
HAL Id: hal-03108809
https://hal.science/hal-03108809

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using model checking to control the structural errors in
BPMN models

Oussama Mohammed Kherbouche, Adeel Ahmad, Henri Basson

To cite this version:
Oussama Mohammed Kherbouche, Adeel Ahmad, Henri Basson. Using model checking to control the
structural errors in BPMN models. 7th IEEE International Conference on Research Challenges in
Information Science (RCIS), May 2013, Paris, France. �10.1109/RCIS.2013.6577723�. �hal-03108809�

https://hal.science/hal-03108809
https://hal.archives-ouvertes.fr

Using model checking to control the structural errors

in BPMN models

Oussama Mohammed Kherbouche, Adeel Ahmad, Henri Basson

Université Lille Nord de France

Laboratoire d’Informatique, Signal et Image de la Côte d’Opale

BP-719 62228 CALAIS Cedex FRANCE

Email: {kherbouche, ahmad, basson}@lisic.univ-littoral.fr

Abstract—The emergence of BPMN as a standard notation to

express the business processes is based on its simplicity of notations

and its exhaustive expressiveness. Nevertheless the lack of formal

semantics in the BPMN can cause syntactic and structural errors.

The former requires less effort to be checked, while the later

usually requires attention to prove some properties, like deadlock-

freedom and livelock-freedom. In this paper, we address the issue of

detecting the structural errors with an approach based on model

checking. It verifies the soundness of business process model and

helps the business modelers to avoid the deadlocks, livelocks, and

multiple terminations errors.

Keywords—BPMN process models; Kripke structure; LTL;

Model checking; SPIN.

I. INTRODUCTION

Business Process Management (BPM) (1, 2) is a
managerial approach which empowers organizations to ensure
that its processes are implemented both effectively and
efficiently to fulfill expectations of stakeholders. It is therefore
during the last decade a lot of literary work focused business
process modeling. The Business Process Modeling Notations
(BPMN) (3) has emerged as standard notation to express the
business processes. It has been also used as a tool for expert
analysis for decision making. This success is based on its
simplicity of notations (4) and its exhaustive expressiveness.
Nevertheless, the modeling of these business processes relies
generally on the human expertise and lack the formal semantics
(5). It characterizes the BPMN to cause undesirable errors
which can be classified into two categories, either syntactical
or structural.

The syntactical errors may occur by mistaking the use of
modeling elements i.e. an AND-join, OR/XOR-join or an event
when it does not allow more than one outgoing arc, etc. The
valid or invalid combinations to be used are usually prescribed
by the corresponding standard. The syntactical correctness of
models, such as invalid construct or flow, can usually be found
within reasonable time by simply parsing through the process
model by using some modeling tools such as BizAgi1, Intalio2,
or Bonita3, etc.

1 http://www.bizagi.com/

2 http://www.intalio.com/

3 http://fr.bonitasoft.com/

Unlike the syntactical errors which can be found during the
design-time (by using modeling tools), the structural errors are
mostly found during the run-time, since a syntactically correct
process can exhibit unexpected behavior during its run-time, as
a result of poorly controlled data or structural errors. The
structural errors, such as wrong combination of the sequence of
elements or misaligned splits and joins, are difficult to be
detected during the design-time due to lack of formal semantics
of BPMN process models. Subsequently, the run-time behavior
of a process should be analyzed before execution to achieve the
complete verification, showing whether the process model
fulfills important structural criteria. These can be either
deadlock-freedom or livelock-freedom to avoid the improper
functioning of the process, which can cost financially
expensive damages.

To respond the issues raised above, we propose in this
paper an approach to automate the checking of some structural
errors such as deadlocks, livelocks, and multiple terminations
in BPMN process models based on model checking. The
approach has two major advantages. First, we assume a
computable polynomial time, i.e. most of the structural errors
are actually detectable. Second, if an error is found, it provides
a direct graphical path leading to the error. The main objective
is to map the BPMN process model to Kripke structure, and
then check the validity of major properties (e.g. absence of
deadlocks, livelocks and multiple terminations) expressed in
Linear Temporal Logic (LTL) (6, 7) formulae. This ensures to
provide the soundness of business process model and avoid any
structural errors.

The rest of the article is structured as follows. Section II,
summarizes the preliminaries used to illustrate our approach. In
the section III, we describe the structural errors. Section IV
discusses, in detail, the proposed approach. Section V describes
the implementation details of the approach. The section VI
briefly narrates the closely related work. Finally in Section VII,
we conclude our contribution.

II. BASIC DEFINITIONS

The following sections, briefly explain the concepts and
technical terms used in the proposed approach.

A. Business Process Modeling Notation

 The Business Process Modeling Notation (BPMN) is

graphical notation and a language for modeling business

processes. It was adopted by OMG and it has been specified

since February 2006 (3). The primary goal of BPMN is to

provide the notations which are readily understandable by all

business users. BPMN creates a standardized bridge for the

gap between the business process design and process

implementation.

Figure 1. Some core concepts of BPMN elements

As shown in Fig. 1, BPMN process diagrams provide some
graphical notations for business processes. These can be
categorized as below:

• Flow Objects: are the main graphical elements to define
the behavior of a business process. There are three kinds
of flow objects, which are event, activity, and gateway.

• Connectors: are the graphical elements to connect the
Flow Objects to each other. There are three kinds of
Connecting Objects, which are Sequence Flow,
Message Flow and Association.

• Swimlanes: are the graphical elements to group the
modeling elements. There are two ways of grouping the
primary modeling elements, which are pools and lanes.

• Artifacts: are used to provide additional information
about the Process. There are two standardized Artifacts,
which are Group and Text Annotation.

B. Model Checking

The model checking (8) is a tool for formal modeling and
analysis of systems that exhibit random or probabilistic
behavior. Schematically, a model checking algorithm takes as
input an abstraction of the behavior of the reactive system (a
transition system). It includes the Kripke structures or other
models as petri nets, finite automata, timed automata, etc and a
formula of some temporal logic (LTL, PLTL, CTL, CTL*,

TCTL, etc.), and meets if the abstraction satisfied or not the
formula as shown in Fig.2. The term model checking refers to
the transition system as a model of the formula. The major
advantage of model checking is, for it, to be completely
automatic in most of cases and it returns a counterexample
when the properties are not verified.

Figure 2. Model Checking

Among the possible models to describe a system and a
given property, the choice is often a compromise between
expressiveness and ease of analysis. There exist many widely
used tools such as SPIN (9) and NuSMV (10) to achieve this
goal.

C. Kripke structure

A Kripke structure (11) is a variation of nondeterministic
automaton used in model checking to represent the behavior of
a system. It is a graph where nodes represent the reachable
states of the system and the edges represent state transitions. A
labeling function maps each node to a set of properties (atomic
proposition) that hold in the corresponding state. The semantics
are based on temporal logics for most of the widely used
specification languages for reactive systems.

Let us assume, AP as a set of atomic proposition i.e., a set
of labels over the system.

A Kripke structure is a 4-tuple M = (S, I, R, ℒ) where:

• S is a finite non-empty set of states

• I ⊆ S is a set of initial states

• R ⊆ S × S is a transition relation which associates with
each state s ∈ S its possible successors are, 		∀	� ∈
�, ∃	�
 ∈ �	 such that ��, �′
 ∈ �

• ℒ : S → 2AP , is a labeling function which associates
with each state s ∈ S the set of atomic propositions ℒ(s)
holds in s.

D. Linear Temporal Logic (LTL)

LTL is the most commonly used language for specifying
temporal properties of software or hardware designs. It is able
to discuss about the future of paths.

LTL is build up from proposition variables p, q, r …, the
usual logic connectives ┬ (true), ⊥ (false), ¬ (not), ∨ (or), ∧

Start Intermediate End

Event

Sequence Flow

Message Flow

Association

Connectors

Gateway

Gateway Fork/Join

+
Inclusive
Decision

O

Activity

Task Process

+

Swimlane Artifacts

Group
Data Object

Text annotation]

State transition

system Σ

Temporal

formula Ϭ

YES NO

Does Σ satisfy Ϭ?

(Σ |= Ϭ)

(and), → (imply), ↔ (one-to-one) and four temporal
connectives X, F, G, and U (as shown in Fig.3). The temporal
connectives are explained as follows:

• G (‘always’): is read always in the future (in all future

states of path). Graphically, it can be denoted as : □

• X (‘next time’): is read at the next time (in the next

state of path), and denoted as: ○

• F (‘eventually’): is read eventually (in some future

state of path, and denoted as: ◊

• U (‘until’): is read until, which can be denoted as: u

Figure 3. LTL Temporal connectives representation

 LTL formulas are generally evaluated over paths and a
position on that path. A LTL formula as such is satisfied if and
only if it is satisfied for initial position on that path.

We briefly narrate the semantics of LTL as bellow:

Let � = s0, s1, s2…sn be a sequence of states and L such as:
∀� ≥ 0, ���i) ⊆ AP.

The sequence � satisfies Ϭ. It is denoted by � |= Ϭ. This
relation can be defined inductively and gives semantics of LTL
formulas as below:

• p ∈ AP, π |= p ↔ p ∈ L (q0)

• π |= p ∨ q ↔ π |= p or π |= q

• π |= ¬ p ↔ π |≠ p

• π |= Xp ↔ π1 |= p

• π |= p U q ↔ ∃	j ≥ 0, πj |= q ∧ (∀k < �, �k |= p).

E. SPIN model checker

SPIN model checker (12) is a widely used tool for the
specification and simulation of concurrent systems, which are
designed primarily for the verification of communication
protocols. It is developed by G. J. Holzmann (2003) and it uses
a high level language to specify system descriptions, called
PROMELA (PROcess MEta LAnguage) (12). This language
allows dynamic creation of processes with both synchronous
and asynchronous communication, through communication
channels. It is an executable model. A PROMELA language
consists of variables, channels and processes. Processes are
global objects, while variables and channels may be declared
either as global or local to a process.

A PROMELA model can be analyzed by Spin either
through:

• Simulation: the model is run step by step, which makes
it easier to be familiar with its behavior

• Verification: The states of the model are explored
exhaustively to verify that the model satisfies
properties (eg, mutual exclusion) specified in LTL.

The resulting model is written in PROMELA and it is
translated to Kripke structures by SPIN model checker.

III. STRUCTURAL ERRORS

This section, presents some structural errors which can
occur during run-time of BPMN process models. We intend by
the term structural errors as the deadlocks, livelocks, or
multiple terminations. These are used to illustrate the proposed
approach to ensure the soundness of the business process
models.

A. Deadlock patterns

Generally, a deadlock is defined as a system which reaches
a dead-end state. For the process models, it is a case for which
certain instances of a process model cannot continue working,
while they have not reached the process end (i.e. deadlock is a
condition used to describe a process that cannot be completed).

According to Onada et al. (13) there are two
complementary concepts. The first is reachability which is
symbolized by the existence of at least one path from node A to
node B in a process graph and the second is absolute
transferability, which means, it is a much stronger concept to
state that a token can always be transferred from node A to all
input points of node B. The deadlock occurs, whenever there is
reachability without absolute transferability.

In (13), the authors have also identified several potential
causes of deadlocks, as follows:

• Loop deadlock: as shown in Fig.4.a, occurs when there
is an execution path from the output of an AND-join
back to its input points. If this path does not contain
XOR-splits, deadlock occurrence is certain; otherwise,
it can occur if the branch leading to the loop is chosen.

• Multiple sources: as shown in Fig.4.b, the multiple
sources occur when two different sources lead at the
input points of AND-join gateway. Assuming that none
of the source nodes is the AND-Join itself, it can be
observed that the multiple source patterns can occur
when one of the process structure is as follows:

o Any of the two sources is an XOR-split
gateway.

o The process has multiple start points that will
be synchronized later. In case of models
specified in BPMN, multiple starts are
permissible. Actually, multiple start points
resemble an AND-split gateway between the
start events; hence we can deduce that there
is reachability between two or more sources
(start events) to the AND-join node.

• Improper structuring: as shown in Fig.4.c, occurs when
an AND-join gateway receives input that started earlier
from an XOR-split.

B. Livelock patterns

Livelock can be defined as a state from which it is possible
to proceed, but it may be impossible to reach the desired final
state (the system is locked into a small subset of states and
makes no progress).

As shown in Fig.4.d, the livelock can result an infinite
execution of process. In this case some of the processes may
run successfully but some may trap in an endless loop of
execution.

This can happen when an AND-split is used instead of an
XOR-split for modeling an existing loop.

C. Multiple terminations patterns

The multiple terminations correspond to the situations
where exists an AND-split before an XOR-join gateway, as
shown in Fig.4.e.

In this case, only one sequence is traversed when the
exclusive gateway is executed. This case leads to the violation
of soundness criterion. Thus, the BPMN process model does
not terminate the predefined (expected) terminate processes.

Figure 4. Structural errors in BPMN

IV. MODEL CHECKING TO DETECT STRUCTURAL ERRORS

In this section, we discuss the detection of prominent
structural errors which can occur in a BPMN process. Our
approach is broadly described in Fig. 5. The main idea is to
map BPMN process model into a finite-states model (Kripke
structure) for specifying the system behavior and provide some
LTL formulae that may be used by model checker to verify the
absence of structural errors and ensure the soundness of
process model. Otherwise, it returns a counterexample. Several
LTL properties can be defined simultaneously for a Kripke
structure. The verification steps are detailed, as follows:

A. Finite state generator

The first step is to map BPMN process models into Kripke
structure to express the behavior of the process models. The
states of a Kripke structure represent the behavior of the
process model. This translation facilitates the better verification
of the desired temporal properties such as: M |= ϕ iff M,	π |= ϕ
for all paths π in a Kripke Structure M.

The finite non-empty set of states S of the Kripke structure
represents the nodes N of the process model. N is a finite set of
flow objects in BPMN process which can be partitioned into
events E, activities A and gateways G. The transition relations

R represent the edge relations T (where, Transition T ⊆ F × F

is a finite set of sequence flows connecting objects).

TABLE I. MAPPING OF BPMN OBJECTS TO KRIPKE STRUCTURE

BPMN Object Kripke Structure

Start s

Start

End e

Task T

T

A

B

C
+

C

A

B
+

A

B

C
X

C

A

B
X

A

E_B

E_A exA

exB
B

E_C

Message M

�

Ex

T

Tx

Final

T
E_T

Tx E_Tx exTx

exT

exA exB
exC

E_A
A

E_C

E_B B

C

exA

E_C

E_B exB

exC

B

C

M
E_M exM

T
E_T exT

E_B

E_A
C

exC exA
exB

E_C

A

B

(c) BPMN contains improper structuring

 deadlock

B

X +

A

(d) BPMN contains livelock

B X + A

(e) BPMN contains multiple terminations

+ X A

B

C

(b) BPMN contains multi source deadlock with

 multiple start points

+
B

C

A

(a) BPMN contains loop deadlock

A + +

Figure 5. Global schema of model checking approach for detecting structural errors

To obtain a Kripke structure, we define AP as the set of
atomic propositions and associate with each state s ∈ S such
as ℒ(s) holds in s (ℒ	 is the labeling function of Kripke
structure M). It expresses all properties of a given state.

The initial state I ⊆ S is the start point ES (start event) of
the process model. Each state s is labeled with enabled and
executed transitions. Where, E_A signifies that the transition
A is enabled and ex_A signifies that the transition A is
executed (completed). A brief description of the mapping
from a set of BPMN tasks, events, and gateways to Kripke
structure is given in Tab.I.

Once the Kripke structure is obtained, we then proceed to
define the desired correctness temporal formulae.

B. LTL formulae generator

The soundness of BPMN process model to avoid
structural errors can be ensured by satisfying the following
temporal properties:

1) Detect absence of deadlocks
A Kripke structure is said to be deadlock-free, if it does

not contain any computation that can lead to a deadlock. The
deadlock freedom is considered as safety property (i.e.
something bad never happens). Let us assume a temporal
formula (Final), which represents the set of final states. In
such a case, we can express deadlock-freedom by the
following LTL formula:

 ⊥□ (○ → Final) (1)

This formula must be satisfied as valid on every path.
The formula ○⊥ (means that “there is no next state”) is easy
to deduce, i.e. no transition is possible. Likewise, we can
express reachability of a given deadlock state as the
existence of a state with the dual property. ⊥◊ (○ → ¬ Final) (2)

2) Detect absence of livelocks
As previously described, the livelock is a state from

which it is impossible to reach the desired final state.

A property which expresses the non-existence of livelock
is a liveness property (i.e. something good eventually
happens). A typical LTL formula is shown below:

◊□ϕ → □◊ψ (3)

If a task tries to run infinitely, then it will be always in
the execution state. This simplifies to ¬ ◊□ϕ (i.e. it will not
succeed; ‘at run’ forever). In a counterexample of these
properties is an infinite execution according to which any of
the expected behavior does not happens (i.e. the process does
not terminate). Detection of a livelock can be expressed in
the LTL formula, as shown below:

◊□exA → □◊Final (4)

3) Detect absence of multiple terminations
The multiple terminations is a situation where exists an

AND-split before an XOR-join gateway. Detection of this
case is based on checking the safety property of LTL (i.e.
something bad never happens). It can be verified by the
following formula:

□ ¬ (◊ (ϕ ∧ ○ψ) → Final) (5)

A counterexample of these properties is a finite execution
which leads to unexpected behavior.

C. Model Checking

The finite state machines and the temporal logic formulae
are presented as input to a model checker. The model
checker verifies whether Ϭ temporal formula holds for that
finite state machines M or not. As a result, it confirms the
soundness of the process models. Otherwise, it returns a
counterexample in cases of structural errors.

D. Determine impacted zone

The model checking has the capability of providing
counterexamples when the temporal properties to be checked
are not satisfied by the process model (14, 15). Mostly, these
counterexamples are given in terms of internal state
transitions rather than in terms of process models that are
difficult to understand by a non-technical user. To benefit

Determine
impacted

zone

Valid
 (BPMN process
model is sound)

Impacted zone
generator

Model checker
(Spin, NuSMV)

Kripke structure
generator

BPMN
Process
Model

Requirement
LTL

Formulae

Finite-States

Model

Compliance
checking

result

Deadlocks, livelocks
Multiple termination

LTL formulae

Invalid
(counterexample)

from these counterexamples, the output of the model checker
should be translated in the visual notation, which is easier for
the user to understand.

The mapping of counterexample to the source BPMN
process model supports the better determination of the
impacted zone (by structural errors). We use model checker
dependency, it contain a tool chain that translates the output
of the model checker back to the process model notations.
This can allow the mapping of each state to the elements of
original BPMN process model, which can highlight (notify)
through a change of color or assignment of a particular label,
to better visualize the impacted zone. This may help to find
the actual causes of errors in the business model and also to
correct them.

V. TOOL DESIGN AND IMPLEMENTATION

Currently, we implement a prototype tool to validate the
presented approach called BPMN2SPIN. It is developed as a
set of Eclipse4 IDE plug-ins. We use Eclipse BPMN 2.0
Modeler5 plug-in as a tool to modeling business process. As
model checker, we opted for EpiSpin6 plug-in.

The BPMN process model can be transformed into
PROMELA language, which maps the processes, sub-
processes and activities into PROMELA processes and
connector paths into PROMELA channels. The messages
between processes are represented, without loss of generality
using integers in PROMELA.

The main concern is to transform automatically the
BPMN process model to PROMELA model by providing
input PROMELA model file (*.pml) (i.e. EpiSpin translates
the PROMELA model into Kripke structure) and provides
some pre-defined LTL formulae to the EpiSpin model
checker to detect the structural errors. If the temporal
properties are not satisfied by the PROMELA model, then
the returned counterexample is mapped to the source BPMN
process model.

VI. CASE STUDY

We further illustrate the translation of BPMN process
model to PROMELA model with the help of an example. It
uses the notation c to represent a channel and m to represent a
message (sent or received). cS denotes an array of channels

and mS denotes an array of messages to be sent or received in

each channel in cS. The functions inline send(q,

msg){q!msg;} and inline receive(q,msg){

q?msg;} are used to exchange messages between processes.

In Tab. II, we represent the translation of some principal
elements which are Sequence, AND-Split, AND-Join, XOR-
Split, XOR-join, OR-Split, OR-Join to PROMELA Language.

The given case study consists of a simple car salesman
process, as shown in Fig.6. The seller gets pay bills at the
end of each month. It gets a bonus when it sells more than
twenty cars (in addition to his regular paycheck). The
deadlock in this process can occur (when the salesman sells

4 www.eclipse.org/

5 svn+ssh://svn.java.net/bpmn-modeler~source-code-repository

6 http://epispin.ewi.tudelft.nl/

less than twenty cars i.e. the salesman does not get a bonus)
because of the parallel gateway still requires both paths
before completion, excluding the case when the bonus-path
is never started. Otherwise, the deadlock cannot occur, when
the salesman sells more than twenty cars, both paths are
selected from the OR gateway, and then both paths are
combined in the parallel gateway.

Figure 6. Car Salesman process

The absence of deadlocks and livelocks in EpiSpin are
detected by the invalid endstates and the absence of non-
progress cycle features, respectively. The generated
PROMELA model corresponding to the car salesman
process is described as follows:

We define six global channels denoted as cS to establish

the communication between activities. We define also cS1

and cS2 as auxiliary array channels to simplify the exchange
of messages in given activity. The PROMELA model of
involved activities is detailed in below:

Sell Cars –This activity is initiated by receiving a request
from the start event, it choose one or more activities in non-
deterministic manner without loss of generality. It is
translated by the following PROMELA process.

proctype sellCars(){
 chan cS1[2]=[1] of {int};

 int x, choice, msgs[2];

 cS1[0]= cS[1]; /*send to Get Bonus*/

 cS1[1]= cS[2]; /*send to Get Paycheck*/

 R: receive(cS[0],x);/*receive from start

 event*/

 /* Choice of a non-deterministic manner */

 if

 ::choice=0 /* Less that 2O cars */

 ::choice=1 /* More that 20 cars */
 fi;

 msgs[0]=1;

 msgs[1]= choice;

 ORSplit(cS1,msgs,cS1, msgs);

 goto R

}

Bonus Activity - As mentioned above, this activity is
chosen in non-deterministic manner without loss of
generality. It is translated by the following PROMELA
process.

proctype GetBonus(){
 int x;

 receive(cS[1],x); /* To receive from

 Sell Cars. */

 send(cS[3],1); /* To send to Pay Bills. */}

Sell Cars

Get
Paycheck

Get
Bonus

Pay Bills O

More That
20

Cars Sold This
Month

]

+

TABLE II. MAPPING OF BPMN OBJECTS TO PROMELA LANGUAGE

BPMN Object PROMELA Language Observations
 chan c = [1] of {int};

active proctype start(){

 /* To start process */

 send(c,1);

}

The start event in PROMELA use the send
statement and the next process use the
receive statement.

 proctype A(){

 /* details of activity */

 send(c,1); /* Activate process B */

}

proctype B(){

 int x;

 receive(c,x); /*Waiting token to run*/

 /* details of activity.*/

}

An Activity ‘B’ is enabled after the
Activity ‘A’ is completed in the same
process. The process ‘A’ in PROMELA
use the send definition and the process ‘B’
use the receive definition.

 inline ANDSplit(cS, mS){

 int ind, length;

 ind = 0; length = len(cS);

 atomic {

 do

 ::ind <length->send(cS[ind],mS[ind]);

 ind++;

 ::ind >=length->break;

 od;

 }

}

The AND-Split is translated to inline
definition, where each channel in the array
cS is used to communicate with each
activity. The process in PROMELA which
represents the activity that splits the
process use the ANDSplit definition and
the processes which represent the
activities to be initiated use the receive
definition.

 inline ANDJoin(cS, mS){

int ind, length;

ind = 0; length = len(cS);

skip;

S: if

 ::full(cS) ->

 do

 ::ind <length && nempty(cS[ind])->

 receive(cS[ind],mS[ind]);ind++;

 ::ind >=length-> break; goto E

 od;

 :: nfull(cS) -> ind=0; timeout; goto S

 fi;

E: skip;

}

The AND-Join represents the case in

which two or more parallel execution

flow branches merge into a single flow,

after all branches are completed. This

AND-Join is translated to the inline

definition. The process in PROMELA that

receives the input branches use the

ANDJoin definition and the processes to

be syncronized use the send definition.

The keyword timeout is used to avoid a

starvation of process and allow other

processes to be executed.

 inline XORSplit(cS,choice,m) {

 int length;

 length = len(cS);

 if

 ::(choice<length && choice>=0) ->

 send(cS[choice],m);

 ::else -> skip;

 fi;

}

The XOR-Split represents the case in
which the execution flow is spawn in two
or more branches, thus enabling the
execution of one and only one activity
among the available set. The exclusive
split is translated to the inline definition.
The process in PROMELA which
represents the activity which makes the
choice to use XORSplit definition, and the
alternative processes use the receive
definition.

A

B

C
+

AND-Split

C

A

B
+

AND-Join

A

B

C
X

XOR-Split

A B

Sequence

Start s

 inline XORJoin(cS, m){

 int ind,length;

 ind=0;

 length=len(cS);

 skip;

 B: if

 ::nempty(cS[ind])-> receive(cS[ind],m);

 goto E

 ::empty(cS[ind])-> ind++; goto I

 fi;

 I: if

 ::ind==length -> ind=0; timeout; goto B

 ::ind<length -> goto B

 fi;

 E: skip;

}

The XOR-Join represents the case in

which two (or more) mutually exclusive

execution branches merge into a single

flow. An exclusive join is translated to the

inline definition. The process in

PROMELA which merges the input

branches use the XORJoin definition and

the merged activities use the send

definition.

 inline ORSplit(cS, mS, aCs, choices){

 int ind, length;

 ind=0; length=len(cS);

 skip;

 S: if

 ::choices[ind]==1 -> send(aCs[ind],1);

 send(cS[ind],mS[ind]);

 ::choices[ind]==0 -> send(aCs[ind],0);

 fi;

 ind++;

 if

 ::ind < length -> goto S

 ::ind >= length -> skip

 fi;

}

The OR-Split represents the case in which

the execution flow is spawn in two or

more parallel branches, thus enabling

possible parallel execution of two (or

more) activities. The process that

represents the activity which makes the

choice to use ORSplit definition and the

alternative processes use the receive

definition. aCs provides information

about the activated channels.

 inline ORJoin(cS, aCs, mS){

 int ind, length, x;

 ind =0;length = len(aCs);

 do

 ::ind <length -> timeout; ind++;

 ::ind ==length -> ind=0; break;

 od;

 skip;

 B:if

 ::length > 0 && ind <length &&

 receive(aCs[ind],x) == 1->

 receive(cS[ind],mS[ind]); ind++;

 ::ind >= length -> goto E

 fi;

 E: skip;

}

The OR-Join represents the case in which

two (or more) parallel execution flow

branches merge into a single flow. The

process that represents the merging

activity use the ORJoin and the processes

that represent merged activities use the

send definition.

 proctype End(cS, mS){

 int ind, length;

 ind = 0; length = len(cS);

 end:

 do

 ::ind <length->receive(cS[ind],mS[ind]);

 ind++;

 ::ind >=length->break;

 od;

 }

}

The end event indicates where a process

will end. The end event in PROMELA

should use the receive statement. To

specify that a state is not a deadlock, but

rather a proper end state, we should use

the end label instruction to specify where

the process stops.

C

A

B
X

XOR-Join

A

B

C
O

OR-Split

C

A

B
O

OR-Join

End e

Figure 7. Detection of deadlock using EpiSpin model checker

Get PayCheck - This activity is translated by the
following PROMELA process.

proctype GetPayCheck(){
 int x;

 receive(cS[2],x); /* To receive from

 Sell Cars. */

 send(cS[4],1); /* To send to Pay Bills. */

}

Pay Bills - This activity receives a bonus when it sells
more than twenty cars (in addition to the regular paycheck of
seller). It is translated by the following PROMELA process.

proctype PayBills(){
 chan cS2[2]=[1] of {int};

 int msgs[2];

 cS2[0]= cS[3]; /*receive from GetBonus*/

 cS2[1]= cS[4]; /*receive from GetPaycheck*/

 T: ANDJoin(cS2, msgs);/*To receive from

 Get Bonus and Get PayCheck */

 send(cS[5],1);/* send to end event */

 goto T;

}

Following is the description corresponding to the car
salesman process from ‘Car_Salesman_process.pml’ input
file.

chan cS[6] = [1] of {int};

proctype Start(){....}

proctype sellCars(){....}

proctype getBonus(){....}

proctype getPayCheck(){....}

proctype PayBills(){....}

proctype End(){....}

init {

 atomic{run start(); run sellCars();

 run getBonus();run getPayCheck();

 run PayBills();run End();

 }

}

The Fig. 7 shows the screenshots of the input PROMELA
model file “Car_Salesman_process.pml” provided to
EpiSpin and the result of verification of the absence of
deadlock (i.e. invalid endstates). It can be observed that the
EpiSpin detects an error because the paths are selected in
non-deterministic manner. In this case, the path through “Get
PayCheck“ activity is chosen from OR-split gateway
(without the path containing “Get Bonus” activity).
Therefore, the AND-join gateway receives only one input,
which causes a deadlock.

It is important to note that for better understanding of the
different results, we can obtain the finite-states model
(Kripke structure) with the help of EpiSpin from PROMELA
model, as shown in Fig 8. It proposes also to generate a DOT
code from a *.pml input file, which is generally saved in
*.dot file. We use the Graphiz7 to compile the DOT code into
an image for its visualization.

7 http://www.graphviz.org/

Figure 8. EpiSpin DOT code generation and Graphiz visualization

VII. RELATED WORK

The problematic regarding lack of formal semantics in
the modeling languages has been addressed in many literary
studies during last decade. As a result, numerous approaches
and techniques emerged to verify the process models (in
particular the soundness property). Sadiq and Orlowska (16)
are among the pioneers to identify the structural errors, like
livelock and deadlock, in business processes modeling. Their
work primarily targets the syntactical errors. It relatively
lacks a support to handle the semantic errors of business
processes.

Literature survey reveals that many techniques and
methods are focused to treat the semantic issues in business
process modeling. Furthermore, several authors developed
notations based on a process modeling language to express
the allowed executions of a BPM. Such approaches have
been presented for Event-Driven Process Chains (17), UML
Activity Diagrams (18), BPEL specifications (19, 14) and for
BPMN (20). The most prominent are based on either formal
approaches or design approaches.

The design approaches are verification methods based on
a design model given in a specific language. Awad et al. (21,
22) present an approach to detect deadlocks using a method

concerning BPMN-Q (23). The approach is constrained to
detect the deadlock errors. Another design approach (24)
focuses on the graphical structure of the model. It is based on
BPMN VQL (24) query language. Its main purpose is to find
crosscutting concerns in BPM. However, modeling processes
using this notation necessitates the advanced technical skills
and the resulting model is usually complex and far from
intuitive.

A vast variety of formal approaches is also in practice to
detect structural errors. One of the techniques, in this
category, is based on Petri nets (25, 26). W.M.P. van der
Aalst (27, 28) proposes soundness criterion, in this regard, to
guide the modelers for the specification of Event-Process
chain and to detect the livelock and deadlock errors in the
control-flow (29) using Petri nets. Also, the authors in (30)
propose to handle deadlock and multiple termination patterns
in SAP reference model. It is particularly intended to be
applied on two popular modeling languages i.e. Event-
Process Chain (EPC) and Petri nets. Another approach,
proposed by Dijkman et al. (31), uses Petri nets based
method to verify the BPMN process models. In this
approach, BPMN model is first transformed to Petri nets and
later, ProM is utilized to verify them.

However, it is important to notice that certain
components in BPMN such as multiple instances of model,
exception handling, and message flows cannot be changed
into Petri nets (31). It reveals difficulties to define the
correspondence of these objects to Petri nets.

Another approach based on π- calculus is used to
represent workflow patterns (32). However, the verification
through π- calculus involves the checking of bi-simulation
equivalence. It consumes more time to obtain results, even to
prove the simple correctness requirements. In (33), authors
propose to use the finite-state automata to detect deadlocks
and multiple terminations. But their propositions lack the
detection of livelock errors.

The model-checking is also one of the techniques used in
formal approaches to verify whether the business process
models satisfy some properties formalized in LTL or CTL
(e.g. checking compliance rules). In this approach, the
business process models are transformed into states and
transitions between the states. Furthermore, the business
processes are transformed into Petri nets in order to detect in
first step the deadlocks, and livelocks errors, followed by a
transformation into Kripke structures which are used in
addition to the temporal logic formulae as input to a model-
checker which verifies whether the temporal logic formulae
are respected by the given finite state machines or not (14,
34, 35, 36). The prominent focus, in these studies, remained
on the expression of different proprieties in LTL formulae
rather than the transformations of process model to finite-
states. Hence, they lack implementation details.

The existing research in the literature is focused not only
to verify the control-flow but also interested in the
verification of data-flow. In fact, the importance of data-flow
verification in workflow processes was first mentioned in
(37). They identified several possible errors in the data-flow
e.g., the redundant data error, reading from an uninitialized
element type of errors, but no means for checking these
errors are provided. In (38), a model called dual workflow
nets is proposed, that can describe both the data-flow and the
control-flow. The notion of soundness is extended to support
the case when data-flow can influence control-flow.

The research work, presented in this paper, has two major
objectives. The first, and the foremost, is to provide an
automated assistance to verify the absence of most structural
errors in the business process models. We use model-
checking technique to achieve this goal. The second
objective is to resolve the ambiguity regarding the
transformation of BPMN process model into a finite-state
model. We transform the BPMN process model directly to
Kripke structure without going through the intermediate step
which is generally petri-nets. The automated transformation
of BPMN process model to Kripke structure is both faster
and easy to maintain. The soundness of the BPMN process
model can be verified through the compliance checking
verification. In case of the error, the interpretation of the
result along with the mapping of returned counterexample, in
BPMN model, can lead to the cause of the error.

VIII. CONCLUSION

The model checking can help to better detect structural
errors in business process models. The automated checking
of such errors allows both to compute the polynomial time
and the error traceability. In this paper, we have discussed, in
detail, the structural errors which can occur during run-time
of business process models and the properties to be checked
to avoid these errors. The objective is to provide assistance
for the process modelers in the better detection of errors and
their correction.

The approach proposes to map the BPMN process model
directly to Kripke structures to express the behavior of the
process models. The generated finite states (Kripke
structures) are used to satisfy the temporal properties (e.g.
absence of deadlocks, livelocks and multiple terminations),
which are expressed using the Linear Temporal Logic (LTL)
formulae. The approach is supported by the implementation
of a tool that integrates EpiSpin plug-in in eclipse IDE as a
model checker and translations of BPMN models to
PROMELA models as expressed in case study which
represent an input of EpiSpin model checker. The result of
model checking can verify the soundness of the process
model, otherwise it return a counterexample. We are
continuing the development of plug-in for the
counterexamples to further facilitate the determination of the
impacted zone. In the future, we intend to continue this
approach and particularly to focus the compliance checking
rules for the BPMN post change scenarios.

REFERENCES

[1] R.Lu, “Constraint-Based Flexible Business Process Management,” in
School of Information Technology and Electrical Engineering,
University of Queensland, 2008.

[2] W.M.P. van der Aalst, et al. , “Business Process Management: A
Survey,” in Proceedings of Conference on Business Process
Management (BPM 2003), Eindhoven, Netherlands 2003.

[3] Object Management Group. BPMN 2.0: OMG final adopted
specification DOI= http://www.omg.org/spec/BPMN/2.0/PDF.
January 2011

[4] I. Kitzmann, C. Konig, D. Lubke, and L. Singer, “A simple algorithm
for automatic layout of bpmn processes,” in CEC ’09: Proceedings of
the 2009 IEEE Conference on Commerce and Enterprise Computing.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 391–398.

[5] S. Kühne, H. Kern, V. Gruhn, and R. Laue, “Business process
modelling with continuous validation,” in MDE4BPM 2008 – 1st
International Workshop on Model-Driven Engineering for Business
Process Management, C. Pautasso and J. Koehler, Eds., Milan, Italy,
September 2008.

[6] Y. Kristin Rozier. , “Linear Temporal Logic Symbolic Model
Checking,” NASA Ames Research Center,Moffett Field,CA
94035,USA. 2010.

[7] S. Hornus, P. Schnoebelen , “On solving temporal logic queries,” In:
Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422,
pp. 163–177. Springer, Heidelberg. 2002

[8] E.M. Clarke Jr., O. Grumberg, and D.A. Peled. , “Model Checking,”
The MIT Press,Cambridge, Massachusetts and London, UK, 1999.

[9] J. Gerard Holzmann. “The Model Checker SPIN,” In Proceedings of
IEEE Transactions on software Engineering – Special issue on formal
methods in software practice IEEE Press Piscataway, NJ, USA, 1997.

[10] A. Cimatti et al., “NUSMV: a new symbolic model checker ,”
International Journal on Software Tools for Technology Transfer,
2000.

[11] M. C. Browne et al.,."Characterizing finite Kripke structures in
propositional temporal logic,” Theoretical Computer Science -
International Joint Conference on Theory and Practice of Software
Development. Elsevier Science Publishers Ltd. Essex, UK.1988.

[12] G. Holzmann,. "The SPIN MODEL CHECKER. Primer and
Reference Manual,” Addison-Wesley. Pearson Education , 2003.

[13] S. Onoda, Y. Ikkai, T. Kobayashi, and N. Komoda,."Definition of
deadlock patterns for business processes workflow models”. In
HICSS ’99: Proceedings of the Thirtysecond Annual Hawaii
International Conference on System Sciences-Volume 5, pages 50–
65, Washington, DC, USA, IEEE Computer Society 1999.

[14] Y. Lui, S. Müller, and K. Xu.: “A static compliance-checking
framework for business process models,” IBM SYSTEMS
JOURNAL, 46(2) pp. 335-362, 2007.

[15] A. Foerster, G. Engels, and T. Schattkowsky.: “Activity diagram
patterns for modeling quality constraints in business processes,” In
MoDELS, pages 2{16}, 2005.

[16] W. Sadiq and M.E. Orlowska., “Modeling and verification of
workflow graphs,” Technical Report No. 386, Department of
Computer Science, The University of Queensland, Australia, 1996.

[17] S.Feja, D.Fötsch, “Model checking with graphical validation rules,”
In Proceedings of 15th Annual IEEE International Conference and
Workshop on Engineering of Computer Based Systems,2008,pp.117–
125.

[18] A.Forster, G.Engels, T.Schattkowsky, R.V.D.Straeten, “Verification
of business process quality constraints based on visual process
patterns,” in Symposium on Theoretical Aspects of Software
Engineering, 2007,pp.197–208.

[19] R.Wörzberger, T.Kurpick, T.Heer, “Checking correctness and
compliance of integrated process models,” in Proceedings of the 10th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC2008), 2008.

[20] M.Brambilla, “LTL formalization of BPML semantics and visual
notation for linear temporal logic,” Tech. Rep.,Politecnico di
Milano,2005.

[21] A. Awad and F. Puhlmann, “Structural detection of deadlocks in
business process models,” in BIS’08, pp. 239–250 , 2008.

[22] Ralf Laue, A. Awad, “Visual suggestions for improvements in
business process diagrams,” J. Vis. Lang. Comput. 22 (5): 385-399
2011.

[23] A. Awad, “BPMN-Q: A Language to Query Business Processes,” In
EMISA, pp.115–128 ,2007.

[24] C.D. Francescomarino, P. Tonella, “Crosscutting concern documenta-
tion by visual query of business processes,” in proceedings of the
International Workshop on Business Process Design, 2008.

[25] J. Desel and J. Esparza., “Free Choice Petri Nets,” volume 40 of
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, UK,1995.

[26] T. Murata., “Petri Nets: Properties, Analysis and Applications,”
Proceedings of the IEEE, 77(4):541{580, April 1989.

[27] W.M.P. van der Aalst, “Formalization and verification of event driven
process chains,” Information and Software Technology, vol. 41, no.
10, pp. 639–650, July 1999.

[28] W.M.P. van der Aalst, “Workow Verification: Finding Control-Flow
Errors using Petri-net-based Techniques,” In W.M.P. van der Aalst, J.
Desel, and A. Oberweis, editors, Business Process Management:
Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pages 161{183. Springer-Verlag, Berlin,
2000.

[29] W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N.
Sidorova, H.M.W. Verbeek, M. Voorhoeve, and M.T. Wynn,
”Soundness of Workflow Nets: Classification, Decidability, and
Analysis,” BPM Center Report BPM-08-02, BPMcenter.org, 2008.

[30] B. F. van Dongen, M. H. Jansen-Vullers, H. M. W. Verbeek,and W.
M. P. van der Aalst, “Verification of the SAP reference models using
epc reduction, state-space analysis, and invariants,” Comput. Ind.,
vol. 58, no. 6, pp. 578–601, 2007.

[31] R. M. Dijkman, M. Dumas, and C. Ouyang, “Formal semantics and
automated analysis of bpmn process models,” Tech. Rep, 2007.

[32] F. Puhlmann, M. Weske, "Using the pi-calculus for formalizing
workflow patterns " Proceedings of the 3rd International Conference
on BPM, volume 3649 of LNCS, Berlin, Springer-Verlag (2005)
153–168

[33] N. Tantitharanukul et al., “Detecting deadlock and multiple
termination in BPMN model using process automata,” In electrical
Engineering/Electronics Computer Telecommunications and
Information Technology (ECTI-CON), (2010).

[34] A. Ghose, G. Koliadis, “Auditing business process compliance,” In
Kramer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 169–180. Springer, Heidelberg (2007).

[35] S. Goedertier, J. Vanthienen,”Compliant and Flexible Business
Processes with Business Rules,” in 7th Workshop on Business
Process Modeling (2006).

[36] W.M.P. van der Aalst., H.T de Beer, B.F. van Dongen, “Process
mining and verification of properties: An approach based on temporal
logic,” in Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol.
3760, pp. 130–147. Springer, Heidelberg (2005).

[37] S.W. Sadiq, M.E. Orlowska, W.Sadiq, and C. Foulger, “Data Flow
and Validation in Workflow Modelling,” In Fifteenth Australasian
Database Conference (ADC), Dunedin, New Zealand, volume 27 of
CRPIT, pages 207{214. Australian Computer Society, 2004.

[38] S. Fan, W.C. Dou, and J. Chen, “Dual Workflow Nets: Mixed
Control/Data-Flow Representation for Workflow Modeling and
Verification,” In Advances in Web and Network Technologies, and
Information Management (APWeb/WAIM 2007 Workshops), volume
4537 of Lecture Notes in Computer Science, pages 433{444.
Springer-Verlag, Berlin, 2007.

