
HAL Id: hal-03108784
https://hal.science/hal-03108784v1

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing the ripple effects of change in business
process models

Mohammed Oussama Kherbouche, Adeel Ahmad, Mourad Bouneffa, Henri
Basson

To cite this version:
Mohammed Oussama Kherbouche, Adeel Ahmad, Mourad Bouneffa, Henri Basson. Analyzing the
ripple effects of change in business process models. 16th IEEE International Multitopic Conference
(INMIC’13), Dec 2013, Lahore, Pakistan. �10.1109/INMIC.2013.6731320�. �hal-03108784�

https://hal.science/hal-03108784v1
https://hal.archives-ouvertes.fr

Analyzing the ripple effects of change in business

process models

Oussama Mohammed Kherbouche
‡
, Adeel Ahmad

†
, Mourad Bouneffa

‡
, Henri Basson

‡

‡
Université Lille Nord de France

Laboratoire d’Informatique, Signal et Image de la Côte d’Opale

BP-719 62228 CALAIS Cedex France

†
DataSAZ Solutions

M-22, Mezzanine Floor, Mid City Plaza, Murree Road

46300 Rawalpindi, Pakistan
E-mail: {kherbouche, ahmad, bouneffa, basson}@lisic.univ-littoral.fr

Abstract—Change management is a critical task to control the

side effects of a modification during the business process
evolution. The evolution of business processes is an essential

activity for the companies to better fulfill the requirements of
their customers and different stakeholders. In this respect, the
enterprises should adopt an effective mechanism in order to

achieve the flexible business process models. It is important to
identify and highlight the ripple effects of a change for minimizing
their impact on other parts or entities of the system and

associated services. This paper proposes a dependency-centric
approach for change impact analysis. We attempt to demonstrate
the change impact propagation in business process models by

detecting and analyzing the interdependencies among all parts of
business processes along with associated services. It can support
the maintenance and evolution of business process models. The

major objective is to help the modelers and business experts to
assess the associated risk of intended changes and estimate the
effort required for their accomplishments.

Keywords—Business process model; change impact analysis;

side effects; ripple effects; dependency relationships.

I. INTRODUCTION

The dynamic adaptability of a business process (BP) is an
essential requirement for companies to cope with increasing
rapid changes. However, without proper control, changes in
business process models [1, 2] may generate the structural,
functional, or qualitative side effects. These may include
deadlocks, infinite executions, multiple endings [3, 4] or
semantic conflicts [5]. Others may refer to the non-compliance
with regulations [6] and the associated qualitative
inconsistencies such as the degradation of service quality
(response time, security, message size, etc.), or deterioration of
global quality of the business process [7]. In this respect, the
change management is an important subject in the life cycle of
any business process and it has been actively persuaded, by the
research community, for the last decade [8, 9]. The main
objective of this research is to identify the potential effects of a
change and to estimate the needs to accomplish a change.

In the literature, several approaches and paradigms [10-16]
deal with the evolution of business processes and propose
different strategies for process-instance migration during
change incorporation. In [10], the author suggests a flexible
modeling and execution of workflow activities based on a meta-
model of business. This approach supports dynamic changes
such as adding or deleting activities, but requires that the
activity is not in the running state while incorporating the
change. Casati et al. [11] presents a workflow modification
language (WFML) to support the issue of migration of running

instances when their respective schema is changed. It
introduces the formal criteria to determine which running
instances can be safely migrated to the new version. In the same
way, Zhao and Liu [12] propose version management for
business process schema evolution by representing different
business process schema evolutions and the dependencies
between them. ADEPT-flex [13] is a graph based workflow
model for the integration of dynamic changes even during the
execution instances of the model without losing control and
structural coherence. Another approach proposed by [14] is
based on the use of Petri nets to calculate the minimal region
affected by the changes. The authors in [15] propose a
combination of a set of patterns of change and the seven
characteristics of change management. YAWL [16] is an
initiative based on formal foundations that shows significant
promise in the support of a number of distinct flexibility
approaches.

Nonetheless, despite innovative works proposed by the BP
community in the literature aimed to deal with the dynamic
change management in business processes, still a lack is
observed for the change impact analysis to prevent side effects
[17] and/or to estimate the ripple effects [18] of concerned
change.

In this paper, we propose an approach, with a differing
focus as compared to existing work in the literature, which aims
to increase awareness of modelers following a change in the
business process models by predicting and assessing the impact
of changes in a static fashion during design time. It addresses
the problem in the upstream at the process type level (during
design time), and not in the downstream at the instance level
(during runtime). It requires an a priori analysis of change
impact propagation in business processes through dependency
relationships analysis. The proposed approach allows not only
to analyze the relationships between the changed part and the
other potentially affected parts in the business process model
(horizontal change impact propagation) but also to analyze the
effects in the concerned associated services (vertical change
impact propagation).

The paper is structured as follows: the section II discusses
the importance of change impact analysis in the life-cycle of
business process. The typology of the dependency relationships
in the business process models and associated services is
discussed in the section III. Section IV proposes a set of metrics
to compute the depth of change impact propagation. Section V
briefly describes the change incorporation algorithms. Later,
section VI concludes our contribution.

II. THE CHANGE IMPACT ANALYSIS

Causes for the changes in Business Process models
(BPM) [19] can be manifold, such as a correction of one or
more errors, exception handling, taking into account new
legal laws, etc. It can be an evolution in the business needs
(innovation), or performance improvements (optimization),
etc. Unlike the first two causes which can be applied in an
ad-hoc manner at process instance level (also known as
instance-specific changes), the introduction of new legal
laws, the innovation or the optimization of business process
requires to consider the change at higher level i.e. process
type level (also named process schema evolution) [20].

A change can be formally described as a difference
(denoted as Δ) between the initial process schema S and the
updated process schema S’, it can be quantified as follows:

Sʹ = S + Δ

Δ = |Sʹ - S|

We refer by the change impact analysis as an a priori
analysis of this variant to minimize the change side effects
and determine the change ripple effects in business
processes. This variant can potentially generate post-change
effects (in structural, functional, behavioral, logical, and
qualitative aspects) [21] on partial or the whole process and
which can be propagated in horizontal and/or vertical way.

The horizontal change impact propagation refers to the
propagation of the change impact between the different
entities belonging to the same layer i.e. the business process
model layer. This is the case of the change impact
propagation between the adjacent activities.

Whereas, the vertical change impact propagation refers to
the propagation of the change impact between the different
entities belonging to different layers i.e. the business process
model layer and services layer. This is the case of the change
impact propagation between a task and a web service that
implements the all or a part of this task and vice versa.

III. THE DEPENDENCY RELATIONSHIPS ANALYSIS

Besides traceability analysis [22, 23], the dependency
analysis play an important role in the change impact analysis
process. Its main objective is to capture the existing
dependency relationships in a system and to identify the
entities that can be potentially impacted by a change. Indeed,
like any other information system, a business process is
composed of different kind of components or entities which
play different roles and which also interact with each other in
multiple aspects, either directly or indirectly. These
interactions may refer to dependency relationships.

In order to analyze of business process dependency, it is
necessary to identify and classify the primary dependency
relationships.

A. Taxonomy of dependency in the business process models

We can summarize four major types of dependency
which can play an important role in the change impact
analysis of the business process models.

1) Structural dependency: it refers to the syntactic

dependency between two entities, e.g. a change applied on

an activity in the business process model can have a

structural impact on adjacent activities.

2) Semantic dependency: it refers to the semantic

relation between two entities. A change in one entity (e.g.

gateway) can cause a change in the semantic meaning or the

interpretation of the dependent entities.

3) Direct Dependency: it highlights a contol-flow (F ⊆

n1 × n2) between two adjacent entities (n1, n2).

4) Indirect dependency: it is a dependency of an entity

on another by a transitive or intermediate relationship. It

highlights a set of intermediate control-flow that may exist

between two entities. i.e. if there exist a set of direct

dependency relationships between activities B1 R B2 and B2

R Bn then it implies B1 R
+
 Bn.

Fig. 1. Multi-layer dependency in business process

We attempt an exhaustive analysis of the dependency
relationships among the different entities of business process
layers by providing a multi-dimensional dependency model
that includes not only the activity and data dependency but
also the different dependency relationships between business
process model layer and services layer (as shown in Fig. 1).

B. Intra-layer dependency relationships

The intra-layer business process dependency
encompasses the followings:

1) Activity dependency (routing): The activity

dependency or routing dependency describes the activity and

process execution order through the control-flows (i.e.

sequence flow and message flow). These execution orders are

based on technical requirements and business regulations.

The activity dependency defines not only the execution order

but also the semantics associated with this order. For

example, an XOR-Join routing of the three activities A, B and

C such that A or B must execute before C. We can further

distinguish two kinds of routing relationships [24].

 Intra-process dependency: The intra-process
dependency refers to routing relationships between
neighboring activities within the same process, as
shown in Fig. 1 (within the bank process).

 Inter-process dependency: It is concretely
represented by the routing relationship between
activities in the different processes (e.g. messages
exchange). As shown in the Fig. 1 (between the
customer and bank process).

 The activity dependency can be formally defined as:
ȡa = (₯, Ω) over a set of activities A = {a1… an} and a set of
control-flows T = {t1… tn}, where:

₯ = ₯i (a) ∪ ₯o (a) whereas a ∈ A.

₯o (a) is a set of all succeeding activities ai ∈ A
(denoted as: ai → a) where the executions are dependent on
activity a. The relationship can be one-to-many i.e., multiple
activities depend on one activity. In the same way, ₯i (a) is
a set of all preceding activities ai ∈ A (denoted as: a → ai)
on which the execution of activity a is dependent. The
relationship may be a many-to-one, i.e., one activity
depends on multiple activities.

The set of control flows can be formaly shown as:

Ω = Ωi ∪ Ωo

The Ωi is a set of control-flows, ti ∈ T, connecting each
activity ai∈ ₯i(a) to a, i.e. all incoming arcs (₯i(a), a) of
a. While the Ωo is a set of control-flows, ti ∈ T, connecting
a to each activity ai∈ ₯o(a) , i.e. all outgoing arcs (₯o(a),
a) of a.

2) Data dependency : The data dependency refers to

the common resources or data related to multiple activities.

There exist three major types of data dependencies [25]:

 Flow dependencies: It emerges whenever one
activity produces a resource or data that is used by
another activity.

 Sharing dependencies: It occurs whenever multiple
activities use the same resource or data.

 Fit dependencies: It arises when multiple activities
collectively produce a single resource or data.

We can formalize a set of all data transferred between
activities [13] as:

D= {d1, d2 … dn}

Every activity a ∈ A has input and output parameters,
denoted as InPARs(a) and OutPARs(a) parameters,
respectively. The symbol dc represents a data connection as:

dc = {d, a, par, mode}

Where d∈ D, a∈ A, par∈ InPARS(a)∪ OutPARs(a), and
mode ∈ {read,write}. The set of all data connections can be
represented as:

DC = {dc1, dc2, … ,dcn}

An activity ai depends on another activity aj (denoted as:
ai

(D) aj) iff:∃ dcx, dcy ∈ DC, Such that:

dcx = (d, aj , pars, write)

dcy = (d, ai , part, read)

Where d ∈ D, part ∈ InPARs(ai), pars ∈ OutPARs(aj)
and aj precedes ai in process schema.

C. Inter-layer dependency relationships

Like the business process layer, the services layers
contains a set of services which interact with each other by
direct or indirect relationships and which are also subjected
to consistent evolution[26]. But there exist beside, a coupling
relation between services and business processes as shown in
the Fig. 1 which we have called inter-layer dependency
relationship.

Indeed, the correlation, input and output of Web services
are related through process orchestration which uses process-
based service standards such as WS-BPEL [27]. Therefore,
a business process may support multiple services. This
implies that whenever a change occurs in the business
process, the change may affect the services that are
associated with this business process and vise versa. This can
be justified by the fact that an activity in the business process
model can interact with a service in uni or bidirectional way
via the invocation of one of its operations.

A service is generally defined as a set of operations oi∈
O = {o1, . . . , on} which is associated with a set of messages
and the invocation relations T ⊆ O × O associated with the
operations.

We can formally define the dependency relationship
between the business process layer and service layer as:
ȡi = (As, ᴦ) over a set of activities A = {a1… an} and a set of
web services S= {s1… sn}, where:

As is a set of activities that invoke the same service si∈ S

(denoted as : ai ⇝ si) and ᴦ ⊆ A ×S is the set of edges

connecting nodes that represent the dependency

relationships between each activity ai∈ As and invoked
service si∈ S.

IV. CHANGE IMPACT METRICS DESCRIPTION

The analysis of the change ripple effects should not be
limited to know how many and which other part of process
can be impacted in the business process. But it should also
analyze from where the change impact begins and where it
ends i.e. compute the impact propagation depth while
distinguishing between the impacted entities in term of
degree of the impact i.e. impact power.

To deal with this problem, we propose to assign a
numeric weight to each dependency relationship in the
corresponding business process layer and the dependency
relationship between businesses process layer and services
layer. This assigned value (Impact Weight Factor) intends to
compute the depth of impact and thus the degree of the
impact for each impacted entity.

In fact, the Impact Weight Factor represents a numeric
value which can be used to measure the change impact
propagation by expressing the impact level of one entity to
another. It is calculated on the basis of a set of metrics, as
follows:

IWF (ai) = ∑ (P (ai) +E (ai) +F (ai) + ND (ai)) /TDR

Where, TDR represents the total number of dependency
relationships in the model. Whereas the different metrics are
described as below:

A. The priority metric

The priority metric, denoted as P, represents the priority
of a given activity ai ∈ A in the execution flow of the
business process model. It is fixed by the modelers and
business experts during the design-time. It can be computed
from the corresponding value to one of the three values:
High, Medium and Low i.e. P (A) = 0.75 75/100.

B. The execution frequencies metric

The execution frequencies metric of a given activity in
each execution path of business process instance Ix where x∈
{1… n} can be calculated from the process execution logs.
Indeed, the business process execution logs could be mined
to discover the number of times each execution path is run
for an activity. For example, if we observe that the execution
path that lead to the activity A and B is executed rather than
the path leading to the activity C in the different instances, it
implies that the E(A) and E(B) is greater than E(C).

C. The invocation frequencies metric

This metric refers to the invocation frequencies denoted
as F of a given activity in the business process model. For
example, if the activity B is called in every possible
execution path of activity A, then the likelihood of A being
impacted, by a change in B, becomes high. However, if B is
called in only one among many possible execution paths
inside A, then the likelihood of A being impacted, by a
change in B, becomes much lower.

D. The nested depth metric

The nested depth metric ND is the position of each
activity in the execution path of the business process model.
In other terms, the activity that occurs formerly in the path of
business process model receives a higher coefficient, while
the activity that occurs later in the path of business process
model receives a lower coefficient.

The degree of the impact for each impacted entity by a
change can be calculated as a sum of all the Impact Weight
Factors from the changed entity to impacted entities. In
other words, the entities involved in dependency relationship
with the changed entity are likely to be impacted with their
inclusion in the path which connects them i.e. we investigate
all its possible execution paths and we assign an impact
value for each path.

Therefore, we say that a path can be marked as red when
the degree of the impact is high e.g. between 15 and 20. We
say that a path can be marked as orange when the degree of
the impact is medium e.g. between 10 and 15 and that a path
can be marked as green when the degree of the impact is low
e.g. between 1 and 10. These threshold values can be defined
by modelers and business expert based on empirical studies.

V. CHANGE IMPACT PROPAGATION ASSESSMENT

In order to provide a generic approach for change impact
analysis in the business process model and associated
service, we propose a high level reasoning using an abstract
notation i.e. we do not presume any particular process
modeling approach, but simply take in to account the basic
elements of a process. A business process is expressed in an
abstract way (e.g. using graph based formalism).

A. Definition 1 (Business process): Formally, a business

process (Gp) is a function Gp (N, Type, F, Status) where:

 N = {n1, n2,…,nn} is a finite set of nodes which can
be partitioned into events, activities, and gateways,
represented respectively as E, A, G).

 Type: N → {Activity, Event, AND-join/split, XOR-
join/split, OR-join/split} is a function that assigns a
type to each node.

 F N x N (edges in the graph) represents the
sequence flow relation between the nodes. Such that
{(n, n‘) ∈ F} denote, respectively, the direct
predecessors and successors of a node n ∈ N.

 S is the set of services invoked by the process.

 D is a set of data.

 Status → {init, added, deleted, modified} is the

current status (change-trace) of node n∈ N in

process model.

B. Definition 2 (Activity): An activity ai ∈ A is can be

defined on order (Input, Output, s) where Input ⊂ D is

the set of ai inputs, Output⊂ D is the set of ai outputs and

s ∈ S is the service invoked by ai.

The algorithm 1 presents the rule of change impact
propagation through activity dependency relationships. It is
triggered when a modeler attempts to add, modify or remove
a flow-object FOx from a process at process type level. The
FOx and these control-flows are marked. The Dpo set return
both succeeding activities and the corresponding routing
relationships between a given activity and returns succeeding
activities (multiple activities depend on concerned activity).

The set Dpi return both preceding activities and the
corresponding routings between preceding activities and a
given activity, All returned activities and corresponding
routing relationships (control-flows) are also marked to
express the depth of change impact which is calculated on
the basis of Impact Weight Factor.

Algorithm 1: Intra-layer dependency relationships
 Analysis (Activity dependency)

Input: N // set of nodes

Init : ₯o ← ∅, ₯i ← ∅
Begin
 If Status (FOx) = =”added” ||”deleted” ||”modified” then
 mark(FOx);

 mark (F ∈ {Ωi(FOx) ∪ Ωo(FOx)});
 /* Dpo gets successively each succeeding activities
 depends on FOx and the corresponding routing
 relationships in N */
 for all ai ∈ N (i = 1,…, n) do
 /* ai depend on FOx */
 If ai → FOx then
 Dpo ← Dpo U {ai}
 IWF← CalcIWF(ai);
 pathImp ← calcPathImpact(execPath(ai),IWF);
 putInMap(ai, pathImp) ;
 end if
 end for
 /* Dpi gets successively each preceding activities
 which FOx depends on and the corresponding
 routing relationships in N */
 for all ai ∈ N (i = 1,…, n) do
 /* FOx depend on ai */
 If FOx → ai then
 Dpi ← Dpi U {ai}
 IWF← CalcIWF(ai);
 pathImp ← calcPathImpact(execPath(ai),IWF);
 putInMap(ai, pathImp) ;
 end if
 end for

 for all ai ∈ Dpo U Dpi (i = 1,…,n) do
 ImpactPow ← getFromMap(ai) ;
 clr ← getColorPathImpact(ImpactPow);
 mark(ai, clr) ;
 mark(F ∈ {Ωi(ai) ∪ Ωo(ai)}, clr)
 end for
end if
End

The second rule as described in Algorithm 2 is also
triggered when the change at the process type level occurs.
The OutputDs represent a set of data produced by FOx
activity and AllOutDep is a set of activities that depend on a
specific output data element D produced by activity FOx.
The InputDs is a set of data used by FOx activity and
AllInDep is a set of activities where the output data is the
input data of an activity FOx.

Algorithm 2: Intra-layer dependency relationships
 Analysis (Data dependency)

Input: N // set of nodes

Init : OutputDs← ∅, AllOutDep ← ∅, InputDs← ∅,

 AllInDep ←∅
 Begin
 If Status (FOx) = =”added” ||”deleted” ||”modified” then
 mark(FOx);
 mark (F ∈ {Ωi(FOx) ∪ Ωo(FOx)});

 for all Di ∈OutPARs(FOx) (i = 1,…, n) do
 OutputDs← OutputDs U {Di}
 end for
 for all Di ∈OutputDs(i = 1,…, n) do
 mark(Di);

 mark(F∈ {Ωi(Di) ∪ Ωo(Di)});
 /* AllOutDep gets successively each activities
 which depend on output data of the given activity
 FOx in N */
 For all aj∈ N(j = 1,…,n) do
 /* aj depend on D produced by FOx */

 If aj
(D)

 FOx then
 AllOutDep ← AllOutDep ∪ {ai}

 IWF← CalcIWF(ai);
 pathImp ← calcPathImpact(execPath(ai),IWF);
 putInMap(ai, pathImp) ;

 end if
 end for
 end for
 for all Di∈ InPARs(FOx)(i = 1,…, n) do
 InputDs ← InputDs ∪ {Di}
 end for

 for all Di ∈ InputDs(i = 1,…,n) do
 mark(Di);

 mark(F∈ {Ωi(Di) ∪ Ωo(Di)});
 /* AllInDep gets successively each Activities
 where the output data is the input data of given
 activity FOx in N */
 for all aj ∈ N(j = 1,…,n) do
 /* FOx depend on D produced by aj */

 If FOx
(D)

aj then
 AllInDep ← AllInDep ∪ {aj}

 IWF← CalcIWF(aj);
 pathImp ← calcPathImpact(execPath(aj),IWF);
 putInMap(aij, pathImp) ;

 end if
 end for

 for all ak ∈ ALLInDep U ALLOutDep(k = 1,…, n) do
 ImpactPow ← getFromMap(ak) ;
 clr ← getColorPathImpact (ImpactPow);

 mark(ak, clr) ;

 mark(F∈ {Ωi(ak) ∪ Ωo(ak)} , clr);
 end for
 end for
 end if
End

The third rule as described in Algorithm 3 analyzes the
impact propagation in vertical way. The Dps represent a set
of all services invoked by concerned activity. All returned
services and corresponding invocation relationships (service
invocation) are also marked to express the depth of change
impact.

Algorithm 3: Inter-layer dependency relationships analysis

Input: N // set of nodes
Init : , ₯s ← ∅
 Begin
 If Status (FOx) = =”added” ||”deleted” ||”modified” then
 mark(FOx);
 mark (F ∈ {Ωi(FOx) ∪ Ωo(FOx)});
 /* Dps gets each services invoked by FOx and the corresponding

routing relationships */
 for all si ∈ S (i = 1,…, n) do
 /* si is invoked by FOx */

 If FOx ⇝ si then
 Dps ← Dps U {si}
 IWF← CalcIWF(si);
 pathImp ← calcPathImpact(invokepath(si),IWF);
 putInMap(si, pathImp) ;
 end if
 end for
 for all si → Dps (i = 1,…,n) do
 ImpactPow ← getFromMap(si) ;
 clr ← getColorPathImpact(ImpactPow);
 mark(si,clr) ;

 mark(F ∈ {r(FOx,si)},clr)
 end for

end if
End

VI. CONCLUSION

The change management in business process can help to
analyze change impact and the generated ripple effects. In
this paper, we propose an approach for an a priori analysis
of change impact propagation in business processes by
exploiting the dependency relationship between the modified
part and other potentially affected parts by concerned
changes. In this respect, we focus on the dependency
relationships analysis within the business process model and
among business process models and the services that
implement them. We use a set of metrics to calculate the
significant depth of change impact propagation depth while
distinguishing the impacted entities in term of degree of the
impact. The change impact propagation is assessed on the
basis of graph reachability. The continuing work aims both
to analyze the change impact propagation on other
dependency relationships (which include actors, resources,
events, control data, and applications, etc.) in the business
process and to analyze other layers which may likely be
impacted by a change i.e. components layer, data layer, etc.

REFERENCES

[1] R.Lu “Constraint-Based Flexible Business Process Management," in
School of Information Technology and Electrical Engineering,
University of Queensland, 2008.

[2] W. van der Aalst, and al, "Business Process Management: A Survey,"
in Proceedings of Conference on (BPM 2003), Eindhoven,
Netherlands, pp 1-12, 2003.

[3] O.M Kherbouche, A.Ahmad, H. Basson, "Detecting structural errors
in BPMN process models," in Proceedings of the 15th International
Multitopic Conference (INMIC), Islamabad, Punjab, Pakistan, pp.
425- 431, IEEE Computer Society, 2012.

[4] O.M Kherbouche, A.Ahmad, H. Basson, " Using model checking to
control the structural errors in BPMN models," in Proceedings of the
7th International Conference on Research Challenges in Information
Science (RCIS), Paris, France, IEEE Computer Society, 2013.

[5] S. Rinderle, M. Reichert, and P. Dadam, “On dealing with
semantically conflicting business process changes,” Technical Report
UIB-2003-04, University of Ulm, Computer Science Faculty, June
2003.

[6] A. Awad, G. Decker, M. Weske, "Efficient Compliance Checking
Using BPMN-Q and Temporal Logic," in Proceedings of the 6th
International Conference on Business Process Management, pp. 326-
341, 2008.

[7] L.Sánchez-González, F. Ruiz, F. García, M. Piattini, "Improving
Quality of Business Process Models," in Proceedings of the 6th
International Conference, ENASE 2011, Beijing, China, pp. 275-144,
2011.

[8] B. A. Rajabi, S. P. Lee, "Modeling and Analysis of Change
Management in Dynamic Business Process," in International Journal
of Computer and Electrical Engineering, pp. 181-189, 2010.

[9] H.A. Reijers, "Workflow Flexibility: The Forlorn Promise," in
Proceedings of the 15th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises (WETICE
2006), 26-28 June 2006, Manchester, United Kingdom, pp. 271-272.
IEEE Computer Society, 2006.

[10] M. Weske, "Flexible modeling and execution of workflow activities,"
in Proceedings of the Thirty-First Hawaii International Conference,
vol. 7, Jan. 6-9, pp. 713-722, 1998.

[11] F. Casati, S. Ceri, B. Pernici and G. Pozzi, "Workflow Evolution,"
Published in Data and Knowledge Engineering, pp. 438-455, 1996.

[12] X. Zhao, C. Liu, "Version management for business process schema
evolution," Published in Information Systems, Volume 38, Issue 8,
pp. 1046–1069, 2013.

[13] M. Reichert and P. Dadam, "ADEPTflex - Supporting Dynamic
Changes of Workflows without Losing Control," Journal of
Intelligent Information Systems, Special Issue on Workflow
Management, Vol. 10, pp. 93-129, 1998.

[14] P. Sun and C. Jiang, "Analysis of workflow dynamic changes based
on Petri net," in Information and Software Technology, Volume 51,
Issue 2, pp. 284-292 February 2008.

[15] B.Weber, M. Reichert, S. Rinderle, “Change patterns and change
support features – Enhancing flexibility in process-aware information
systems," in Proceedings of the 19th international conference on
Advanced information systems engineering, pp. 574-588, 2008.

[16] W.M.P. van der Aalst and A.H.M. ter Hofstede, “YAWL: Yet
Another Workflow Language, " Published in Information Systems,
30(4) pp.245-275, 2005.

[17] R. S. Arnold and S. A. Bohner, “Impact Analysis - Towards A
Framework for Comparison,” in Proceedings of the Conference on
Software Maintenance, Los Alamitos, CA, pp. 292-301, 1993.

[18] S. A. Bohner, "A Graph Traceability Approach for Software Change
Impact Analysis," Ph.D. Dissertation, George Mason University,
Fairfax VA, 1995.

[19] S. Rinderle, M. Reichert, and P. Dadam, “Correctness criteria for
dynamic changes in workflow systems - a survey,” Published in Data
Knowledge., vol. 50, no. 1, pp. 9–34, 2004.

[20] S. Nurcan, "A Survey on the Flexibility Requirements Related to
Business Processes and Modeling Artifacts," in Proceedings of the
41st Hawaii International Conference on System Sciences
HICSS'2008, pp. 378-378, 2008

[21] O.M Kherbouche, M. Bouneffa, A.Ahmad, H. Basson, " Analyse a
priori de l’impact du changement des processus métiers," in
Proceedings of the 31th INFormatique des ORganisations et Systèmes
d'Information et de Décision (INFORSID), Paris, France, 29-31 May
2013.

[22] A. Marcus, J. I. Maletic, “Recovering Documentation to Source Code
Traceability Links using Latent Semantic Indexing,” in Proceedings
of the 25th International Conference on Software Engineering, pp.
125- 135, 2003.

[23] A. V. Knethen, “A Trace Model for System Requirements Changes
on Embedded Systems,” in Proceedings of the 4th International
Workshop on Principles of Software Evolution, pp. 17-26, 2001.

[24] G. Grossmann, G. Schrefl, M. Stumptner, “Modelling inter-process
dependencies with high-level business process modelling languages,”
in Proceeding of the Asia-Pacific Conference on Conceptual
Modelling (APCCM). pp. 89–102, 2008.

[25] T. W.Malone, “Tools for inventing organizations: Toward a
handbook of organizational processes”, Published in Management
Science 45(3) pp. 425-443, 1999.

[26] W. Shuying, L.F. Capretz, “A Dependency Impact Analysis Model
for Web Services Evolution”, in Proceeding of IEEE International
Conference on Web Services, ICWS 2009, Los Angeles, CA, pp. 359
- 365 2009.

[27] WSBPEL Web Services Business Process Execution Language
Version 2.0, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

