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Summary
Standard state estimation techniques, ranging from the linear Kalman filter (KF)
to nonlinear extended KF (EKF), sigma-point or particle filters, assume a per-
fectly known system model, that is, process and measurement functions and
system noise statistics (both the distribution and its parameters). This is a strong
assumption which may not hold in practice, reason why several approaches
have been proposed for robust filtering, mainly because the filter performance
is particularly sensitive to different model mismatches. In the context of linear
filtering, a solution to cope with possible system matrices mismatch is to use
linear constraints. In this contribution we further explore the extension and use
of recent results on linearly constrained KF for robust nonlinear filtering under
both process and measurement model mismatch. We first investigate how lin-
ear equality constraints can be incorporated within the EKF and derive a new
linearly constrained extended KF (LCEKF). Then we detail its use to mitigate
parametric modeling errors in the nonlinear process and measurement func-
tions. Numerical results are provided to show the performance improvement of
the new LCEKF for robust vehicle navigation.

K E Y W O R D S

linearly constrained extended Kalman filter, model mismatch, robust filtering, robust vehicle
navigation

1 INTRODUCTION

It is well known that state estimation (ie, infer the dynamic states of a system from a set of available noisy observations)
is a fundamental task in robotics, tracking, guidance, and navigation systems, to name a few1-4. In general, either if the
state-space representation of the system dynamics is linear or nonlinear, standard state estimation techniques assume
a perfect knowledge of the system characteristics, which may not be a reasonable assumption in real-life applications.
For linear dynamic systems, the best linear minimum mean square error (MSE) estimator is given by the Kalman filter
(KF).5 In this case, the main assumptions are perfectly known system matrices, known noise first and second-order statis-
tics, and perfect initialization. The same limitations apply to the popular extended KF (EKF),5 the family of sigma-point
filters,6,7 or sequential Monte Carlo methods,8 for which a perfect knowledge of nonlinear process and measurement
functions and both noise statistics must be considered. That is the reason why there exists a continued effort to develop
robust filtering techniques. Among them, a lot of effort has been devoted to the mitigation of nonnominal/unknown
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noise behaviors/parameters: (i) estimating the Gaussian noise covariances,9,10 (ii) considering heavy-tailed distributions
together with variational Bayesian approximations11-13 or exploiting conjugate analysis,14 or (iii) relying in fundamental
results arising in robust statistics to counteract the presence of outliers.15-17 By contrast, few contributions explored how
to counteract a mismatch on system matrices or the filter initialization.

Within the KF framework the latter can be solved with distortionless constraints.18,19 If the state dynamics rep-
resentation is unknown, a possible solution is to use several filters running in parallel with different process models
via the so-called interacting multiple model filter.20 A fundamentally different approach is to use linear equality con-
straints in order to mitigate a process and/or measurement model matrices mismatch. How to incorporate nonstationary
constraints within the KF framework has been recently proposed in Reference 21, leading to a general linearly con-
strained KF (LCKF) formulation, which has been shown in Reference 22 for linear systems to generalize the results in
Reference 23.

For nonlinear systems, the EKF is one of the most popular estimation techniques and therefore has been largely
investigated.1,3,24 The sensitivity of the EKF to the filter initialization and its inevitable divergence if the noise matrices
have not been chosen appropriately, together with the analysis of the related stability and robustness of the filter, has
been widely reported in the open literature.25,26 The EKF performance also depends on the accurate knowledge of the
observation parametric model (linear or nonlinear system functions) and is particularly sensitive to different types of
mismatches between the assumed signal model and the real signal.27,28 Thus, in order to provide additional robustness to
modeling errors, state constraints may be introduced, yielding the so-called constrained EKF (CEKF).29,30 Recently, the
CEKF has attracted a lot of attention and the use of state constraints has increased in practical engineering applications
such as robotics,31 navigation,32 as well as target tracking.33 The use of linear equality constraints in nonlinear systems
has been briefly explored in [ 23, section IV] where the Unscented KF is applied to the gain-constrained linear KF, which
in turn is a particular instance of the LCKF.21,22 But the analysis in Reference 23 only applies the linear constrained gain
computation with the unscented innovation covariance approximation, and no further discussion is provided. Moreover,
this approach is not intended to be a robust filtering solution under model mismatch. As previously stated,21 recently
proposed a different approach where linear constraints (LCs) are used to mitigate process and/or measurement model
matrices mismatch in linear systems. The use of constraints for robust filtering under model mismatch in nonlinear
systems has not been yet explored, thus being an important missing point.

In this contribution we further explore the extension and applicability of the LCKF to mitigate possible process and/or
measurement model mismatch in nonlinear dynamic systems. The main contributions are: (i) we investigate how linear
equality constraints can be incorporated within the EKF, (ii) we derive a new linearly constrained EKF (LCEKF), (iii) we
detail the use of constraints to mitigate parametric modeling errors in the nonlinear process and measurement functions,
and (iv) we show the performance improvement in the context of robust vehicle navigation.

The article is organized as follows: Section 2 provides background result on KF, model mismatch and LCKF;
The new LCEKF is derived in Section 3, together with its use to mitigate parametric modeling errors in the non-
linear system functions, and the extension of these results to the mismatched inputs case; The details on both
the three-wheeled vehicle dynamic and measurement models are given in Section 4; The application of the new
LCEKF for robust vehicle navigation is illustrated in Section 5; Finally, conclusions and remarks are drawn in
Section 6.

The following notations are adopted along this article: italic indicates a scalar quantity, lower case boldface indicates
a vector quantity and upper case boldface a matrix. The operator E[.] denotes the expectation operator, the filter estimates
based on measurements up to and including time k is denoted by x̂k|k and  (𝝁,R) is the normal distribution of mean 𝝁

and covariance matrix R, mz denotes the mean value of a given variable z and the zn denotes the vectorization of the set
{zn} as zn = (zT

1 , z
T
2 , … , zT

n )T .

2 BACKGROUND ON WIENER, KALMAN, MODEL MISMATCH AND LCKF

2.1 Wiener and Kalman

Given x and y two complex random vectors, the linear estimator of x which minimizes the MSE is the so-called (affine)
Wiener filter (WF)12

1The superscript (⋅)b stands for the best solution in the MSE sense.



x̂b(y) = Kby + ab = mx + Kb(y − my), (1a)
(Kb, ab) = arg min

(K,a)
{P(K, a))}, P(K, a) = E[(Ky + a − x)(Ky + a − x)H],

Kb = Cx,yC−1
y , ab = mx − Kbmy, P(Kb, ab) = Cx|y = Cx − Cx,yC−1

y CH
x,y,

considering that Cy is invertible, with Cx, Cy, Cx, y, Cx|y the corresponding covariance, crosscovariance, and con-
ditional covariance matrices, mx = E[x] and my = E[y]. If we consider a linear discrete state-space model (SSM),
where the state xk ∈ CPk must be estimated from available measurements yk ∈ CNk (for k≥ 1): xk =Fk− 1xk− 1 +wk− 1
and yk =Hkxk + vk; with Fk−1 ∈ CPk×Pk−1 and Hk ∈ CNk×Pk known system model (process and measurement) matrices,
wk ∈ CPk and vk ∈ CNk the process and measurement noise with known mean and covariance, then the WF estimate of
xk from measurements up to time k is

x̂b
k|k = mxk + K

b
k(yk − myk

) ; K
b
k = Cxk ,yk

C−1
yk
, (2)

where y⊤k = [y⊤1 , … , y⊤k ]. Obviously this formulation is not useful in practice due to its computational complexity increase
with k, thus a recursive form must be obtained. If a minimum set of uncorrelation conditions hold18 then (2) can be
expressed in a recursive predictor/corrector form (for k≥ 1), which is a general KF form,

x̂b
k|k−1 = Fk−1x̂b

k−1|k−1 + mwk−1 ; ŷb
k|k−1 = Hkx̂b

k|k−1 + mvk , (3a)

x̂b
k|k = x̂b

k|k−1 + Kb
k(yk − ŷb

k|k−1), (3b)

where the corresponding prediction/estimation error covariance matrices and optimal gain are given by

Pb
k|k−1 = Fk−1Pb

k−1|k−1FH
k−1 + Cwk−1 + Fk−1CH

wk−1,xk−1
+ Cwk−1,xk−1 FH

k−1 (4a)

Kb
k = (Pb

k|k−1HH
k + CH

vk ,xk
)(Sb

k|k−1)
−1 ; Sb

k|k−1 = HkPb
k|k−1HH

k + Cvk + HkCH
vk ,xk

+ Cvk ,xk HH
k (4b)

Pb
k|k = (I − Kb

kHk)Pb
k|k−1 − Kb

kCvk ,xk , (4c)

with Pb
0|0 = Cx0 and x̂b

0|0 = E[x0]. Notice that the standard KF equations3 are obtained if both system noises are
zero-mean, uncorrelated with the state and among them.

2.2 Model mismatch in linear SSM

In the previous derivations the main assumptions are: (i) known system matrices Fk and Hk, (ii) known
first- and second-order process and measurement noise statistics, mwk , mvk , Cwk , Cvk , and (iii) perfect ini-
tialization, Pb

0|0 = Cx0 and x̂b
0|0 = E[x0]. However, in real-life applications we may have to cope with the SSM

pair

Mismatched SSM

{
x′

k = F̂k−1x′
k−1 + wk−1

yk = Ĥkx′
k + vk

(5a)

True SSM

{
xk = Fk−1xk−1 + wk−1

yk = Hkxk + vk
(5b)

modeling the fact that our assumed knowledge of the system dynamics (5a) introduces a possible mismatch between
the true matrices, Fk, Hk and the assumed ones, F̂k and Ĥk,

Fk = F̂k + dFk ; Hk = Ĥk + dHk. (6)



Since it is known for ages that the performance of WF and KF strongly depends on the accurate knowledge on system
matrices [ 34-36, section 6.6], the ultimate goal in robust filtering is still to estimate accurately the true state xk based on
the (true) measurements yk despite a misspecification of Fk and Hk. Indeed, it has been recently shown analytically that
a system model mismatch induces an estimation bias and MSE performance loss.37

2.3 Linearly constrained KF

In order to robustify the WF several contributions have studied the use of LCs, leading to the so-called linearly constrained
WF (LCWF) [ 36, section 6.6, 2,28]. The family of LCs which allows to reformulate the LCWF in a recursive form, leading
to a general LCKF, has been analyzed in Reference 21. In Reference 21, it has also been shown that LCs can be used to
mitigate a misspecification of Fk and Hk. We summarize the LCKF formulation in the sequel. Introducing a set of LCs
Kk𝚲k = Tk in the WF problem (2) (ie, for centered xk and yk) yields the following LCWF,

x̂b
k|k = L

b
kyk, (7a)

L
b
k = arg min

Lk

{Pk|k(Lk)} s.t. Lk𝚲k = Tk, (7b)

L
b
k = K

b
k + (Tk − K

b
k𝚲k)(𝚲

H
k C−1

yk
𝚲k)−1𝚲

H
k C−1

yk
.

It is possible to obtain a recursive LCWF estimate of xk
21

x̂b
k|k = x̂k|k(Lb

k) = (I − Lb
kHk)Fk−1x̂b

k−1|k−1 + Lb
kyk, (8)

x̂k|k(Lk) = (I − LkHk)Fk−1x̂b
k−1|k−1 + Lkyk, (9)

where at every time k, k≥ 1, the gain Lb
k is given by

Lb
k = arg min

Lk
{PJ

k|k(Lk)} s.t. Lk𝚫k = Tk, (10)

PJ
k|k(Lk) = E[(x̂k|k(Lk) − xk)(x̂k|k(Lk) − xk)H], (11)

with Lk𝚫k = Tk a set of LCs, and computed from the following “constrained” KF recursion

Pb
k|k−1 = Fk−1Pb

k−1|k−1FH
k−1 + Cwk−1 + Fk−1CH

wk−1,xk−1
+ Cwk−1,xk−1 FH

k−1 (12a)

Sb
k|k−1 = HkPb

k|k−1HH
k + Cvk + HkCxk ,vk + Cvk ,xk HH

k (12b)

Kk =
(

Pb
k|k−1HH

k + CH
vk ,xk

)(
Sb

k|k−1

)−1 (12c)

Lb
k = Kk + 𝚪k𝚿−1

k 𝚫H
k
(
Sb

k|k−1

)−1 (12d)

Pb
k|k = (I − KkHk)Pb

k|k−1 − KkCvk ,xk + 𝚪k𝚿−1
k 𝚪H

k (12e)

with 𝚪k = Tk − Kk𝚫k and 𝚿k = 𝚫H
k (S

b
k|k−1)

−1𝚫k. Notice that Kk is the unconstrained KF gain. Such recursive LCWF
(so-called LCKF) is fully adaptive and allows to incorporate or not new LCs at every k. In case that at a given time no LCs
are considered, the gain is obtained from the unconstrained KF recursion (4b). In terms of computational complexity,
notice that the only difference between the KF and the LCKF is on the Kalman gain computation, which includes the
LCs. Therefore, the marginal computational complexity increase (w.r.t. the std KF and the computation of Kk) is only
an additional matrix multiplication Lb

k = Kk + 𝚪k𝚿−1
k 𝚫H

k (S
b
k|k−1)

−1, where (Sb
k|k−1)

−1 is readily available from the standard
gain computation, Kk = (Pb

k|k−1HH
k + CH

vk ,xk
)(Sb

k|k−1)
−1. Therefore, the LCKF can be used in any real-life application where

the KF is already applied.



2.4 Error mitigation in linear SSMs with mismatched process and measurement
matrices

At time k≥ 1, the KF of xk is obtained from the Kalman recursion (3b) to (4c) computed with the mismatched SSM (5a)

x̂b
k|k−1 = F̂k−1x̂b

k−1|k−1 + mwk−1 ; ŷb
k|k−1 = Ĥkx̂b

k|k−1 + mvk ,

x̂k|k(Lk) = x̂b
k|k−1 + Lk(yk − ŷb

k|k−1),

where Lk ≜ Lb
k is the solution of Lb

k = arg min
Lk

{
PJ

k|k(Lk)
}

. However, because of the measurement matrix mismatch, the

estimation error introduced by the KF recursion above is

x̂k|k(Lk) − xk = (I − LkĤk)(F̂k−1(x̂b
k−1|k−1 − xk−1) − wk−1) + Lkvk + 𝜺k(Lk), (13a)

𝜺k(Lk) = LkdHkxk − (I − LkĤk)dFk−1xk−1, (13b)

where 𝜺k(Lk) is the error term induced by the model mismatch (ie, 𝜺k(Lk) = 0 if F̂k = Fk and Ĥk = Hk). This extra
term is not taken into account in the Kalman gain computation (4a) to (4c) and induces an estimation bias and MSE
performance loss.37 Thus, in order to mitigate the impact of such mismatch, at every time step we can force 𝜺k(Lk) = 0,
which translates to the following LCs,

{LkdHk = 0, (I − LkĤk)dFk−1 = 0}. (14a)

Notice that these LCs provide a nondegenerate solution only if rank(dFk−1) = Rk < Pk. In this case, (14a) can be
recast as

{LkdHk = 0, Lk(ĤkdFk−1) = dFk−1}. (14b)

More specifically, let dFk−1 = Uk−1d𝚽k−1 be the singular value decomposition of dFk− 1, where Uk−1 ∈ CPk×Rk has full
rank Rk <Pk and d𝚽k−1 ∈ CRk×Pk−1 .38 Then (14a) becomes

{LkdHk = 0, Lk(ĤkUk−1) = Uk−1}. (14c)

By imposing these LCs the estimate obtained with the mismatched SSM (5a) is matched to the true observation (5b).
Indeed, then (13a) reduces to

x̂k|k(Lk) − xk = (I − LkĤk)(F̂k−1(x̂b
k−1|k−1 − xk−1) − wk−1) + Lkvk,

and the LCKF minimizes the MSE associated to the true state xk, matching the true observations to the assumed model.

3 A NEW LCEKF AND ITS USE IN ROBUST FILTERING

3.1 Standard EKF

If we consider now a nonlinear discrete SSM,

xk = fk−1(xk−1) + wk−1 = fk−1(xk−1) + mwk−1 + dwk−1, (15a)

yk = hk(xk) + vk = hk(xk) + mvk + dvk, (15b)

with fk− 1(⋅) and hk(⋅) known system model (process and measurement) functions, and E[dwk−1] = 0, E[dvk] = 0.
A standard approach to derive a nonlinear filter of xk is to assume that the nonlinear discrete SSM (15a) and (15b) can be



linearized at the vicinity of a so-called nominal trajectory3 yielding the so-called linearized KF, as follows. If we assume
that: (i) tr(Cx0)≪ 1 (small deviations of the initial state from its mean value), (ii) tr(Cwk−1)≪ 1 (small state noise), and (iii)
tr(Cxk−1)≪ 1 (small deviations of the states from their mean value), then one can resort to a first-order Taylor expansion
of fk−1(xk−1) at the vicinity of mxk−1 ,

xk ≃ fk−1(mxk−1) + Fk−1dxk−1 + mwk−1 + dwk−1 ≃ mxk + Fk−1dxk−1 + dwk−1, (16)

with Fk−1 = 𝜕fk−1(xk−1)
𝜕xT

k−1

||||mxk−1

and mxk ≃ fk−1(mxk−1) + mwk−1 , and to a first-order Taylor expansion of hk(xk) at the vicinity

of mxk ,

hk(xk) ≃ hk(mxk + Fk−1dxk−1 + dwk−1) ≃ hk(mxk ) + Hk(Fk−1dxk−1 + dwk−1), (17)

with Hk = 𝜕hk(xk)
𝜕xT

k

||||mxk

. Then (15a) and (15b) is equivalent to

{
xk ≃ Fk−1xk−1 + mw′

k−1
+ dw′

k−1,

yk ≃ Hkxk + mv′
k
+ dv′

k,

⎧⎪⎪⎨⎪⎪⎩

Cdw′
k−1

= Cdwk−1 = Cwk−1

mw′
k−1

= mxk − Fk−1mxk−1

Cdv′
k
= Cdvk = Cvk

mv′
k
= mvk + hk(mxk ) − Hkmxk

(18)

If a set of uncorrelation conditions are verified18 (∀k≥ 1), then the EKF recursion is given by

x̂b
k|k = x̂b

k|k−1 + Kb
k(yk − ŷb

k|k−1), (19a)

x̂b
k|k−1 ≃ Fk−1x̂b

k−1|k−1 + mw′
k−1

≃ fk−1(x̂b
k−1|k−1) + mwk−1 , (19b)

ŷb
k|k−1 ≃ Hkx̂b

k|k−1 + mv′
k
≃ hk(x̂b

k|k−1) + mvk , (19c)

where the Kalman gain is computed as in (4b) with the corresponding linearized Fk− 1 and Hk. Notice that mxk−1 is
generally unknown. Therefore, the following last hypothesis is made: x̂b

k−1|k−1 ≃ mxk−1 (small deviations from the mean
value) which allows to approximate Fk− 1 and Hk with,

Fk−1 ≃ 𝜕fk−1(xk−1)
𝜕xT

k−1

|||||x̂b
k−1|k−1

,Hk ≃ 𝜕hk(xk)
𝜕xT

k

|||||x̂b
k|k−1

,

which complete the popular EKF recursion formulation, this last hypothesis making sense if the EKF converges (small
estimation errors), since then:

tr(Pb
k−1|k−1) = E[||x̂b

k−1|k−1 − xk−1||2]≪ 1.

3.2 Impact of parametric modeling errors on the nonlinear state and measurement
system functions

Since the EKF of xk is based on the measurements and our knowledge of the model dynamics, any mismatch between
the true system model and the assumed system model leads to a suboptimal filter, and possibly to a filter with bad
performance, as the discrepancy between the two models increases. The existence of uncertainty on the nonlinear
state and measurement functions, fk−1(⋅) and hk(⋅), can be illustrated by the case where a parametric model is known:
fk−1(.) ≜ fk−1(.,𝝎) and hk(.) ≜ hk(.,𝜽), where 𝝎 and 𝜽 are supposed to be deterministic vectors determined via an ad hoc
calibration process. In many cases, such calibration process provides an estimate, 𝝎̂ = 𝝎 + d𝝎̂ and 𝜽̂ = 𝜽 + d𝛉̂, of the true



values, 𝝎 and 𝜽. If the calibration process is accurate enough, that is, d𝝎̂ and d𝜽̂ are small, the true nonlinear state and
measurement functions differ from the assumed ones via the following first-order Taylor series

fk−1(xk−1,𝝎) ≃ fk−1(xk−1, 𝝎̂) +
𝜕fk−1(xk−1, 𝝎̂)

𝜕𝝎T (𝝎 − 𝝎̂) (20a)

hk(xk,𝜽) ≃ hk(xk, 𝜽̂) +
𝜕hk(xk, 𝜽̂)
𝜕𝜽T (𝜽 − 𝜽̂). (20b)

Thus, similar to (5a) and (5b), we want to cope with the situation where there is a true and a mismatched nonlinear
SSM,

Mismatched ∶

{
x′

k = fk−1(x′
k−1, 𝝎̂) + mwk−1 + dwk−1

yk = hk(x′
k, 𝜽̂) + mvk + dvk

(21a)

True SSM ∶

{
xk = fk−1(xk−1,𝝎) + mwk−1 + dwk−1

yk = hk(xk,𝜽) + mvk + dvk
(21b)

At time k≥ 1, the EKF of xk is obtained from the Kalman-like recursion (19a) to (19c) computed with the mismatched
SSM

x̂b
k|k−1 = fk−1(x̂b

k−1|k−1, 𝝎̂) + mwk−1 ; ŷb
k|k−1 = hk(x̂b

k|k−1, 𝜽̂) + mvk , (22a)

x̂k|k(Lk) = x̂b
k|k−1 + Lk(yk − ŷb

k|k−1), (22b)

where Lk ≜ Lb
k is the solution of Lb

k = arg min
Lk

{PJ
k|k(Lk)}, computed with the mismatched SSM.

As done for the linear SSM in (13a), we can assess the impact of the parametric modeling error as

x̂k|k(Lk) − xk = fk−1(x̂b
k−1|k−1, 𝝎̂) − fk−1(xk−1, 𝝎̂) + Lkhk(fk−1(xk−1, 𝝎̂) + mwk−1 + dwk−1, 𝜽̂)

− Lkhk(fk−1(x̂b
k−1|k−1, 𝝎̂) + mwk−1 , 𝜽̂) + Lkdvk − dwk−1 + 𝜺k(Lk), (23a)

where the error term is

𝜺k(Lk) = fk−1(xk−1, 𝝎̂) − fk−1(xk−1,𝝎) + Lkhk(xk,𝜽) − Lkhk(fk−1(xk−1, 𝝎̂) + mwk−1 + dwk−1, 𝜽̂). (23b)

Since fk(xk) and hk(xk) have become, respectively, fk(xk,𝝎) and hk(xk,𝜽), then: mxk ≃ fk−1(mxk−1 ,𝝎) + mwk−1 ,

Fk−1 = 𝜕fk−1(xk−1,𝝎)
𝜕xT

k−1

||||mxk−1

, Hk = 𝜕hk(xk ,𝜽)
𝜕xT

k

||||mxk

.

Moreover, we denote: m̂xk ≃ fk−1(mxk−1 , 𝝎̂) + mwk−1 , F̂k−1 = 𝜕fk−1(xk−1,𝝎̂)
𝜕xT

k−1

||||mxk−1

, Ĥk = 𝜕hk(xk ,𝜽̂)
𝜕xT

k

||||m̂xk

.

3.3 On the first-order EKF error approximation

First, from the previous results we have that,

fk−1(xk−1, 𝝎̂) ≃ fk−1(mxk−1 , 𝝎̂) + F̂k−1(xk−1 − mxk−1), (24a)

hk(fk−1(xk−1, 𝝎̂) + mwk−1 + dwk−1, 𝜽̂) ≃ hk(m̂xk , 𝛉̂) + ĤkF̂k−1(xk−1 − mxk−1) + Ĥkdwk−1. (24b)

Second, if we assume that x̂b
k−1|k−1 is a good enough unbiased estimate of xk− 1, that is,

E[x̂b
k−1|k−1] = E[xk−1] = mxk−1 , tr(Pb

k−1|k−1) = E[||x̂b
k−1|k−1 − xk−1||2]≪ 1, (25a)



then,

fk−1(x̂b
k−1|k−1, 𝝎̂) ≃ fk−1(mxk−1 , 𝝎̂) + F̂k−1(x̂b

k−1|k−1 − mxk−1), (26a)

hk(fk−1(x̂b
k−1|k−1, 𝝎̂) + mwk−1 , 𝜽̂) ≃ hk(m̂xk , 𝜽̂) + ĤkF̂k−1(x̂b

k−1|k−1 − mxk−1). (26b)

Thus, if we assume that x̂b
k−1|k−1 is a good enough unbiased estimate of xk− 1, a first-order approximation of (23a) is

x̂k|k(Lk) − xk ≃ (I − LkĤk)F̂k−1(x̂b
k−1|k−1 − xk−1) − (I − LkĤk)dwk−1 + Lkdvk + 𝜺k(Lk), (27)

with 𝜺k(Lk) given in (23b).

3.4 On the first-order 𝜺k(Lk) error term approximation

Notice that the approximation of fk−1(xk−1, 𝝎̂) is given in (24a), and hk(fk−1(xk−1, 𝝎̂) + mwk−1 + dwk−1, 𝜽̂) in (24b). In
addition, using (20a) and (20b), we can write that

fk−1(xk−1,𝝎) = fk−1(xk−1, 𝝎̂ + (𝝎 − 𝝎̂)) ≃ fk−1(mxk−1 , 𝝎̂) + F̂k−1(xk−1 − mxk−1) +
𝜕fk−1(xk−1, 𝝎̂)

𝜕𝝎T (𝝎 − 𝝎̂), (28a)

and

hk(xk,𝜽) = hk(xk, 𝜽̂ + (𝜽 − 𝜽̂)) ≃ hk(m̂xk , 𝜽̂) + Ĥk(F̂k−1(xk−1 − mxk−1) + dwk−1) (28b)

+ Ĥk
𝜕fk−1(xk−1, 𝝎̂)

𝜕𝝎T (𝝎 − 𝝎̂) + 𝜕hk(xk, 𝜽̂)
𝜕𝜽T (𝜽 − 𝛉̂), (28c)

and therefore we can approximate the error term 𝜺k(Lk) in (23b) as

𝜺k(Lk) ≃ Lk
𝜕hk(xk, 𝜽̂)
𝜕𝜽T (𝜽 − 𝜽̂) − (I − LkĤk)

𝜕fk−1(xk−1, 𝝎̂)
𝜕𝝎T (𝝎 − 𝝎̂). (29)

3.5 Link with the mismatched KF error in (13a) and (13b)

If we assume that the nonlinear SSM model (21a) and (21b) becomes linear, we have that

fk−1(xk−1,𝝎) = Fk−1(𝝎)xk−1 ; hk(xk,𝜽) = Hk(𝜽)xk, (30a)

where

Fk−1(𝝎) =
[
f1

k−1(𝝎) … fPk−1
k−1 (𝝎)

]
; Hk(𝜽) =

[
h1

k(𝜽) … hPk
k (𝜽)

]
,

then

𝜕hk(xk,𝜽)
𝜕xT

k

= 𝜕(Hk(𝜽)xk)
𝜕xT

k

= Hk(𝜽) ;
𝜕fk−1(xk−1,𝝎)

𝜕xT
k−1

= 𝜕(Fk−1(𝝎)xk−1)
𝜕xT

k−1

= Fk−1(𝝎),

leading to

Ĥk = 𝜕hk(xk, 𝜽̂)
𝜕xT

k

|||||m̂xk

= Hk(𝜽̂) ; F̂k−1 = 𝜕fk−1(xk−1, 𝝎̂)
𝜕xT

k−1

|||||mxk−1

= Fk−1(𝝎̂). (31a)



Moreover, in this case,

𝜕fk−1(xk−1, 𝝎̂)
𝜕𝝎T (𝝎 − 𝝎̂) = 𝜕(Fk−1(𝝎̂)xk−1)

𝜕𝝎T (𝝎 − 𝝎̂) = 𝜕

𝜕𝝎T

(∑
p

fp
k−1(𝝎̂)(xk−1)p

)
(𝝎 − 𝝎̂)

=
∑

p

𝜕fp
k−1(𝝎̂)
𝜕𝝎T (𝝎 − 𝝎̂)(xk−1)p ≃

∑
p
(fp

k−1(𝝎̂ + (𝝎 − 𝝎̂)) − fp
k−1(𝝎̂))(xk−1)p

≃
∑

p
(fp

k−1(𝝎) − fp
k−1(𝝎̂))(xk−1)p ≃ (Fk−1(𝝎) − Fk−1(𝝎̂))xk−1 = dFk−1xk−1, (31b)

𝜕hk(xk, 𝜽̂)
𝜕𝜽T (𝜽 − 𝜽̂) = 𝜕(Hk(𝜽̂)xk)

𝜕𝛉T (𝜽 − 𝜽̂) = 𝜕

𝜕𝜽T

(∑
p

hp
k(𝜽̂)(xk)p

)
(𝜽 − 𝜽̂)

=
∑

p

𝜕hp
k(𝛉̂)

𝜕𝜽T (𝜽 − 𝜽̂)(xk)p ≃
∑

p
(hp

k(𝛉̂ + (𝜽 − 𝜽̂)) − hp
k(𝜽̂))(xk)p

≃
∑

p
(hp

k(𝜽) − hp
k(𝜽̂))(xk)p ≃ (Hk(𝜽) − Hk(𝜽̂))xk = dHkxk, (31c)

and (29) reduces to (13b). It is noteworthy that the above identities shows that (27) and (29) coincide with (13a) to
(13b) when the nonlinear SSM becomes linear, which confirms the relevance of (27) to (29) as a first-order approximation
of (23a) and (23b).

3.6 Mitigation of parametric modeling errors on the nonlinear state
and measurement system functions

Note that if E[x̂b
k−1|k−1] = mxk−1 , we can write that

E[x̂k|k(Lk) − xk] ≃ E[𝜺k(Lk)] ≃ −(I − LkĤk)E
[
𝜕fk−1(xk−1, 𝝎̂)

𝜕𝝎T

]
(𝝎 − 𝝎̂) + LkE

[
𝜕hk(xk, 𝜽̂)
𝜕𝜽T

]
(𝜽 − 𝜽̂). (32)

Then we can conclude that

∀(𝝎 − 𝝎̂),∀(𝛉 − 𝜽̂), E[𝜺k(Lk)] ≃ 0 ⇔

⎧⎪⎨⎪⎩
LkE

[
𝜕hk(xk ,𝜽̂)
𝜕𝜽T

]
= 0

(I − LkĤk)E
[
𝜕fk−1(xk−1,𝝎̂)

𝜕𝝎T

]
= 0

, (33)

which defines a sensible set of constraints in order to mitigate the bias introduced by parametric modeling errors in the
nonlinear system functions, by means of a LCEKF. However, in most cases, the expectations are probably not computable,
and will be approximated by

dFk−1 = E

[
𝜕fk−1(xk−1, 𝝎̂)

𝜕𝝎T

]
≃
𝜕fk−1

(
x̂b

k−1|k−1, 𝝎̂
)

𝜕𝝎T ; dHk = E

[
𝜕hk(xk, 𝜽̂)
𝜕𝜽T

]
≃
𝜕hk(x̂b

k|k−1, 𝜽̂)

𝜕𝜽T ,

leading to the following implementable LCs

⎧⎪⎨⎪⎩
Lk

𝜕hk(x̂
b
k|k−1,𝜽̂)
𝜕𝜽T = 0

(I − LkĤk)
𝜕fk−1(x̂

b
k−1|k−1,𝝎̂)
𝜕𝝎T = 0

. (34)

As it has been shown in Reference 21, if rank(dFk−1) = Pk, then the introduction of constraints (34) cancels the main merit
of the KF, that is, the incorporation of the previous observations in the state estimation process. Thus, it is worth using
the LCEKF only if rank(dFk−1) = Rk < Pk, and then follow the approach in (14a) to (14c) for the constraint on dFk−1.



As in the standard EKF, computable forms of F̂k−1 and Ĥk are: F̂k−1 = 𝜕fk−1(xk−1,𝝎̂)
𝜕xT

k−1

||||x̂b
k−1|k−1

and Ĥk = 𝜕hk(xk ,𝜽̂)
𝜕xT

k

||||x̂b
k|k−1

.

In terms of computational complexity, as for the KF vs LCKF case, the same applies for the comparison between the
EKF and the LCEKF, which are the first-order approximations of the KF and LCKF solutions, respectively. That is, the
EKF gain is computed as for the KF but with the corresponding linearized Fk− 1 and Hk. For the LCEKF, we have to apply
the corresponding constraints, which lead to a gain computation similar to the one in the LCKF but with the linearized
system model. Therefore, again, the LCEKF can be used in any real-life application where the EKF is the gold standard
solution with a marginal additional computational cost.

3.7 Robust LCEKF under mismatched inputs

So far we have discussed the impact (Section 3.2) and mitigation (Section 3.6) of parametric modeling errors in both
process and measurement nonlinear functions via LCs (ie, 𝝎 ≠ 𝝎̂ and 𝜽 ≠ 𝜽̂). But the proposed LCEKF framework is
in fact more powerful and can be used to mitigate other types of errors in the nonlinear dynamic system. For instance,
an important problem in automatic control is the use of possibly mismatched (uncertain to a certain extent) command
inputs, uk. This can be formulated in both linear and nonlinear SSM as a mismatched-true SSM pair similar to (5a) and
(5b) or (21a) and (21b). Notice that inputs are typically considered within the process equation, thus in the following we
do not rewrite the measurement equation which remains the same as above. We may consider two cases of interest, where
the mismatched input is ûk−1 = uk−1 + dûk−1:

• Case (1) Inputs in the nonlinear process equation:

Mismatched ∶ x′
k = fk−1(x′

k−1, ûk−1) + wk−1,

True ∶ xk = fk−1(xk−1,uk−1) + wk−1. (35a)

Following the analysis in Sections 3.2 to 3.6 we can define the set of constraints (and the corresponding approximation)
to be used within the LCEKF in order to mitigate the error induced by mismatched inputs, as

∀dûk−1, E[𝜺k(Lk)] ≃ 0 ⇔ (I − LkĤk)E

[
𝜕fk−1(xk−1, ûk−1)

𝜕uT
k−1

]
≃ (I − LkĤk)

𝜕fk−1(x̂b
k−1|k−1, ûk−1)

𝜕uT
k−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dFk−1

= 0, (35b)

which are worth to be used only in the case that rank(dFk−1) = Rk < Pk, and thus we follow the approach in (14a) to
(14c) for the constraint on dFk−1.21

• Case (2) Additive command input:

Mismatched ∶ x′
k = fk−1(x′

k−1) + gk−1(ûk−1) + wk−1,

True ∶ xk = fk−1(xk−1) + gk−1(uk−1) + wk−1. (36a)

In this case, we can further elaborate the set of constraints to mitigate the nonlinear input mismatch in (35b), where

dFk−1 =
𝜕(fk−1(xk−1) + gk−1(uk−1))

𝜕uT
k−1

|||||(x̂b
k−1|k−1,ûk−1)

=
𝜕gk−1(ûk−1)
𝜕uT

k−1

= dGk−1, (36b)

and then the set of constraints becomes simply

LkĤkdGk−1 = dGk−1, (36c)

which are worth to be used only in the case that rank(dGk−1) = Rk < Pk, and thus we follow the approach in (14a) to
(14c) for the constraint on dGk−1.21



4 VEHICLE NAVIGATION DYNAMIC MODEL

4.1 Three-wheeled vehicle nonlinear state model

The so-called three-wheeled vehicle dynamic model, that is, the Ackerman model, can be used to model the kinematic
behavior of most part of vehicles with three and four wheels. As it is shown in Figure 1, it consists of two main wheels
which provide the vehicle speed, and a third wheel which controls the vehicle direction. The configuration can be
described without ambiguity by a five-dimensional state vector xk composed of the vehicle coordinates, angular devi-
ations with respect to the vehicle path, linear velocity and the steering angle denoted, respectively, x, y, 𝜃, V , and 𝜓 ,
that is,

xk = (xk, yk, 𝜃k,Vk, 𝜓k)T . (37)

From Figure 1, the turn radius 𝜌 is given by

𝜌 = D
tan(𝜓)

, (38a)

where D denotes the distance from the front wheel to the rear axle. From Figure 2, the following differential kinematics
equations can be formulated

⎧⎪⎨⎪⎩
Δx = x′ − x = S cos(𝜃 + Δ𝜃

2
)

Δy = y′ − y = S sin(𝜃 + Δ𝜃
2
)

Δ𝜃 = 𝜃′ − 𝜃 = L∕𝜌

⎧⎪⎨⎪⎩
L = VΔt
Δ𝜃 = L∕𝜌 = VΔt tan(𝜓)

D

S = 2𝜌 sin
(

Δ𝜃
2

)
= 2VΔt tan(𝜓)

D
sin

(
VΔt tan(𝜓)

2 D

)
= VΔt sinc

(
VΔt tan(𝜓)

2 D

)
leading to

⎧⎪⎪⎨⎪⎪⎩
Δx = VΔt sinc

(
VΔt tan(𝜓)

2 D

)
cos

(
𝜃 + VΔt tan(𝜓)

2 D

)
Δy = VΔt sinc

(
VΔt tan(𝜓)

2 D

)
sin

(
𝜃 + VΔt tan(𝜓)

2 D

)
Δ𝜃 = VΔt tan(𝜓)

D

Thus, a discrete nonlinear state model for the three-wheeled vehicle model is

xk = f(xk−1,D) + uk−1 + wk−1, f(x,D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x
y
𝜃

V
𝜓

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

VΔt sinc
(

VΔt tan(𝜓)
2 D

)
cos

(
𝜃 + VΔt tan(𝜓)

2 D

)
VΔt sinc

(
VΔt tan(𝜓)

2 D

)
sin

(
𝜃 + VΔt tan(𝜓)

2 D

)
VΔt tan(𝜓)

D
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (39a)

uT
k−1 = (0, 0, 0,ΔVk−1,Δ𝜓k−1) is the motion input command, and wk− 1 is a state noise modeling the fact that there is

a possible discrepancy between the desired motion command and the one actually taken into account,

wk−1 ∼  (0,Cw),Cw =
⎡⎢⎢⎢⎣
0 0

0

[
𝜎2

V 0
0 𝜎2

𝜓

]⎤⎥⎥⎥⎦ (39b)



F I G U R E 1 Three-wheeled vehicle model [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 2 Three-wheeled vehicle model in movement [Colour
figure can be viewed at wileyonlinelibrary.com]

4.2 Nonlinear measurement model

A known technique for precisely locating an autonomous vehicle is to equip the vehicle with an optical or infrared scanner
that is capable of measuring the position of a beacon. The measurement principle is shown in Figure 3, where the vehicle
is located in a global coordinate frame (xOy) at position O′ = (x, y). The sensor installed in the vehicle measures the beacon
position B with respect to the vehicle (body) coordinate frame (x’O’y’), that is(

x′B
y′B

)
= R(−𝜃)

(
xB − x
yB − y

)
+ nk, R(𝜃) =

[
cos(𝜃) −sin(𝜃)
sin(𝜃) cos(𝜃)

]
, (40a)

where nk denotes the additive Gaussian measurement noise,

nk ∼  (0,Cn), Cn =

[
𝜎2

x′ 0
0 𝜎2

y′

]
. (40b)

The nonlinear measurement vector yk then reads
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F I G U R E 3 Vehicle coordinate system [Colour figure can be
viewed at wileyonlinelibrary.com]

yk =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(x′B)k

(y′B)k

𝜃k

Vk

𝜓k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

[
R(−𝜃k) 0

0 I3

]⎛⎜⎜⎜⎜⎜⎜⎜⎝

xB − xk

yB − yk

𝜃k

Vk

𝜓k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ vk = h(xk) + vk, h(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos(𝜃)(xB − x) + sin(𝜃)(yB − y)
−sin(𝜃)(xB − x) + cos(𝜃)(yB − y)

𝜃

V
𝜓

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (41a)

The angular deviation with respect to the vehicle path 𝜃 and the velocity V are navigation information provided,
respectively, by an inertial navigation system (INS) and an odometer. 𝜓m is the steering information obtained from a
steering angle sensor. The additive measurement noise vk is modeled as white Gaussian noise, that is,

vk ∼  (0,Cv), Cv =

⎡⎢⎢⎢⎢⎢⎣

Cn 0

0
⎡⎢⎢⎢⎣
𝜎2
𝜃INS

0 0

0 𝜎2
VOdo

0

0 0 𝜎2
𝜓m

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦
, (41b)

where 𝜎2
𝜃INS

, 𝜎2
𝜓Odo

are the variances of INS-based and odometer-based observables, and 𝜎2
𝜓m

depends on the quality of
the steering angle sensor.

5 ROBUST VEHICLE NAVIGATION ILLUSTRATIVE RESULTS

5.1 Mismatched nonlinear state and measurement models

We consider the case where we may have an imperfect knowledge on the parametric state and observation model, (39a)
and (41a). Indeed, in practice, due to initial calibration errors, aging or thermal expansion, the distance D may not be
perfectly known and/or the scanner coordinate frame may not be perfectly aligned with the vehicle coordinate frame,
leading to a deviation 𝜃d with respect to the vehicle path 𝜃. In the latter case, the observation model (41a) becomes

h(x) ≜ h(x, 𝜃d) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos(𝜃 + 𝜃d)(xB − x) + sin(𝜃 + 𝜃d)(yB − y)
− sin(𝜃 + 𝜃d)(xB − x) + cos(𝜃 + 𝜃d)(yB − y)

𝜃

V
𝜓

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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F I G U R E 4 The two-dimensional trajectory of the vehicle [Colour
figure can be viewed at wileyonlinelibrary.com]

Then, the implementation of the standard EKF computed with

F̂k = 𝜕f(x, D̂)
𝜕xT

|||||x̂b
k−1|k−1

, Ĥk = 𝜕h(x, 0)
𝜕xT

||||x̂b
k|k−1

may lead to a performance breakdown in case of an inaccurate assumed value of D, denoted D̂, and/or the presence of
𝜃d ≠ 0. In order to improve the estimation accuracy we consider the use of a LCEKF incorporating the constraints in (34),
which in this case are

(I − LkĤk)dfk−1 = 0, dfk−1 = 𝜕f(x, D̂)
𝜕D

|||||x̂b
k−1|k−1

(42a)

Lkdhk = 0, dhk = 𝜕h(x, 0)
𝜕𝜃d

||||x̂b
k|k−1

(42b)

and lead to 𝚫k =
[
Ĥkdfk−1 dhk

]
and Tk =

[
dfk−1 0

]
.

5.2 Illustrative results

As an example, we consider the following setup: x0 = (0, 0, 45◦, 30, 1◦)T , Cx0 = 0, uk− 1 = 0, Δt = 1 ms, 𝜎V = 1 m.s−1,
𝜎𝜓 =

√
0.1 ◦, for the state model (39a), and, B = (100, 50), 𝜎x′ = 1 m, 𝜎y′ = 1 m, 𝜎𝜃INS =

√
0.1 ◦, 𝜎VOdo = 1 m.s−1,

𝜎𝜓m =
√

0.1 ◦, for the measurement model (41a). Dv denotes the true value of D (Dv = 3 m), ΔD = Dv − D̂
denotes the deviation between Dv and the assumed distance D̂. The true two-dimensional (2D) vehicle trajectory,
that is,

xk = f(xk−1,Dv) + wk−1, (43)

is displayed in Figure 4. Its quasi-circular shape, not centered on the beacon location B, has been designed to test the
robustness of various LCEKFs against a large range of 𝜃 and (x′B, y

′
B).

We compare the following filters:

• The (mismatched) standard EKF which does not incorporate constraints into the Kalman process,
• The so-called LCEKF-D is a LCEKF which incorporates only the state constraint (42a),
• The so-called LCEKF-𝜃 is a LCEKF which incorporates only the measurement constraint (42b),
• The so-called LCEKF-𝜃-D is a LCEKF which incorporates both constraints (42a) and (42b).
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F I G U R E 5 MSE w.r.t. time, ΔD = 0 and 𝜃d = 0◦. MSE, mean
square error [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 6 MSE w.r.t. time, ΔD = 0 and 𝜃d = 0.1◦. MSE, mean
square error [Colour figure can be viewed at wileyonlinelibrary.com]
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The measure of performance is the total root MSE (RMSE) of the estimated states (from 500 Monte Carlo runs),
given by

RMSE =
√

E{(xk − x̂k|k)T(xk − x̂k|k)}. (44)

The results are summarized in Figures 5 to 8, which show the MSE w.r.t. time t,

• Figure 5: MSE w.r.t. t where ΔD = 0 and 𝜃d = 0◦,
• Figure 6: MSE w.r.t. t where ΔD = 0 and 𝜃d = 0.1◦,
• Figure 7: MSE w.r.t. t where ΔD = 0.7 m and 𝜃d = 0◦,
• Figure 8: MSE w.r.t. t where ΔD = 0.7 m and 𝜃d = 0.1◦.

These results allow to draw the following conclusions:

(i) If the parametric model is perfectly known (Figure 5), that is, we have no mismatch and therefore ΔD = 0 and 𝜃d =
0◦, as expected the EKF exhibits a good performance since it matches the true SSM. Interestingly, the LCEKF-D,
LCEKF-𝜃, and LCEKF-𝜃-D exhibit a performance close to the EKF, but with a MSE degradation induced by the use
of constraints which consume additional degrees of freedom.

(ii) If the parametric model is not perfectly known (Figures 6-8), that is, there exists a model mismatch on D and/or
𝜃, the proposed LCEKFs (LCEKF-D, LCEKF-𝜃, and LCEKF-𝜃-D) show better performance in comparison with the
mismatched EKF, since the proposed filters exploit LCs to mitigate the effect of an erroneous knowledge about the
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F I G U R E 7 MSE w.r.t. time, ΔD = 0.7 m and 𝜃d = 0◦. MSE, mean
square error [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 8 MSE w.r.t. time, ΔD = 0.7 m and 𝜃d = 0.1◦. MSE,
mean square error [Colour figure can be viewed at
wileyonlinelibrary.com]

dynamic model. The performance difference among LCEKFs mainly depends on the type of mismatch and the LCs
included within the filter formulation.

(iii) The proposed LCEKF-𝜃-D which takes both mismatches into account is robust to reasonable deviations, that
is, 𝜃d = 0.1◦ (Figure 6), ΔD = 0.7 m (Figure 7) or both ΔD = 0.7 m and 𝜃d = 0.1◦ (Figure 8), whereas the
EKF exhibits a performance breakdown as modeling errors increase, that is, state, measurement or in both
equations.

(iv) Both the LCEKF-D (only considering the state mismatch ΔD) and LCEKF-𝜃 (only considering the measurement
mismatch 𝜃d) have inherent limitations as illustrated, respectively, in Figures 6 and 7. Since the LCEKF-D does not
mitigate the measurement model matrices mismatch its performance is shown to rapidly degrade in Figure 6, but
with an asymptotic performance which is lower than for the standard (mismatched) EKF. The latter implies that the
state constraint has an impact on the measurement error propagation. Similarly, the LCEKF-𝜃 does not incorporate
the state constraint in the filtering process, and therefore it exhibits a poor performance under state model mismatch,
as shown in Figure 7. Again, in this case the LCEKF-𝜃 performance is better than the EKF, then the measurement
constraint has an impact on the state error propagation.

(v) To summarize, notice that a minimal model mismatch, such as 𝜃d = 0.1◦, completely spoils the standard EKF
solution. Therefore, taking into account possible model mismatches is fundamental in real-life applications,
which clearly shows the need for robust solutions. The new LCEKF has been shown to be a promising solu-
tion to cope with such modeling errors and a powerful robust filtering approach. Considering all possible mis-
matches, that is, LCEKF-𝜃-D in our case study, provides a robust solution under model mismatch. Indeed,
notice that in any case, the RMSE for the 2D position obtained with the LCEKF-𝜃-D is always below 20 cm.
By contrast, the corresponding RMSE obtained with the mismatched EKF is at least one order of magnitude
greater.
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6 CONCLUSION AND OUTLOOK

Even if a lot of contributions derived robust filtering approaches to counteract uncertain noise statistics and/or outliers
in the system model, very few works explored the problem of model mismatch in the system process and measurement
functions. In this contribution we explored the use of LCs in order to robustify standard nonlinear filtering techniques.
First, we investigated how to incorporate LCs within the EKF and derived a new LCEKF. Then, we discussed how this
new LCEKF can be used to mitigate both parametric modeling errors in the nonlinear process and measurement func-
tions. In addition, it was shown by considering the problem of system models with mismatched inputs that the proposed
framework is rather general. A robust vehicle navigation problem was used to show (i) the impact of mismatches on stan-
dard filtering techniques, (ii) that using LCs may be an efficient way to cope with both process and measurement model
mismatches, (iii) and that the use of a LCEKF provides a tremendous performance improvement w.r.t. the mismatched
filter, but the price to be paid is a performance degradation w.r.t. the optimal under nominal conditions.

These results show a promising new framework, which certainly deserves to be further analyzed and extended to
more general settings. In that perspective one could think on the use of constraints within the sigma-point Gaussian
filtering framework, that is, Unscented KF, Cubature KF, Quadrature KF,39 or more general sequential Monte Carlo solu-
tions to cope with non-Gaussianity, but notice that this is a nontrivial extension because the constrained propagation of
such deterministic or random samples through a nonlinear function and the correct approximation of the final Bayesian
filtering integrals has never been addressed, thus it will require a dedicated and thorough analysis.
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APPENDIX A. EXPLICIT EXPRESSIONS FOR THE EKF APPROXIMATIONS

In the sequel we provide the explicit expression of 𝜕fk−1(xk−1)
𝜕xT

k−1
and 𝜕fk−1(xk−1)

𝜕D
, where fk−1(xk−1) = f(xk−1,D), and f(x,D) =

(f1(x,D), f2(x,D), … , f5(x,D))T (39a):

𝜕f(x,D)
𝜕xT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 𝜕f1(x)
𝜕𝜃

𝜕f1(x)
𝜕V

𝜕f1(x)
𝜕𝜓

0 1 𝜕f2(x)
𝜕𝜃

𝜕f2(x)
𝜕V

𝜕f2(x)
𝜕𝜓

0 0 1 𝜕f3(x)
𝜕V

𝜕f3(x)
𝜕𝜓

0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
𝜕f(x,D)
𝜕D

=
(
𝜕f1(x)
𝜕D

,
𝜕f2(x)
𝜕D

,
𝜕f3(x)
𝜕D

, 0, 0
)T

. (A1)

Let q(x) = VΔt tan(𝜓)∕(2D) and g(x) = 𝜃 + q(x). Then:

𝜕f1(x)
𝜕𝜃

= VΔt sinc (q(x)) sin (g(x)),
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𝜕f1(x)
𝜕V

= Δt sinc (q(x)) cos (g(x)) − Δt q(x)sinc (q(x)) sin (g(x)) + Δt (cos (q(x)) − sinc (q(x))) cos (g(x)),

𝜕f1(x)
𝜕𝜓

= −V 2Δt2

2D
(1 + tan2(𝜓)) sinc (q(x)) sin (g(x)) + VΔt (1 + tan2(𝜓))

tan(𝜓)
cos (g(x)) cos (q(x))

− VΔt (1 + tan2(𝜓))
tan(𝜓)

cos (g(x)) sinc (q(x)),

𝜕f2(x)
𝜕𝜔

= VΔt sinc (q(x)) cos (g(x)),

𝜕f2(x)
𝜕V

= Δt sinc (q(x)) sin (g(x)) + Δt q(x) sinc (q(x)) cos (g(x))

+ Δt (cos (q(x)) − sinc (q(x))) sin (g(x)),
𝜕f2(x)
𝜕𝜓

= V 2Δt2

2D
(1 + tan2(𝜓)) sinc (q(x)) cos (g(x)) + VΔt (1 + tan2(𝜓))

tan(𝜓)
sin (g(x)) cos (q(x))

− VΔt (1 + tan2(𝜓))
tan(𝜓)

sin (g(x)) sinc (q(x)),

𝜕f3(x)
𝜕V

= Δt
D

tan(𝜓),

𝜕f3(x)
𝜕𝜓

= VΔt
D

(1 + tan2(𝜓)),

𝜕f1(x)
𝜕D

= VΔt
D

q(x) sinc (q(x)) sin (g(x)) − VΔt
D

cos (q(x)) cos (g(x)) + VΔt
D

sinc (q(x)) cos (g(x)),

𝜕f2(x)
𝜕D

= −VΔt
D

q(x) sinc
(

VΔt tan(𝜓)
2 D

)
cos (g(x)) − VΔt

D
cos (q(x)) + VΔt

D
sinc (q(x)) sin (g(x)),

𝜕f3(x)
𝜕D

= −
2q(x)

D
.


