simulation test run, b) Distribution of the average flow for the different
test runs
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propagates the perturbation information faster upstream
facilitating the formation of average speed oscillations.
Finally, Fig. 7 d) shows the corresponding graph for a
part of the NGSIM database for the second, third and
fourth lanes, only to demonstrate how such oscillations
are visible in empirical measurements. It is interesting to
observe visually similar patterns as in the simulation re-
sults. Of course, further study is necessary in addition to
the preliminary results presented here, however this is
considered outside the scope of the present paper.

5 Conclusions
Vehicle automation and cooperation is expected to bring
new driving patterns in future networks and more
homogeneity regarding individual driving behaviors.
This work presents a microsimulation study on the topic
on an uphill network. Uphill road sections are respon-
sible for capacity bottlenecks in freeway networks. Vari-
ability in the driving behaviors seems to play a key role
on the severity of the bottlenecks and the consequent
stop-and-go waves. It has been reported in the literature
that homogenized flows can mitigate or even solve such
problems. The novelty of the proposed approach is that

demonstrates the impact of anticipating homogeneity in
vehicle and driver behaviors using a common hybrid
car-following model that takes explicitly into account
the variability in the vehicle dynamics of different vehi-
cles and the driving behavior of different drivers. An in-
teresting addition to existing microsimulation studies is
that the different vehicle technologies are simulated
using the same car-following model. Only the free-flow
part of this model is parametrized to reflect different
homogeneity levels depending on the scenario, while the
rest model parameters remain independent of the ve-
hicle type.
The proposed methodology applies three simulation

scenarios, for each vehicle type, Conventional vehicles
(CVs), AVs and Coop-AVs. Each simulation experiment
lasts 60 min with initial conditions according to capacity
inflow. For each scenario, we run 100 simulation itera-
tions per vehicle type with different random seeds in
order to see the impact for different vehicle and driving
profile sequences in the simulations. Results confirm
that homogeneity in terms of vehicle dynamics and
driver behavior can play an important role towards im-
proving traffic flow. Furthermore, the cooperation with
the infrastructure can limit high variations in the vehi-
cles’ accelerations and thus potential traffic jams.
The main contributions and results of the proposed

work can be summarized as follows:

– Simulation of CVs, AVs and Coop-AVs in uphill
freeway segments and analysis of driving homogen-
eity impact using a car-following model that repro-
duces realistic vehicle dynamics and driver profiling.
The study focuses on three main dimensions, the
driving behavior, the reaction and response time, the
vehicle cooperation with the infrastructure.

– Homogeneity in all possible driving patterns within
a network can significantly facilitate traffic flow.

Table 2 Average results for speed and flow per vehicle type,
scenario and response speed. Abbreviations N.RT and R.RT
mean Normal Response Time and Reduced Response Time
respectively

Scenario 1 Scenario 2 Scenario 3

N.RT R.RT N.RT R.RT N.RT R.RT

CVs Speed 18.83 – 18.83 – 18.83 –

Flow 1183 – 1183 – 1183 –

AVs Speed 15.84 14.72 29.40 28.00 29.40 28.00

Flow 1013 1026 2057 2117 2057 2117

Coop-AVs Speed 26.56 24.08 30.99 28.54 29.93 28.15

Flow 1942 1875 2234 2175 2121 2130

Fig. 6 a) Average speed and average flow values per vehicle type and simulation test run, b) Distribution of the average flow for the different
test runs
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Homogeneity can refer to either vehicles dynamics,
meaning automated controllers with similar
responses, or driving style, meaning aggressive or
timid driving patterns are excluded.

– Cooperation with the infrastructure can benefit the
status of the network. After homogeneity, this is the
second most important factor. It can play an
essential role in future networks if driving
heterogeneity on the roads persist.

– Lower response times increase the theoretical
capacity of the network but also the propagation of
perturbation information upstream. Thus, for large
perturbations the network becomes saturated faster.
The anticipated reduced response times of AVs are
not expected to have a significant impact on traffic
flow.

In future work, the present work will be conducted
with the extended version of the MFC model for electric
powertrains [12], since electrified vehicle have different
dynamics. A publicly available library of the MFC model
can be found online (https://pypi.org/project/co2mpas-
driver/). Additionally, it would be interesting to validate

the above-mentioned observations in a more realistic net-
work cross-validating the results here using additional
car-following models, where their free-flow part will be
substituted by the proposed MFC model. Furthermore, it
would be interesting to understand how different gradi-
ents or type of perturbations affect the magnitude of the
impact that homogeneity has on traffic flow. Finally, fur-
ther and more systematic assessment of the capability of
such models to reproduce empirical observation is
necessary.
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