
HAL Id: hal-03108796
https://hal.science/hal-03108796v1

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal approach for compliance rules checking in
Business Process Models

Oussama Mohammed Kherbouche, Adeel Ahmad, Henri Basson

To cite this version:
Oussama Mohammed Kherbouche, Adeel Ahmad, Henri Basson. Formal approach for compliance
rules checking in Business Process Models. IEEE International Conference on Emerging Technologies
(ICET’13), Dec 2013, Islamabad, Pakistan. �10.1109/ICET.2013.6743500�. �hal-03108796�

https://hal.science/hal-03108796v1
https://hal.archives-ouvertes.fr

Formal approach for compliance rules checking in

Business Process Models

Oussama Mohammed Kherbouche, Adeel Ahmad, Henri Basson

Université Lille Nord de France

 Laboratoire d’Informatique, Signal et Image de la Côte d’Opale

BP-719 62228 CALAIS Cedex FRANCE

E-mail: {kherbouche, ahmad, basson}@lisic.univ-littoral.fr

Abstract-the business process models should comply with a

set of rules describing the operations, policies and constraints

that an organization must respect under financial authorities.
However, the large number of rules and their frequency of
changes make the traditionally used manual compliance

checking a time-consuming task. As a result an automated
compliance checking should be adopted. This paper proposes a
formal approach for automated compliance checking. It

proposes to map BPMN models directly to finite state
machines (i.e., Kripke structures) and to express the
compliance rules in a graphical language for better

understandability. Subsequently, these are translated into
linear temporal logic formulae for their integration. The
compliance of business process models can be verified by

means of model checking technology. The main goal is to
increase the efficiency of the deployment of business process
models while minimizing the risks and cost of the compliance

inspection.

Keywords—BPMN process model; compliance rules; Kripke
structure; LTL; ProMeLa; SPIN model checker

I. INTRODUCTION

The Business Process Models (BPM) [1, 2] has been

widely used for the past decade. The increasing popularity

of BPM is due to its notational simplicity [3] and its

expressiveness. However, the business process and their

operations should satisfy a set of policies or constraints

characterized by compliance rules. The rapidly changing

nature of rules requires checking business processes each

time a rule is added or changed [4]. The change in

compliance rules can occur in line with the business goals,

and also with legal regulations. For example, certain

execution orders between the activities, new policies or

regulations such as the risk assessment in the banking

sector, etc. The increasing frequency of changing rules

requires business processes to adopt an automatic

compliance checking.

Different approaches have been proposed for the

verification of some properties in different models [5-13].

An automated approach supported by a ProM framework

allows detecting violations from workflow event logs using

Linear Temporal Logic (LTL) checkers is proposed in [5].

The authors in [6] propose a method to check correctness

properties of workflows implemented in Business Process

Execution Language (BPEL). It maps the BPEL to dataflow

network and the dataflow network is mapped to a ProMeLa

model. In [7], the authors discuss a formal approach based

on model checking to verify the business process models

(defined in BPEL and formalized with pi-calculus) against

compliance rules expressed in the Business Property

Specification Language (BPSL). Another approach [8] is

able to express constraints in PLTL (Past Linear Temporal

Logic) rather than only LTL, which gives the approach

more expressiveness over the others by using a method from

their previous work [9] of defining BPMN-Q (BPMN-

Query), which is a modeling tool to concentrate on gates.

The authors, in [10], use π-calculus to represent the

workflow patterns.

The benefit of using model checking is to better visualize

the counter examples, which are produced in the case that

the formula being checked is found to be non-valid [11].

The verification in π-calculus is done through checking the

bi-simulation equivalence, sometimes results are not

obtained in reasonable amount of time, even to prove the

simple correctness requirements [12].

In this article, we focus on process models designed with

Business Process Modeling Notation (BPMN) which is

accepted as a standard in business process modeling

community. Indeed, we propose an automated approach to

verify the compliance of BPMN process models with the set

of established rules using model checking technique. The

approach transforms the BPMN process model directly into

Kripke structures [13] without involving the intermediate

step which is generally Petri-nets in order to express their

behavior. The compliance rules are expressed into temporal

logic (using LTL) formulae with the help of a graphical

notation to obtain the same level of abstraction as the

business process models. The proposed approach can help

to better verify the compliance rules after each change.

The rest of the article is organized as follows: the section

II discusses the proposed approach, in detail. The section III

presents the tool design and the implementation details.

Later, the section IV further elaborates the validation of the

approach with the help of an example. Finally, the section V

concludes our contribution and briefly highlights the future

prospects.

II. BPM ANALYSIS USING MODEL CHECKING

In this section, we formally explain the compliance

checking in BPMN process models. The compliance rules,

as discussed earlier, are expressed as LTL formulae through

a graphical notation. It allows the formalization on the same

level of abstraction as the models. It also provides an

intermediate interface between the compliance rules and the

LTL formulae expressed in a particular tool like EpiSpin
1
,

as mentioned in the section IV, for non-technical users.

The approach, as illustrated in Fig.1 involves the BPMN

transformation into Kripke structure and model checking.

The steps involved in this procedure are detailed in the

following:

Fig. 1. Compliance checking approach

A. Mapping BPMN to Kripke structure

We primarily attempt to generate the finite states model

from the given BPMN process models with the help of

Kripke structures, such that the states of the Kripke structure

express the behavior of the process model.

The objective of obtained Kripke structure is to facilitate

the better verification of the desired temporal properties

such as: M |= ϕ iff M, π |= ϕ (i.e. M satisfy ϕ for all paths π

in a Kripke structure M).

In this translation, the start event ES of the BPMN process

model represent the initial state (I ⊆ S) of Kripke structure.

The set of flow objects in BPMN process which can be

partitioned into Events E, Activities A and Gateways G. and

the set of sequence flows T ⊆ F × F of this model represent

the finite non-empty set of states (S) of a Kripke structure

and the transition relations (R), respectively.

The mapping of BPMN to Kripke structure necessarily

define the set of atomic proposition (AP) which later on,

associates a labeling function with each generated state. A

labeling function describes properties of a given state and

can be represented as, ℒ(s) holds in s, where s ∈ S

In this structure, each state s ∈ S is labeled with enabled

and executed transitions. Where, E_A signifies that the

transition A is enabled and ex_A signifies that the transition

A is executed (completed). A brief description of the

mapping from a set of BPMN elements to Kripke structure

is given in Tab. I. Once the Kripke structure is obtained, we

then proceed to translate the compliance rules into LTL

formulas [14] using a given set of graphical notations.

B. Compliance checking rules generation

The compliance rules are typically difficult to understand

under a textual format for business process model, we

propose a set of graphical notations called G-LTL, which

1 http://epispin.ewi.tudelft.nl/

TABLE I. MAPPING OF BPMN OBJECTS TO KRIPKE STRUCTURE

BPMN Object Kripke Structure

represent the graphical version of the LTL formulae.

The objective of G-LTL definition is to facilitate the

expressions of compliance rules and formalization on the

same level of abstraction as the process models. The Tab. II

summarizes the graphical notations of G-LTL.

The generator transforms automatically this graphical

notation to corresponding LTL formula expressed in a

particular tool like EpiSpin.

C. Automated compliance checking

The model checking [15] is a technique for formal

Start s

End e

A

B

C
+

C

A

B
+

A

B

C
X

C

A

B
X

A

E_B

E_A exA

exB
B

E_C

Message M

T
E_T

Tx E_Tx exTx

exT

exA

E_C

E_B exB

exC

B

C

M
E_M exM

T
E_T exT

E_B

E_A
C

exC exA
exB

E_C

A

B

Start

Final

Task T

T

Ex

T

Tx

exA exB
exC

A

E_C

E_B B

C

E_A

Looped Task T

T

T
E_T exT

Graphical
LTL

Notation

BPMN
Process
Model

LTL Formulae

generator

Kripke structure

generator

Requirement
LTL

Formulae

Finite-states

Model

Compliance
checking

result

Invalid
(BPMN Process Model is not compty)

Valid
(BPMN Process Model is compty)

Model checker
(Spin, NuSMV)

TABLE II. THE MAPPING OF G-LTL NOTATIONS TO LTL

FORMULAE

G-LTL Notation LTL Formula

modeling and analysis of reactive systems that exhibit

random or probabilistic behavior. It verifies the temporal

formula ϕ holds for that finite state machines M or not. As a

result, it confirms the compliance of the process models.

Otherwise, it returns a counterexample in cases of violation

of compliance rules.

D. Automated compliance checking

The model checking produce counterexamples if the

verification of temporal properties are not satisfied [7, 16].

Generally, these counterexamples contain internal state

transitions rather than the process models. It makes them

difficult to understand by a non-technical user. It is

therefore, the output of the model checker should be

translated in the visual notation to benefit from the

generated counterexamples. The mapping of a

counterexample to the source BPMN process model can

significantly support the determination of the causal flow

that leads to the violation of compliance rules. We use

model checker dependency, which contain a tool chain that

translates the output of the model checker back to the

process model notations. This allows us to map each state to

the original BPMN process model element and colored as

red to highlight the errors to modelers and business experts.

III. TOOL DESIGN AND IMPLEMENTATION

In order to validate the presented approach, we implement

a tool using a set of Eclipse IDE plug-ins, also called

“CC4BPMN” (Compliance Checking for BPMN). This

plug-in is composed of two modules, “BPMN2PROMELA”

and “CR2LTL” to translation BPMN to ProMeLa (PROcess

MEta LAnguage) and Compliance Rules to LTL,

respectively. BPMN2PROMELA transform automatically

the BPMN process model (expressed using Eclipse BPMN

2.0 Modeler plug-in) to ProMeLa model by providing input

ProMeLa model file (*.pml) (i.e. EpiSpin translates the

ProMeLa model into Kripke structure). CR2LTL proposes a

set of G-LTL notation to express the compliance rules,

expected to be checked by providing input LTL file (*.prp).

The ProMeLa model file and the compliance rules

expressed by G-LTL notation file are presented as input to

EpiSpin plug-in which verifies the compliance of the

process models. Finally, when the compliance rules to be

checked are not satisfied by the ProMeLa model, the

counterexample returned by EpiSpin are mapped to the

source BPMN process model.

Indeed, the BPMN process model can be transformed into

ProMeLa language, which maps the processes, sub-

processes and activities into ProMeLa processes and

connector paths into ProMeLa channels. The messages

between processes are represented, without loss of

generality using integers in ProMeLa. In this translation, we

use the following notation: c will represent a channel and m

the message sent or received in this one. cS will denote an

array of channels and mS an array of messages to be sent or

received in each channel in the array cS.

The generation of temporal logic formulae expresses the

rules to be checked in EpiSpin model checker. In [17], we

show the translation of some principal elements: Sequence,

AND-Split, AND-Join, XOR-Split, XOR-Join, OR-Split, OR-

Join to ProMeLa Language. ProMeLa does not include

syntax for LTL formulae [18, 19]. EpiSpin, however, can

translate such formulae into ProMeLa syntax, with

command line option -f "[] ((P &&! q) U r)").
The translation is a never claim, encoding the Büchi-

automata acceptance condition [20, 21]. The formulae must

then express negative properties of “errors” (negation of

errors): execution sequences that satisfy the formula can be

reported as correctness violations in verification.

IV. CASE STUDY

The case study consists of a simple expense

reimbursement process shown in Fig. 2.

Prop.

Prop.

Prop. 1 Prop. 2

! Prop.

ʌ

˅

Prop. 1 Prop. 2

Prop. 1 Prop. 2 ˅

˅

Prop. 2 Prop. 1 →
˅

Prop. 1 Prop. 2 ↔

˅

ʌ

˅

Prop. 1 Prop. 2

Prop. 2 Prop. 1 X

˅

Prop.

G Prop.

X Prop.

F Prop.

Prop. 1 U Prop. 2

¬ Prop.

Prop. 1 ʌ Prop. 2

Prop. 1 ˅ Prop. 2

Prop. 1 XOR Prop. 2

Prop. 1 → Prop. 2

Prop. 1 ↔ Prop. 2

(Prop. 1 ʌ Prop. 2)

Fig. 2. Expense Reimbursement Process.

A. Expense Reimbursement Process

The employees of a company claim an expense

reimbursement, for instance, buying the office supplies or

software. After the expense report is received (Receive

Expense Report), a new account is created if the employee

does not already have one (Create Expense Account). The

report is then reviewed for automatic approval (Review for

Pre-Approval). If amount is less than $200 this one is

automatically approved (Auto-Approve Expense Account).

Otherwise if amount is equal or more than $200, then it

requires an approval of the supervisor (Approval Review by

Supervisor). In case of rejection, the employee receives a

rejection notice through email (Notify Employee of

Rejection), or otherwise, in case of acceptance, the

reimbursement goes to the employee’s direct deposit bank

account (Transfer Money to Employees Bank).

The Expense Reimbursement process has to comply with

several rules. We assume that the following rules among

others should be verified for the process.

 R1: if expense account does not exist then a new
account will be created.

 R2: if the amount is lower than $200 then the
expense account shall be auto-approved.

 R3: after request is approved, the money is
transferred to the employee’s bank; otherwise, a
notification of rejection is sent to the employee.

1) The PROMELA Model generation: in the following,

we will generate the ProMeLa model corresponding to the

expense reimbursement process shown in Fig. 2.

We define nine global channels denoted as cS to establish

the communication between activities. We define also cS1,

cS2 and cS3 as auxiliary array channels to simplify the

exchanging of messages between activities.

Receive Expense Report - this event is initiated by

receiving a request from an employee for expense

reimbursement. ’exist’ is 0 when the account doesn’t exist

or 1 when it exists. It is translated to ProMeLa process as

shown in Listing 1.

LISTING 1. RECEIVE EXPENSE REPORT PROMELA PROCESS

proctype ReceiveExpenseReport() {

 int exist;

 chan cS1[2] = [1] of {int} ;

 cS1[0]= cS[0];/*Send to create expense Account*/

 cS1[1]= cS[1];/*Send to review pre-Approval*/

 R:

 if

 :: exist=0 /*Account doesn’t exist*/

 :: exist=1 /* Account exist */

 fi;

 XORSplit(cS1,exist,1); goto R

}

Create Expense Account - This activity is chosen among

one of the two possibilities in a nondeterministic manner

without loss of generality, either the expense account is

created or it does not exist. It is translated to ProMeLa

process as shown in Listing 2.

LISTING 2. CREATE EXPENSE ACCOUNT PROMELA PROCESS

proctype createExpenseAccount() {

 int x;

 receive(cS[0],x);/*Receive from Expense Report*/

 send(cS[2],1);/*Send to Review for Preapproval*/

}

Review for Pre-Approval - This activity decides whether

the expense account can be approved automatically or it

requires a supervisor. As stated before, there are two

possible decisions; once again, we choose non-

deterministically one of them, without sacrificing the

generality of verification. The translation of Review for Pre-

Approval activity to ProMeLa process is shown in Listing 3.

LISTING 3. REVIEW FOR PRE-APPROVAL PROMELA PROCESS

proctype PreApproval() {

 mtype Amount;

 int x;

 chan cS2[2]=[1] of {int};

 chan cS3[2]=[1] of {int};

 cS2[0]= cS[1];

 cS2[1]= cS[2];

 cS3[0]= cS[3]; /*Send to Auto-approve Expense*/

 cS3[1]= cS[4]; /*Send to Approval review by

 supervisor*/

 P: XORJoin(cS2,x);/*Receive from Expense Report

 or Create Expense Account*/

 if

 ::(Amount<200)-> x=0

 ::(Amount>=200)-> x=1

 fi;

 XORSplit(cS3,x,1); goto P

}

Auto-Approve Expense Account - This activity is

chosen if the requested amount by an employee is less than

$200. It is translated to ProMeLa process as shown in

Listing 4.

LISTING 4. AUTO-APPROVE EXPENSE ACCOUNT PROMELA

PROCESS

proctype AutoApp() {

 int x;

 A:

 receive(cS[3],x);/*Receive from review for pre-

 Approval*/

 send(cS[5],1);/*Send to Transfer Money to

 Employee’s Bank*/

 goto A:

}

Approval Review by Supervisor - This activity is

chosen if the requested amount by an employee is more than

$200. In this case the approval is reviewed by a supervisor.

’approved’ is 1 when the review is approved, otherwise 0. It

is translated to ProMeLa process as shown in Listing 5.

LISTING 5. APPROVAL REVIEW BY SUPERVISOR PROMELA

PROCESS

proctype AppBSupervisor() {

 int approved, x;

 chan cS3[2]=[1] of {int}

 cS3[0]= cS[6];/*Send to Notify Employee of

 Rejection*/

 cS3[1]= cS[7];/*Send to Transfer Money to

 Employees Bank*/

 B:

 receive(cS[4],x);/*Receive from Review for pre-

 Approval*/

 if

 ::(approved=1) /*Approved*/

 ::(approved=0) /*Rejected*/

 fi;

 XORSplit(cS3,approved,1); goto B

}

Transfer Money to Employee’s Bank - The money is

transferred to employee’s bank account when the expense

reimbursement request is approved. It is translated to

ProMeLa process as shown in Listing 6.

LISTING 6. TRANSFER MONEY TO EMPLOYEE’S BANK

PROMELA PROCESS

proctype TransferMoney() {

 int x;

 T:

 XORJoin(cS,x);

 send(cS[8],1);/*Send to end process*/

 goto T;

}

Notify Employee of Rejection - The rejection is notified

to employee when the expense reimbursement request is

rejected. It is translated to ProMeLa process as shown in

Listing 7.

LISTING 7. NOTIFY EMPLOYEE OF REJECTION PROMELA

PROCESS

proctype Notification() {

 int x;

 N:

 receive(cS[6],x); /* Receive from Approval Review
 by Supervisor * /

 send(cS[9],1);/* Send to end process */

 goto T;

}

The description corresponding to the expense

reimbursement process described in Expense

reimbursement.pml is shown in Listing 8.

LISTING 8. EXPENSE REIMBURSEMENT.PML

chan cS[9]=[1] of {int};

proctype ReceiveExpenseReport(){...}

proctype createExpenseAccount(){...}

proctype PreApproval(){...}

proctype AutoApp(){...}

proctype AppBSupervisor(){...}

proctype TransferMoney(){...}

proctype Notification(){...}

proctype end(){...}

/* Run processes */

init {

 atomic{

 run ReceiveExpenseReport();

 run createExpenseAccount();

 run PreApproval();run AutoApp();

 run AppBSupervisor();run TransferMoney();

 run Notification();run end() ;

 }

}

2) Compliance checking rules generation:The following

description corresponds to the compliance rules expressed

in LTL formulae, described in Expense_reimbursement_

CRules.prp.

ltl R1 {[]((!ReceiveExpenseReport:exist==1) ->

<> createExpenseAccount@C)}

ltl R2 {[]((PreApproval: Amount<200)-> AutoApp@A)}

ltl R3 {[](<>(AppBSupervisor:approved == 1) ->

((TransferMoney@T && ! Notification@N) U

(! TransferMoney@T && Notification@N)))}

The automatically generated ProMeLa models for

Expense Reimbursement process and the compliance rules

expressed in temporal logic formulae are fed into an

EpiSpin model checker. It checked the compliance of the

process models, or otherwise they obtain a counterexample,

which signifies that, the given BPMN process model do not

conform to the compliance rules. The Fig. 3.1 shows the

input ProMeLa model file Expense_reimbursement.pml and

the input LTL file Expense_reimbursement_CRules.prp

provided to EpiSpin plug-in and the Fig. 3.2 shows the

result of verification.

V. CONCLUSION

In this article, we present a formal approach for the

compliance checking of BPMN process models. It proposes

to translate the BPMN process model into finite-states

machine (Kripke structure) and also to express the

compliance rules in LTL formulae through intermediary G-

LTL notation to obtain a same level of abstraction as the

process models.

The proposed approach helps to check whether or not a

process model satisfies the requested compliance rule, by

means of model checking technique.

A counterexample is produced when the verification of

temporal properties is not satisfied by the process model.

Fig. 3. The result of checking

The counterexamples may help to notify the actual causes

of error generation in source BPMN model.

We have been validated the approach with the help of

Eclipse IDE plug-ins development. In this article, the

approach is evaluated using a basic example, which

illustrates the verification of a given set of compliance rules.

Currently, our research work in the area of compliance

checking is focused on verification of control flow aspects.

In the future, we intend the verification of data objects and

their states before and after each change in the process

models, more specifically the BPMN process models.

REFERENCES

[1] R.Lu, “Constraint-Based Flexible Business Process Management,” in
School of Information Technology and Electrical Engineering,
University of Queensland, 2008.

[2] W.M.P. Van der Aalst, A. ter Hofstede, M. Weske , “Business
Process Management: A Survey,” In Proceedings of Conference on
Business Process Management (BPM 2003), Eindhoven, Netherlands
2003.

[3] I. Kitzmann, C. Konig, D. Lubke, L. Singer , “A simple algorithm for
automatic layout of bpmn processes,” In Proceedings of the IEEE
Conference on Commerce and Enterprise Computing (CEC’09),
2009, pp. 391-398.

[4] M. El Kharbili, A.K. Alves de Medeiros, S. Stein, W.M.P. Van der
Aalst, “Business Process Compliance Checking Current State and
Future Challenges,” In Proceedings of Modellierung betrieblicher
Informations syteme (MobIS’08), 2008, pp. 107-113.

[5] W.M.P. Van der Aalst, H.T. de Beer, B.F. Van Dongen, “Process
mining and verification of properties: An approach based on temporal
logic,” In Proceedings of the 2005 Confederated international
conference on On the Move to Meaningful Internet Systems
(OTM’05), 2005, pp. 130-147.

[6] M. Kovcs, L. Gnczy, “Simulation and Formal Analysis of Workflow
Models,” In Proceedings of the Fifth International Workshop on
Graph Transformation and Visual Modeling Techniques, 2006, pp.
215-224.

[7] Y. Lui, S. Müller, K. Xu, "A static compliance-checking framework
for business process models,” In Proceedings of IBM Systems Journal
46(2), 2007, pp. 335-362.

[8] A. Awad, G. Decker, M. Weske, “Efficient Compliance Checking
using BPMN-Q and Temporal Logic,” In Proceedings of the 6th

International Conference on Business Process Management
(BPM’08), 2008, pp. 326-341.

[9] A. Awad , “BPMN-Q: A Language to Query Business Processes,” In
Proceedings of the 2nd International Workshop on Enterprise
Modelling and Information Systems Architectures (EMISA'07), 2007,
pp.115-128.

[10] F. Puhlmann, M. Weske, “Using the pi-calculus for formalizing
workflow patterns,” In Proceedings of the 3rd International
Conference on Business Process Management (BPM’05), 2005, pp.
153-168.

[11] C Vaz, C. Ferreira, “Formal Verification of Workflow Patterns with
SPIN,” In Technical Report, April 2007. INESC-ID Tec. Rep. 12.

[12] H. Song H, K.J. Compton, “Verifying pi-calculus processes by
Promela translation,” In Technical Report CSE-TR-472-03, Univ. of
Michigan, 2003.22.M.E.Stickel.

[13] M.C. Browne, E.M. Clarke, O. Grümberg, “Characterizing finite
Kripke structures in propositional temporal logic” In Theoretical
Computer Science - Volume 59 Issue 1-2, July 1988, pp. 115-131.

[14] K. Y. Rozier, “Linear Temporal Logic Symbolic Model Checking,”
In Computer Science Review -Volume 5, Issue 2, May 2011, pp.
163–203.

[15] G.J. Holzmann, “The Model Checker SPIN,” In Proceedings of IEEE
Transactions on software Engineering Special issue on formal
methods in software practice, 1997, pp. 279-295.

[16] A. Foerster, G. Engels, T. Schattkowsky, “Activity diagram patterns
for modeling quality constraints in business processes,” In
Proceedings of the 8th international conference on Model Driven
Engineering Languages and Systems (MoDELS’05), 2005, pp. 2-16.

[17] M.O Kherbouche, A. Ahmad, H. Basson, “Using model checking to
control the structural errors in BPMN models,” In Proceedings of 7th
IEEE International Conference on Research Challenges in
Information Science (RCIS’13), 2013, pp. 1-12.

[18] Z. Manna, A. Pnueli, “The temporal Logic of Reactive and
Concurrent Systems,” In The temporal logic of reactive and
concurrent systems, 1992, pp. 427.

[19] G.J. Holzmann, D. Peled , “The State of SPIN,” In Proceedings of
Computer Aided Verification (CAV’96), 1996, pp. 385-389.

[20] P. Gastin, D. Oddoux, “Fast LTL to Büchi Automata Translation,” In
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV’01), 2001, pp. 53-65.

[21] F. Somenzi, R. Bloem, “Efficient Büchi Automata from LTL
Formulae,” In Proceedings of the 12th International Conference on
Computer Aided Verification (CAV ’00), 2000, pp. 247-263.

