
HAL Id: hal-03108763
https://hal.science/hal-03108763v1

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Change Impact Analysis in BPM Based Software
Applications: A Graph Rewriting and Ontology Based

Approach
Mourad Mohamed Bouneffa, Adeel Ahmad

To cite this version:
Mourad Mohamed Bouneffa, Adeel Ahmad. The Change Impact Analysis in BPM Based Software
Applications: A Graph Rewriting and Ontology Based Approach. Slimane Hammoudi; José Cordeiro;
Leszek A. Maciaszek; Joaquim Filipe. Enterprise Information Systems, 190, Springer International
Publishing, pp.280-295, 2014, Lecture Notes in Business Information Processing (LNBIP,volume 190),
978-3-319-09491-5. �10.1007/978-3-319-09492-2_17�. �hal-03108763�

https://hal.science/hal-03108763v1
https://hal.archives-ouvertes.fr


The change impact analysis in BPM based

software applications: a graph rewriting and

ontology based approach

Mourad Bouneffa and Adeel Ahmad

Université Lille Nord de France
Laboratoire d’Informatique Signal et Image de la Côte d’Opale
50, rue Ferdinand Buisson BP 719 62228 Calais Cedex France

{bouneffa,ahmad}@lisic.univ-littoral.fr

http://www-lisic.univ-littoral.fr

Abstract. The Business Process Models describe and formalize the op-
erations, constraints and policies of an organization. These models have
firstly been used as abstract views of all the processes implied in an or-
ganisation. These served as inputs and outputs of the business analysis
and re-engineering activities with no explicit relationship with the IT in-
frastructures which have been implementing business processes. In this
paper, we deal with the BPM as higher abstraction level artefacts of soft-
ware applications implementing the organisation processes. It presents
our approach dealing with the change management of such applications.
The approach is based on the graph based formalisation of all the soft-
ware artefacts including the BPM ones. It provides an explicit manage-
ment of various relationships conducting the change impact. The change
operations are then formalized by graph rewriting (or transformation)
rules. These rules implement both the change and the change impact
propagation. The semantic knowledge concerning the various artefacts
and the change operations is represented by an ontology. This ontology is
intended to be able to automatically generate some change management
rules. We use graph rewriting system (AGG) as a mean to formally spec-
ify and validate the result of our approach. The resulting specifications
are then implemented using an integrated software change management
platform appearing as a set of the Eclipse Workbench plug-ins.

Key words: BPM, Change impact propagation, Graph rewriting rules,
Ontology, Process change management

1 Introduction

The Business Process Models (BPMs) and their components have first been
used as first class entities of the Business Process Management activities. The
BPM generally encapsulate semi-formal specifications describing the activities
of an organisation. Which may lead to build an artefact repository serving
as a knowledge base used by the various activities of the Business Manage-
ment, also including the Business Process Re-engineering. Such activities may

http://www-lisic.univ-littoral.fr


2 M. Bouneffa and A. Ahmad

be viewed as a part of the job of a business analyst with no explicit rela-
tionship to the Information Technology Infrastructures supporting the organ-
isation’s information system. During the last deacade, BPMs have also been
used as the first class entities of a new software development methodology
based on the transformation of the BPMs into executable programs. It led
to the emergence of new software development tools and approaches based on
the BPM[Weske, 2007, Weske, 2012] concept. In these approaches the BPMs
are specified by means of some standard notations like BPMN [Silver, 2009,
Allweyer, 2010] and XPDL[Van der Aalst, 2003, Haller et al., 2008]. The BPMs
are then transformed into executable programs that are generally deployed as
multi-tiered distributed applications using platforms like J2EE, .NET, etc. The
executable programs are often built as macro programs implementing the well
known concept of programming in the large[Emig et al., 2005]. These programs
contain invocations of web services[Gottschalk et al., 2002] provided by the var-
ious software applications which have been deployed inside or sometimes out-
side the information system boundaries. The Business Process Execution Lan-
guage (BPEL)[Juric, 2006] is one of the most known programming in the large
language. The main motivation of such an approach is to eliminate the gap be-
tween the activities involved in Business Analysis and Information Technology
making it more easy and rapid to implement business change requirements.

In a recent paper [Bouneffa and Ahmad, 2013], we considered the study of
this new generation of applications and we demonstrate the feasibility of the
implementation of a process to control the change impact which may affect
these applications. Our approach is mainly based on the use of attributed typed
graphs to represent the business process model and software artefacts and the
use of graph rewriting system for a formal specification of the BPM changes.

In this paper we enrich our approach by the use of ontologies to explicitly
represent more knowledge concerning the BPM, the software artefacts, and the
changes affecting them. We consider the fact that a specific relationship between
a BPM artefact and a software one conducts the change impact in certain direc-
tion. We represent the knowledge concerning the structure of an enterprise and
associate BPM artefacts to its one or more structural units. It may respond to
queries like which BPM artefacts are affected by a change concerning the par-
ticular structural unit? And which software artefact are affected by this change?
We can also specify queries like what are the change operations concerning a
specific artefact type? etc. In this work, we focus on the change impact propa-
gation aspect which can be achieved by associating more semantic information
to the relationship types.

Our approach is mainly based on an ontology, which is built in an interac-
tive and incremental manner. This ontology concerns both the business analysts
and software engineers. For this purpose we have been using a simple tool to
build such an ontology. For instance, we used the Protégé tool1 as an assistance
to build OWL2 ontologies using graphical and interactive user interface. We

1 Protégé : http://protege.stanford.edu/
2 OWL Web Ontology Language : http://www.w3.org/TR/owl2-profiles/

http://protege.stanford.edu/
http://www.w3.org/TR/owl2-profiles/


Change Impact Analysis in BPM 3

also developed a semantic annotation tool to assist the business analysts and
software engineer to annotate the business models and software artefacts with
those belonging to ontologies. In fact, all the artefacts are yet stored as graph
elements of attributed and typed graphs[Bouneffa and Ahmad, 2013]. The an-
notation mechanism provide help to add more semantical information to these
elements.

In Section 2 we present, the meta-model for the BPM formalization and
the notions relevant to BPM and BPM-based software applications. The sec-
tion 3 specifies a taxonomy of BPM change operations and we formalize these
operations with the help of graph rewriting rules. The section 4 presents the
change impact analysis and propagation process along with its formalization by
the graph rewriting rules. The section 5 explains the use of ontology to asso-
ciate more semantic information to BPM and software artefact. It also presents
a generic algorithm we used to automatically generate graph rewriting rules in
order to manage the change impact propagation. The section 6 shows the proto-
type implementation of our specifications regarding the integrated platform to
control the software changes[M.O. et al., 2010]. The section 7 summarizes the
contribution with the conclusion and the perspectives of this work.

2 BPM formalization and meta-modeling

Before explaining the formalization and meta-modeling of BPM, we first explain
the concept of BPM and especially the life cycle of BPM based software applica-
tions. As shown in Fig. 1 the development, deployment, and evolution of BPM
based software applications obey a life cycle. The different phases of BPM life
cycle are described in the following sections :

Fig. 1. The life cycle of BPM based applications

2.1 The BPM Modeling

This phase involves BPM Modeling in terms of tasks or activities which are nec-
essary to implement the process, the order of tasks accomplishment, the human



4 M. Bouneffa and A. Ahmad

Fig. 2. An example of Business Process Model Notation

actors involved in the performance of these tasks, etc. In recent years, several
models or notations have been defined to model the BPM. At first, designing a
BPM is an activity within the scope of the information system cartography. It
was most often performed as a part of BPR (Business Process Re-engineering)
projects [Lee et al., 2011]. Thus, many models and methods have been used such
as the OSSAD method[Dumas et al., 1990], etc. Our present work is particularly
related to the BPM as a means of specification, development, and deployment
of automated processes. We selected the widely considered and used notations
in this area, in particular the BPMN[OMG, 2011]. Fig. 2 shows an example of
such a process. In this figure, the process is a partial description of the Sales
Chain Management. We first distinguish two important actors : the Client and
the Process Order. At the beginning, a start event represent the fact that Place
Order is the first task. This first task performed by the Client consists of the
generation of an order that is sent as a message to the Check Availability task,
which is linked to a gateway involving the Check Payment task. If the products
are available or the Cancel Order, otherwise. The process ends by end events
linked with Confirm Order and Cancel Order tasks.

2.2 The Development and the Deployment of the BPM

The development and the deployment of a BPM are two separate activities
that can be performed manually, automatically, or usually semi-automatically.
In principle, these activities can be considered as classical operations for code
generation, where the BPM plays the role of a detailed design and the code is
represented by an application, deployed most often on a web platform. There ex-
ists also software tools to automate the deployment of such applications almost
transparently. Some of these tools are Bonita3, Intalio4, BizAgi5 and Barium
Live!6, etc. In these tools a web application is generated and is hosted in form

3 Bonita Open Solution url: http://www.bonitasoft.com/
4 Intalio—BPMS : http://www.intalio.com/
5 Bizagi BPM Suite : http://www.bizagi.com/
6 Barium Live! : http://www.bariumlive.com/

http://www.bonitasoft.com/
http://www.intalio.com/
http://www.bizagi.com/
http://www.bariumlive.com/


Change Impact Analysis in BPM 5

of dynamic web pages, a Java servlet engine, or ASP.NET pages, etc. Without
going to the full automation and complete transparent development and deploy-
ment of BPM based applications, there are intermediate languages playing the
role of orchestrators or macro programs involving software components already
encapsulated by web services. BPEL is one of the main languages of this type
and appears like a sort of standard in the matter. In one perspective of Model
Driven Engineering (MDE) [Schmidt, 2006], BPMN can be considered as a Plat-
form Independent Model (PIM) and BPEL as a Platform Specific Model (PSM)
consisting of implementing BPMN in an environment using web services as a
means of communication and interoperability.

Fig. 3 shows an example of BPEL implementing the BPM shown in Fig. 2.
In this figure the BPEL is a kind of web services orchestration. To do this,
the BPEL contains calls or invocations to web services like Check Availability,
Check Payment and Cancel Order and flow management nodes like sequence for
a sequential execution of web services invocations or If for conditional branches.
It is useful to remark that the programming in the large concepts are quite
similar to the programming in the small [DeRemer and Kron, 1975] ones. For our

Fig. 3. An example of Business Process Execution Language



6 M. Bouneffa and A. Ahmad

example, the tasks or activities of the BPMs are implemented by web service
calls while gateways are implemented by If nodes.

2.3 The execution and monitoring of the BPM

The execution of the application is generally assured by a web platform which
is usually on multi-tiered architecture etc. The BPM execution provides gen-
erally some interesting data such as response time, resource consumption,
etc. These data are necessary for the purpose of analyzing the process qual-
ity. Indeed, business managers define performance indicators (Key Performance
Indicator[Parmenter, 2007]) for each process, to measure the performance of ac-
tivities implemented by processes. Some of these informations can be obtained by
dynamic analysis by means of program profiling techniques[Ahmad et al., 2008b,
Ahmad and Basson, 2009, Ahmad et al., 2009]. Other information are exclu-
sively provided by human experts and will be explicitly taken into account by
some organizational process. They are generally the derived data from activities
within the framework of customer satisfaction, etc.

2.4 The BPM improvement

The process improvement is a generic term that refers primarily to the evolution
of BPM processes. In reality, the improvement is expected but what is actually
done, is an evolution of a process embodied by the change affecting the BPM
processes. The goal is to fix certain performance anomalies or simply to complete
the automation of processes, a part of which is manual, etc. In the literature,
the improvement is seen only on the process side and it ignores the software
implementation problems. In our case, we consider both aspects, analyzing in
particular the BPM change impacts on the software and vice versa.

2.5 A meta-model of graph-based BPM

We propose a meta-model to represent the concepts involved in the definition
of BPMs. This meta-model has been formalized by a typed graph that we im-
plement particularly in the context of the AGG7. The result of this modeling
is shown schematically in the Fig. 4. This figure represents the main concepts
emerging from the BPMN. The process concept represents the processes that
contain what is called flow objects. These objects can be tasks or activities, sub-
processes or macro-tasks, refined by the processes, events or gateways. A process
has an actor which is called the owner which can be one user, or more, who has
defined the process and is authorized to change this process. The process is im-
plemented by an application which is deployed and which can host the execution
of multiple instances or cases of this process. Every instance involves actors that
are the users interacting with the various tasks performed during the instance
life cycle. The typed attributed graph formalism may be viewed as a mean to

7 http://user.cs.tu-berlin.de/~gragra/agg/

http://user.cs.tu-berlin.de/~gragra/agg/


Change Impact Analysis in BPM 7

Fig. 4. A UML based representation of BPM meta-model

check the BPM artefacts consistency. In fact these artefacts are also formalized
by graphs.

3 The taxonomy of change operations

In the development and the deployment of BPM-oriented applications, the
change seems inevitable. It enrolls in fact, in the usual life cycle of this kind
of applications. We define it as a taxonomy of change operations that may affect
one of the important components of these applications to know the BPM. We
consider two kind of changes : the atomic change operations and the compos-
ite (or complex) change operations.

3.1 The atomic change operations

The formalization of a BPM as a typed attributed graph allows us to compile
a list of atomic change operations. It is important to notify that, “each change
operation corresponds to an insertion, deletion or modification of a node or an
edge of this graph”. We thus obtain the following change operations :

– Insert or Delete or Modify a process.
– Insert or Delete or Modify a task.
– Insert or Delete or Modify an Event.
– Insert or Delete or Modify a Gateway
– Insert or Delete an edge or link (between two flow objects)
– Et cetera.



8 M. Bouneffa and A. Ahmad

Each defined atomic change operation is then formalized by graph rewriting
rules. A graph rewriting rule is in fact a production rule where the left and right
sides of the rule are graphs. In other words, a production rule that transform a
part of the graph which match or corresponds to the Left Hand Side (LHS) of
the production by another subgraph represented by the Right Hand Side (RHS)
of the production. There are also preconditions called negative or NAC, which
specify the need for non existence of certain sub-graph for the rule to run.

Visually such a rule can be outlined as in the Fig. 5. This figure depicts the
partial creation or insertion of a new task. It shows the three components of
a rule called InsertTask which represents the insertion of a task in a process.
The LHS of the rule states that there must be a node in the graph of process
type. It would then match a process node of the graph with that of the rule.
This matching can be done manually by the user or automatically by the graph
rewriting system following many methods that are out of the scope of this paper.
The RHS of the rule shows the creation of a task called x connected to the process
by the relationship ”contains”. The NAC of the rule prohibits the creation of a
task named x if there is already a task in the process with the same name.

Fig. 5. A rule to insert a task

3.2 The composite change operations

The composite change operations can be expressed in the form of compositions
of atomic operations. We did not set a precise or exhaustive taxonomy of these
operations but we consider the most significant and frequent ones. It is also
possible to define new composite change operations. A comosite operation may
be the merger of two tasks, the decomposition of a task into two tasks, the
merger of two processes or the breaking down of a task into a subprocess.

4 The change impact analysis

This section deals with the BPM change impact management. A simulation of
the change impact generation is presented formerly, using graph rewriting rules
and then in later part impact propagation is elaborated to the various artifacts
through the different type of relationships.



Change Impact Analysis in BPM 9

4.1 The change impact generation

All change operations are defined by the preconditions, which in the case of
a graph rewriting rules consist of the LHS (positive preconditions) and the
NAC (negative preconditions) and the post-conditions symbolized by the RHS.
We therefore consider the impact of a change M given the result of its execu-
tion (symbolized as the RHS), in the case of a violation of the precondition. In
the case of graph rewriting rules, this is translated into the creation of a node
of Impact type, connected to the nodes affected by the impact and containing
an attribute called explanation which contains a narrative of the impact (see
Fig. 6). We simulate the creation of the impact by setting rules without NAC
and therefore tolerate the enforcement of the rule with the result, in addition to
that provided by the original rule, appending a node of impact type linked to
the nodes it affects. In Fig. 6, we define a rule to delete a task that provokes the
creation of an Impact node affecting the tasks related to the task that has been
deleted.

Fig. 6. A rule for change impact analysis of a task deletion

4.2 The change impact propagation

The change impact propagation is a process of propagating the impact to all
nodes indirectly affected by the impact. This propagation is done through a link
or relationship between nodes. Thus, some relationships are identified as change
impact conductor [Ahmad et al., 2008a] and propagate the impact in one way or
another. For example, the Fig. 7 shows the propagation of the impact affecting
a task to the author of this task with the associated explanation.

We distinguish here two types of change impact propagations :

– The horizontal change impact propagation is to propagate the change impact
between artifacts belonging to the same phase of the development life cycle



10 M. Bouneffa and A. Ahmad

of an application. This is the case of the rule as shown in Fig. 7. It shows the
impact propagation between tasks and actors.

– The vertical change impact propagation corresponds to the change impact flow
between artifacts belonging to different phases of the development life cycle
of an application. This is the case of the change impact propagation between
a task and a web service that implements a part of this task and vice versa.

Fig. 7. A rule for change impact propagation

To show how we deal the vertical change impact propagation, we first define a
kind of mapping relationships that are useful for the traceability purpose. These
relationships are :

– The mapedTo relationship between a BPMN process and a BPEL process. In
fact, we defined a meta-model of BPEL processes like we have done with the
BPMN but the BPEL process contains objects like web services, etc.

– The ImplementedBy relationship between a task of the BPM and a web service
of the BPEL.

We know that this set of mapping relationships is a restrictive one since it is
generally possible that a task may be implemented by more than one web service,
it may also be implemented by a process. In another hand a BPMN process may
be implemented by a set of BPEL, ones.

The mapping relationships are then used by the graph rewriting rules gener-
ating or propagating the impact. So, the Fig. 8 shows the impact generated by
the composite change consisting of the merging of two tasks. The question here
is what to do with web services implementing these tasks?

On the other hand, we consider three kinds of change impact propagation
processes.

– The total change impact propagation simulates the change operation and then
execute all possible rules of its impact propagation.

– The selective change impact propagation only propagates the change impacts
induced by a subset of nodes relationships.

– The Propagation of type changes-and-fix [Rajlich and Gosavi, 2004, Rajlich, 1997]
which is to simulate a change, directly addresses the impact of this operation
(in terms of direct neighbours). This treatment or correction of the change



Change Impact Analysis in BPM 11

Fig. 8. Rule for the impact generated by the composite change

Fig. 9. Screen shot of a change impact propagation scenario in Architect

impact will be a transaction which itself will directly impact the address, and
so on.

5 The BPM and software artefacts change ontology

The use of graph rewriting rules may help to specify a formal and flexible imple-
mentation of the BPM change propagation analysis. Such rules serve as a valida-
tion tool and are mainly syntactical since they are only based on the application
of syntactical morphisms between artefacts represented by graph elements and
the left and right hand sides of the rules. We also want to find a mean to auto-
matically or semi-automatically generate such syntactical rules. The generation
of such rules need a more semantic data concerning both the artefacts affected
by the change or the change itself. It is therefore we decided to use ontologies
allowing the representation and the manipulation of semantic knowledge associ-
ated to BPM and software artefacts. This ontology has been used to semantically



12 M. Bouneffa and A. Ahmad

annotate the artefacts that are represented by graph elements and to generate
the graph rewriting rules managing the change impact propagation.

The ontology we defined may be viewed as a transcription of the BPM meta-
model (Figure 4) using the OWL. The significant difference consists of the fact
that relationships between artefacts are also described by an ISA hierarchy. The
relationships are also described by some semantic attributes like “is the relation-
ship symmetric, antisymmetric, reflexive, transitive, etc.”. Such attributes can
be very useful for the change propagation process. We defined two hierarchies;
one hierarchy concerns the artefacts and the second concerns the relationships.
The current work is focused on the relationship hierarchy based on aspects rel-
evant to the change impact analysis and propagation (Figure 10). Considering
the change impact propagation we define five relationship types :

Fig. 10. Relationship hierarchy

– ForwardImpact relationships are those conducting the impact from their source
or themselves to their destination. That means if a change affect the source of
the relationship or affect the relationship itself, the impact may generate and
it may also impact the destination of the relationship.

– InverseImpact relationships are the relationship conducting the impact from
the destination to the source. That means if the destination of the relationship
is affected by a change then an impact of this change may generate and this
impact may affect the source of the relationship.

– NoImpact relationships do not conduct the impact of a change. That means
if a change affects the source or destination of the relationship no impact my
generate through this relationship.

– CertainImpact relationships are those conducting certainly the impact.
– ConditionalImpact relationships are those conducting the impact in some cases
only.

These relationship types are not disjunctives. That means a relationship may
be at the same time ForwardImpact and CertainImpact or InverseImpact and
ConditionalImpact or ForwardImpact and InverseImpact, etc. For instance the
MappedTo relationship is a ForwradImpact. A change affecting a BPM can affect
the BPEL implementing it. This relationship is also InverseImpact since a change
affecting a BPEL may have an impact affecting the corresponding BPM. This
relationship is also a ConditionalImpact since it is not sure that a change affecting
a BPM will really cause a change affecting the corresponding BPEL. With the



Change Impact Analysis in BPM 13

help of an ontology language it is then possible to define the new relationship
types by combining these.

In our ontology we also represent some descriptions concerning the different
kind of changes (as described in the section 3. We add complementary infor-
mation regarding the artefacts affected by a change, the author of the change,
etc. We then define and implement a generic algorithm that generates automati-
cally graph rewriting rules implementing the change impact propagation (listing
1). In this algorithm we assume the existence a function called generateIm-
pact(ImpactType:String, AffectedNode: Node) associated to a relationship Ri.
This function generates a rule in which :

– the LHS of the rule is a subgraph containing the source and destination of
the relationship Ri as linked by the relationship Ri.

– The RHS of the rule contains the source and destination of Ri that are not
linked (directly related) by Ri and a node of type ImpactT ype is then created
and linked (indirectly related) to the affected node that may be the source or
the destination of the relationship Ri.

Listing 1. Algorithm impactGeneration(artefact:a change:c)
✞ ☎

1 R=relationships where a is source or destination artefact

2 forAll Ri in R {
3 if Ri. forward then

4 if Ri.impact then
5 forAll d in Ri . destination {
6 Ri.generateImpact(’ certainImpact ’, d)
7 }
8 else

9 forAll d in Ri . destination {
10 Ri.generateImpact(’ conditionalImpact ’, d)
11 }
12 endif

13 endif

14

15 if Ri. inverse then

16 if Ri.impact then
17 forAll s in Ri . source {
18 Ri.generateImpact(’ certainImpact ’, s)
19 }
20 else

21 forAll s in Ri. source {
22 Ri.generateImpact(’ conditional ’, s)
23 }
24 endif

25 endif

26 }

✡✝ ✆

This algorithm has also been designed to assess the change impact propaga-
tion without the use of the graph rewriting rules. In this case the function
generateImpact does not generate a rule but manipulates directly the arte-
facts stored in the XML repository as graph nodes and edges using the GXL
data model.



14 M. Bouneffa and A. Ahmad

6 The prototype of validation

The prototype we developed can be divided on two main parts :

– the first part concerns the graph rewriting implementation and the ontology
construction. For this part we mainly used tools such as AGG and Protégé,
which allow the graph rewriting specification (and execution) and the ontol-
ogy construction, respectively. These two tools concerns the specification and
formalization of the concepts used by our approach. These tools are not sup-
posed to be actually used in a real project but these help in developing the
second part.

– the second part of our validation concern the integration of the results of our
approach on a platform we developed to deal with the change management of
large distributed software applications. This platform called Architect is built
as a set of Eclipse8 IDE plug-ins. An Eclipse project manages a set of resources
that can be source code files, libraries, BPEL, and BPMN files etc. Architect
analyzes these heterogeneous sources and parses their elements to represent
them as a homogenous interactive graph. The Architect Graph extension of
eclipse visualizes the elements of the corresponding editor view. This prototype
contains a graph editor which provides in a very simple way the nodes and
arcs of the structural graph.
We have used the Java Universal Network/Graph (JUNG)9 Framework. It is
a software library that can be re-used for the modeling, analysis, and the
visualization of data as a graph or network. This library allows to define
the structure of data Graph and also to use certain graph primitives for the
construction of user interfaces associated with the graph manipulation tools.
We used it in interaction with the built-in capabilities of Java API, as well
as those of other existing third party Java libraries i.e Drools10. We have
specialized the class Graph available in the JUNG library in a class that we
called ArchitectGraph. By using our platform, one can friendly specify a change
affecting a node. Which may be a BPM task, a web service specification, or a
Java class, etc. The various rules implementing the change impact propagation
may then be fired. As a result the new graph is displayed containing nodes
of type ”impacted” related to the different impacted artifacts along with the
explanation of the propagated impact.

7 Concluding remarks and future work

In this paper, we present an approach based on a BPM meta-model intended to
serve as a BPM artifacts repository data schema. We also defined the initial BPM
change operations taxonomy. It involves the formalization of the change and the
analysis of its impact propagation by graph rewriting rules. The graph rewriting

8 http://www.eclipse.org/
9 http://jung.sourceforge.net/

10 http://www.jboss.org/drools/

http://www.eclipse.org/
http://jung.sourceforge.net/
http://www.jboss.org/drools/


Change Impact Analysis in BPM 15

rules have been implemented with AGG that is a graph rewriting system. This
implementation can be considered as an operational or constructive specification.
The use of the an ontology language (OWL) provides more semantic information
about the various artefacts. The significant semantic information concerns the
role of the various relationship types in the impact propagation. We especially
define a relationship class hierarchy considering several relationship types from
the perspective of the change impact propagation. This allows us to define a
generic algorithm that has been used to both generate graph rewriting rules
managing the change impact propagation or to directly implement the change
impact propagation. The main concept of our approach is validated using a set of
tools integrated as ECLIPSE plug-ins. These plugins are parts of a more general
integrated framework which is built to deal with the software artifacts change
impact propagations.

We are continuing the work by enriching the approach, in a more detailed
way, with the different kind of mapping relationships related to the BPM ar-
tifacts and their implementation. The main goal is to be able to automatically
track the change impact propagation. To achieve this, we must explicitly enrich
the knowledge concerning the semantic of BPM elements and their relationships.
We are then using the BPMN ontology[Penicina, 2013] that is expressed using
the OWL[Motik et al., 2012]. We plan to enrich this ontology by concepts repre-
senting the various aspects of change impact and the relationships propagating
such impacts. Another goal is to provide some forward and reverse engineer-
ing tools in order to implement some important tasks like defining flexible and
adaptable tools for the generation of BPM implementations and some others for
the generation of BPMs from the process implementations.

References

Ahmad and Basson, 2009. Ahmad, A. and Basson, H. (2009). Software evolution mod-
elling: an approach for change impact analysis. In Proceedings of the 7th International
Conference on Frontiers of Information Technology, FIT ’09, pages 56:1–56:4, New
York, NY, USA. ACM.

Ahmad et al., 2008a. Ahmad, A., Basson, H., and Bouneffa, M. (2008a). Software
evolution control: Towards a better identification of change impact propagation. In
ICET’08: Proceedings of the 4th IEEE International Conference on Emerging Tech-
nologies, pages 286–291. IEEE Computer Society.

Ahmad et al., 2009. Ahmad, A., Basson, H., and Bouneffa, M. (2009). Rule-based
approach for software evolution management. In IEEE APSSC 2009: IEEE Asia-
Pacific Services Computing Conference.

Ahmad et al., 2008b. Ahmad, A., Basson, H., Deruelle, L., and Bouneffa, M. (2008b).
Towards a better control of change impact propagation. In INMIC’08: 12th IEEE
International Multitopic Conference, pages 398–404. IEEE Computer Society.

Allweyer, 2010. Allweyer, T. (2010). BPMN 2.0 : Introduction to the Standard for
Business Process Modeling. Books on Demand, Norderstedt.

Bouneffa and Ahmad, 2013. Bouneffa, M. and Ahmad, A. (2013). Change manage-
ment of bpm-based software applications. In 15th International Conference on En-
terprise Information Systems (ICEIS 2013), pages 37–45.



16 M. Bouneffa and A. Ahmad

DeRemer and Kron, 1975. DeRemer, F. and Kron, H. (1975). Programming-in-the
large versus programming-in-the-small. SIGPLAN Not., 10(6):114–121.

Dumas et al., 1990. Dumas, P., Charbonnel, G., and Calmes, F. (1990). La méthode
OSSAD - Pour mâıtriser les technologies de l’information - Tome 2: Guide pratique,
Les Editions d’Organisation, Paris.

Emig et al., 2005. Emig, C., Momm, C., Weisser, J., and Abeck, S. (2005). Program-
ming in the Large based on the Business Process Modeling Notation. In Jahrestagung
der Gesellschaft für Informatik (GI), Bonn.

Gottschalk et al., 2002. Gottschalk, K., Graham, S., Kreger, H., and Snell, J. (2002).
Introduction to web services architecture. IBM Syst. J., 41:170–177.

Haller et al., 2008. Haller, A., Gaaloul, W., and Marmolowski, M. (2008). Towards an
xpdl compliant process ontology. In SERVICES I, pages 83–86.

Juric, 2006. Juric, M. B. (2006). Business Process Execution Language for Web Ser-
vices BPEL and BPEL4WS 2nd Edition. Packt Publishing.

Lee et al., 2011. Lee, Y.-C., Chu, P.-Y., and Tseng, H.-L. (2011). Corporate perfor-
mance of ict-enabled business process re-engineering. Industrial Management and
Data Systems, 111(5).

M.O. et al., 2010. M.O., H., Deruelle, L., Basson, H., and Ahmad, A. (2010). A change
propagation process for distributed software architecture. In ENASE 2010: Pro-
ceedings of the 5th International Conference on Evaluation of Novel Approaches to
Software Engineering.

Motik et al., 2012. Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., and Lutz,
C. (2012). Owl 2 web ontology language: Profiles. w3c recommendation (27 october
2009).

OMG, 2011. OMG (2011). Business process model and notation (bpmn) version
2.0. OMG Document Number: formal/2011-01-03, Standard document URL:
http://www.omg.org/spec/BPMN/2.0 Accessed 2011-03-18.

Parmenter, 2007. Parmenter, D. (2007). Key Performance Indicators (KPI): Develop-
ing, Implementing,and Using Winning KPIs. John Wiley & Sons, Inc., New York,
NY, USA.

Penicina, 2013. Penicina, L. (2013). Choosing a bpmn 2.0 compatible upper ontol-
ogy. In The 5th International Conference on Information, Process, and Knowledge
Management,, pages 89 – 96, Nice, France. IARIA.

Rajlich, 1997. Rajlich, V. (1997). A model for change propagation based on graph
rewriting. In Proceedings of the International Conference on Software Maintenance,
pages 84–91, Washington, DC, USA. IEEE Computer Society.

Rajlich and Gosavi, 2004. Rajlich, V. and Gosavi, P. (2004). Incremental Change in
Object-Oriented Programming. IEEE Softw., 21(4):62–69.

Schmidt, 2006. Schmidt, D. (2006). Guest editor’s introduction: Model-driven engi-
neering. Computer, 39(2):25 – 31.

Silver, 2009. Silver, B. (2009). BPMN Method and Style: A levels-based methodology
for BPM process modeling and improvement using BPMN 2.0. Cody-Cassidy Press.

Van der Aalst, 2003. Van der Aalst, W. M. P. (2003). Patterns and XPDL: A critical
evaluation of the XML process definition language. Technical Report BPM-03-09,
BPMcenter.org.

Weske, 2007. Weske, M. (2007). Business process management concepts, languages,
architectures. Springer, 1 edition.

Weske, 2012. Weske, M. (2012). Business process management architectures. In Busi-
ness Process Management, pages 333–371. Springer Berlin Heidelberg.

http://www.omg.org/spec/BPMN/2.0

	The change impact analysis in BPM based software applications: a graph rewriting and ontology based approach
	Mourad Bouneffa, Adeel Ahmad
	Introduction
	BPM formalization and meta-modeling
	The BPM Modeling
	The Development and the Deployment of the BPM
	The execution and monitoring of the BPM
	The BPM improvement
	A meta-model of graph-based BPM

	The taxonomy of change operations
	The atomic change operations
	The composite change operations

	The change impact analysis
	The change impact generation
	The change impact propagation

	The BPM and software artefacts change ontology 
	The prototype of validation
	Concluding remarks and future work
	References



