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ABSTRACT 

Composite powders made up of 1 vol. %Ag nanowires (NW) dispersed in Cu 
were prepared and consolidated into cylinders by spark plasma sintering. One 
cylinder was sintered at only 400 °C resulting in a nanocomposite sample with 
no dissolut ion of the Ag NW into the Cu matrix. The second cylinder was 
sintered at 600 °C and the Ag NW are dissolved forming Ag/Cu alloy NW. The 
cylinders served as starting materials for room temperature wire-drawing, 

enabling the preparation of wires of decreasing diameters. The microstructure of 
the cylinders and the wires was investigated by electron microscopy and 
associated techniques. The tensile strength and electrical resistivity were mea­
sured at 293 K and 77 K. The nanocomposite and alloy wires show similar UTS 
values (1100 MPa at 77 K), but alloying, although spatially limited, provoked a 
significant increase in electrical resist ivity (056 µ.Q cm at 77 K) compared to the 
nanocomposite wires (0.49 µ.Q cm at 77 K). 

Address correspondence to E-mail: laurent@chimie.ups-tlse.fr 
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GRAPHICAL ABSTRACT 
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Introduction 

Mechanically stronger electrically conducting wires 
are required in various domains such as record (100 T) 
pulsed magnetic fields, power and aerospaœ engi­
neering. The requirements on electrical conductivity 
impose a material with a composition as close as pos­
sible to pure copper (Cu), therefore ruling out using 
metallic alloys (1). Earlier studies have shown that 
nanocomposite Cu-matrix wires designed and pre­
pared with a combination of ultrafine microstructure 
and one-dimensional (1 D) reinforcement, such as car­
bon nanotubes (CNT) (2, 3) and silver nanowires (Ag 
NW) [ 41, show both a high ultima te tensile strength 
(UTS) and a low electrical resistivity. In particular, it 
has been established that Ag-Cu composite wires 
containing only 1 vol. % of Ag present the same UTS 
(1100 MPa at77 K) thanAg/Cu alloy wires containing 
about 20 times more Ag (5-8) but with an electrical 
resistivity about 40% lower (0.51 µQ cm vs 0.81 µQ cm 
at 77 K). The ultrafine microstructure is obtained by 
the consolidation of a powder in the form of a cylinder 
by spark plasma sintering (SPS) followed by the room­
temperature wire-drawing (WD) of the cylinders in 
wires of decreasing diameter. The method was first 
proposed and validated for pure Cu wires (9). The 
short sintering times typical of SPS (10) avoid grain 
growth, producing Cu cylinders with micrometer­
sized grains, 10 times smaller than for conventional 
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cylinders. The extreme straining provoked by the 
multi-step WD process, a severe plastic deformation 
method (11-14), induces grain refinement down to 
ultrafine size (about 200-500 nm) and a high density of 
dislocations and point defects, leading to strengthen­
ing but also to a higher electrical resistivity. lt is well 
known from general nanocomposites effect (15) that 
important gains may be achieved with very low pro­
portion (typically 0.5-1 vol %) of nanometer-sized 
compound dispersed in a matrix. lndeed, regarding 
the 1D reinforcement, this has been verified for the UTS 
of CNT-Cu (2,3) andAgNW-Cu ( 4) wires compared to 
that of pure Cu. lt was highlighted that theuse of such a 
low content of reinforcement is key to maintaining a 
low electrical resistivity of the wires. The aim of the 
present study is to bring to light some important dif­
ferences between wires that are almost similar: 1 vol. % 
Ag-Cu composite wires will be prepared and com­
pared to wires where Ag and Cu will not be present as 
separate phases anymore but rather will form an alloy. 
Both kind of wires will use the same powders, mixing 
process and WD process, but the composite cylinder 
will be sintered by SPS at 400 °C, where the solubility 
of Ag in Cu is below 0.1 vol. % Ag, whereas the alloy 
cylinder will be sintered at 600 °C, where the solubility 
of Ag in Cu is equal to about2.4 vol% Ag (16). It is thus 
assumed that the Ag NW will not or only negligibly be 
dissolved at 400 °C and that they will be totally dis­
solved into the Cu grains at 600 °C, although the short 
time (5 min) at this temperature will not allow for the 
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diffusion of Ag over very long distances. In order to

obtain an indication of the spatial extent of the result-

ing alloying for both temperatures, the diffusion

length (LÞ of Ag in Cu during the SPS treatment was

calculated according to Eq. (1):

L ¼ DAg!Cut
q

ð1Þ

with L the diffusion length, DAg!Cu the lattice diffu-

sion coefficient of Ag in Cu and t the duration. A

value of DAg!Cu equal to 5.66 10–16 cm2/s was used at

400 �C [17] and a value of DAg!Cu equal to 1.8

10–12 cm2/s was used at 600 �C, according to a mea-

surement at 595 �C [18].

Below 350 �C, the diffusion of Ag takes place along

the Cu grain boundaries, but for higher temperatures,

progressive dissolution takes place, corresponding to

the so-called partial leakage of Ag from the Cu grain

boundaries towards the interior of the Cu grains and

therefore to the onset of some Ag diffusion in the Cu

lattice [17]. It has also been shown [18] that the grain-

boundary diffusion length is not distinguishable from

the lattice diffusion length for misorientations lower

than 20� or higher than 70� between the corre-

sponding Cu grains. Therefore, we have used the

lattice diffusion coefficient at 400 �C and 600 �C in

Eq. (1) and neglected the grain boundary diffusion.

Considering the length (30–60 lm) and diameter

(200–300 nm) of the Ag NW, this corresponds to

considering only a radial diffusion, neglecting that

some Ag will indeed diffuse along the grain bound-

aries of the micrometer-sized Cu grains. For a 5 min

dwell, the calculated L values are equal to 4 nm at

400 �C and to 232 nm at 600 �C. The values are in line

with the hypotheses that there is no dissolution at

400 �C, whereas the 600 �C treatment transforms the

Ag NW into more diffuse areas, still cylindrical but

about three times larger in diameter (thus about

650 nm), made up of a Ag/Cu alloy. A schematic

representation of the method and the expected

microstructures of the samples is presented in Fig. 1.

Experimental procedure

Powders mixing

Ag NW (length 30–60 lm, diameter 200–300 nm) were

prepared by reducingAgNO3 (Aldrich, 99.9999%) with

ethylene glycol in the presence of poly (vinyl pyrroli-

done) [19]. A commercial Cu powder (Alfa Aesar, 99%,

0.5–1.5 lm) was used. An Ag NW-Cu composite pow-

der (1vol.%Ag)waspreparedbystep-wisepouring the

appropriate amount of Cu powder into the Ag NW

suspension in ethanol under sonication. The dry com-

posite powder was obtained after ethanol evaporation

in a rotary evaporator (80 �C). The so-obtained powder

was heated at 160 �C (heating rate 2.5 �C.min-1, dwell

time 1 h) in flowing H2 (15 L/h) to reduce any copper

oxide present at the surface of the Cu grains and also to

obtaina cohesive,pre-sinteredpowderbecause thiswas

found to be favorable for the subsequent consolidation.

Two powder batches were prepared in the same

experimental conditions as required for the study.

Spark plasma sintering and wire-drawing

The Ag–Cu powders were sintered by SPS (PNF2

Toulouse, Dr. Sinter 2080, SPS Syntex Inc., Japan)

according to a procedure described elsewhere [4]. The

sample is heated at 25 �C.min-1 from room tempera-

ture to 350 �C and then at 50 �C.min-1 from 350 �C to

the maximum temperature where a 5 min dwell is

applied. A uniaxial pressure (25 MPa) is applied

gradually during the first minute of the dwell and is

maintained for 4 min. The Ag–Cu powders were sin-

tered at 400 and 600 �C, respectively, in order to obtain

cylinders with a different microstructure. Indeed, as

mentioned above, the Ag solubility limit in Cu at

400 �C is below 0.1 vol. % and therefore a composite

microstructure should bemaintainedwhile at 600 �C it

increases about 2.4 vol. %, as a total dissolution of the

Ag NW is expected [16].

The cylinders (diameter 8 mm and length 30 mm)

are designated S400 and S600 hereafter. The cylinders

were wire-drawn at room temperature through con-

ical WC dies, in about 49 steps, to obtain wires with

decreasing diameters down to 0.19 mm. Wire sam-

ples were typically 700 or 1500 mm long. The wires

are designated according to the starting cylinder and

their diameter: for example, wire S400-0.5 is a 0.5 mm

wire drawn from cylinder S400.

Characterization

Powders were observed by field-emission gun scan-

ning electron microscopy (FEG-SEM, JEOL JSM

6700F). The microstructure of cylinders and wires

was investigated by electron backscattered diffraction

4886 J Mater Sci (2021) 56:4884–4895
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Figure 1 Schematic representation of the method and the expected microstructure and composition of the samples. 

(EBSD) (NordlysNano, Oxford Instruments) com­
bined with an energy dispersive X-ray spectrometry 
(EDS) (X-max 8080 mm2

, Oxford Instruments) on a 
FEG SEM JEOL JSM 7100F TILS LV. Samples were 
prepared by ion milling, using a cross section pol­
isher (JEOL IB-19510CP). The density was measured 
by Archimedes' method for the cylinder and the 
4-mm-diameter wires. Microhardness was deter­
mined from indentation tests on polished surface in
the transverse direction. Loading (1 N for 10 s at
room temperature) was applied with a Vickers
indenter (Shimadzu HMV M3). The distance between
two successive indentations was 10 times the diago­
nal length of the indent and the reported micro­
hardness values are the average of five tests or more.
Tensile tests (INSTRON 1195 machine) were per­
formed at 293 K and 77 K on 170-mm-long wires.
Reported values are the average of three tests. Precise
stresses were measured by the stress gauge system
(1000 N or 250 N, 1.6 x 10-5 m Ç1). The error on the
UTS determination is 2%. Du.ring the tensile test, it
was not possible to follow the strain with an exten­
someter due to the small diameter of most wires and,
in some cases, the testing itself being performed at

77 K. Strain was determined from crosshead dis­
placement without any correction of the machine 
rigidity. The electrical resistivity of 350-mm-long 
wires was measured at 293 K and 77 K using the 
four-probe method with a maximum current of 
100 mA to avoid heating the wires. 

Results and discussion 

Powders 

A typical SEM image (Fig. 2a) of the Ag-Cu powder 
before the H2 reduction step shows that the Ag NW 
are homogenously distributed among the spherical 
Cu particles. They do not appear to have been mas­
sively damaged du.ring mixing, although some kinks 
and bends are observed along their length. The rough 
surface of the Cu grains (Fig. 2b) reveals the presence 
of copper oxide. After H2 reduction, the Ag NW seem 
to be slightly more bent (Fig. 2c). The smooth surface 
of the Cu grains indicates the desired reduction of 
copper oxide in Cu. Sintering necks between adjacent 
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grains are observed, giving the powder some degree

of cohesion (Fig. 2d).

Microstructure

The relative density of the cylinders is equal to

93 ± 1% for all samples. These values were found

convenient for the rest of the study, because a too

high density hampers the deformability of the cylin-

der during WD, resulting in sample breaking. Images

of the transverse sections of S400 (Fig. 3a, b) and S600

(Fig. 3c, d) were recorded in back-scattered electrons

mode to enhance the contrast between Ag (appearing

white on the images) and Cu (grey). Black patches on

the images reflect the presence of pores. The corre-

sponding surface fraction is equal to 6.7% (Fig. 3a)

and 5.4% (Fig. 3c) in acceptable agreement with the

residual porosity (7 ± 1%) calculated from the

Archimedes’ method measurements. For S600

(Fig. 3c, d), it was not possible to distinguish shades

of grey that would have indicated the presence and

size of Ag-enriched areas, possibly because these

areas are too diffuse. Moreover, the crystallographic

contrasts are already very marked in back-scattered

electrons mode. A 3D atom probe tomography anal-

ysis would be the best way to confirm our hypothesis.

EBSD analysis was performed in order to obtain

the grain size distribution maps (Fig. 4).

Images of the transverse section of S400 (Fig. 3a, b

and Fig. 4a) show that the Ag NW (d10 = 0.11 lm;

d50 = 0.17 lm; d90 = 0.26 lm) are homogeneously

dispersed in the Cu matrix made up of isotropic

micrometric grains (Fig. 4a) (d10 = 0.40 lm;

d50 = 0.91 lm; d90 = 1.88 lm) containing some

annealing twins. This highlights the limited grain

growth during sintering at 400 �C and confirm the

expected composite microstructure. For S600, the Ag

Figure 2 SEM images of the Ag Cu powder before (a, b) and after (c, d) the H2 reduction step.

4888 J Mater Sci (2021) 56:4884–4895
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NW are no more observed on the SEM images

(Fig. 3c, d) and the EBSD grain size distribution map

(Fig. 4b) shows moderate increase of Cu grains size

(d10 = 0.58 lm; d50 = 1.72 lm; d90 = 3.78 lm) in

agreement with other studies [20]. The fcc Ag phase

could not be detected anymore (i.e. any remaining

free Ag is below the detection limit of SEM and

EBSD) and the corresponding lack of observation of

Ag NW as a discrete phase reflects their total disso-

lution into the Cu matrix despite the short sintering

time (5 min) at 600 �C. This is in agreement with the

hypotheses for the microstructure of the samples:

there is negligible dissolution of the Ag NW at 400 �C
and therefore S400 is a Ag–Cu composite made up of

pure Ag and pure Cu, whereas S600 does not contain

Ag NW anymore and is made up instead of localized

Ag/Cu alloyed areas in the Cu matrix. Using the

simple approximation, as mentioned above for the

calculation of diffusion length, that the initial cylin-

drical Ag NW are uniformly dissolved into about

three times larger NW, the Ag content of the so-ob-

tained localized Ag/Cu alloy would be about 7 vol.

%. Therefore, we propose to consider these localized

areas as 7 vol. % Ag/Cu alloy NW with an average

diameter of the order of 650 nm.

The diameter of the cylinders is reduced by WD at

room temperature, forming progressively finer wires.

The 4-mm-diameter wires are 99 ± 1% dense. The

density is probably higher for lower-diameter wires

but the measurement uncertainty is too high to give a

meaningful value. Wire samples (1 mm down to

0.19 mm in diameter and 400 mm in length) are col-

lected between WD passes in order to perform the

microstructural, mechanical and electrical character-

izations. It has been shown elsewhere [2–4, 9] that the

CNT-Cu and Ag–Cu wires present the so-called

Figure 3 SEM images of transverse sections of the cylinders recorded in back scattered electrons mode: (a, b) S400 and (c, d) S600. Ag

appears white on the images, Cu appears grey and pores appear black.

J Mater Sci (2021) 56:4884–4895 4889
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lamellar microstructure, with elongated grains par-

allel to the WD direction. The Cu grains are typically

elongated over several micrometers with an average

lamella width of the order of 0.28 lm for a CNT-Cu

wire 0.5 mm in diameter [3] and in the range

0.2–0.4 lm for a 5 vol. % Ag–Cu wire 0.5 mm in

diameter [4]. The Ag NW are dispersed along the Cu

grain boundaries [4]. Coherent twin boundaries were

not observed, by contrast to studies made on cryo-

drawn wires [21–23]. The EBSD grain size distribu-

tion maps of the transverse section of the present

0.5 mm wire is presented in Fig. 5. Ag NW are

observed for S400-0.5 (Fig. 5a), whereas they are not

for S600-0.5 (Fig. 5b). The observed Ag NW sections

are ultrafine and with a relatively narrow distribution

(d10 = 0.14 lm; d50 = 0.17 lm; d90 = 0.21 lm). For Cu

grains, the difference in grain size (lamella width)

between S400-0.5 (d10 = 0.14 lm; d50 = 0.20 lm;

d90 = 0.32 lm) and S600-0.5 (d10 = 0.15 lm;

d50 = 0.20 lm; d90 = 0.34 lm) is significantly less

marked than for the respective cylinders (Table 1).

The Cu grain size distribution for S400-0.3 and

S600-0.3 was also studied by EBSD (Table 1). For

S400-0.3, the Cu grain size distribution is the almost

exactly the same (d10 = 0.14 lm; d50 = 0.19 lm;

d90 = 0.31 lm) than for S400-0.5. The same was

observed for S600-0.3 (d10 = 0.14 lm; d50 = 0.20 lm;

d90 = 0.34 lm) compared to S600-0.5. This saturation

in the grain size decreases although the decrease in

wire diameter could reflect that the theoretical mini-

mum grain size of Cu was reached, which corre-

sponds to the size of a dislocation cell (0.2 lm), as

shown by the d50 values.

The inverse pole figure maps of a transverse sec-

tion of S400 (Fig. 6a) does not reveal any preferential

texture. By contrast, the S400-0.5 (Fig. 6b) and S400-

Figure 4 Grain size distribution maps obtained by EBSD of the

transverse section and the corresponding Cu and Ag grain size

distribution for the cylinder: a S400 and b S600. On the images,

Ag is colored in red, Cu is colored in shades of green depending on

the grain size, grain boundaries are colored in black, annealing

twins are colored in grey and porosity is shown by black areas.
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0.3 (Fig. 6c) wires show\ 111[ and\ 100[ tex-

tures along the WD direction for both Ag and Cu,

which are typical textures of face-centered cubic

metals deformed by WD. For the S400-0.5 wire,

the\ 100[ and\ 111[ orientations represent

79.5% and 16.5% of the image surface area, respec-

tively, whereas for the S400-0.3, these values are

equal to 85.4% and 11.2%, respectively. This shows

that although the Cu grain size distribution has not

been changed by WD from 0.5 to 0.3 mm, there are

some differences between the wires.

Mechanical properties and electrical
resistivity

The Vickers microhardness (Table 2) of the cylinders

is equal to 120 and 75 HV for S400 and S600,

respectively, reflecting the larger grain size for the

latter as noted above. For the wires 4 mm in diame-

ter, the values are slightly higher and they are still

higher for the 1.0 mm and the 0.5 mm wires. This

could reflect the progressive densification and grain

refinement, as reported elsewhere [4, 9].

Typical stress–strain curves for the 0.5 mm wires at

293 K and 77 K are shown in Fig. 7. The UTS values

at 293 K (Fig. 8a) and 77 K (Fig. 8b) show an increase

Figure 5 Grain size distribution maps obtained by EBSD and the

corresponding Cu and Ag grain size distribution for the transverse

section of the a S400 0.5 and b S600 0.5 wires. On the images,

Ag is colored in red and Cu is colored in shades of green

depending on the grain size.

Table 1 Cu grain size distribution for S400 and S600 for the SPS

cylinder (diameter 8 mm) and the 0.5 and 0.3 mm wires

Sample Diameter (mm) d10 (lm) d50 (lm) d90 (lm)

S400 8 0.35 0.91 1.88

S400 0.5 0.14 0.20 0.32

S400 0.3 0.14 0.19 0.31

S600 8 0.58 1.72 3.78

S600 0.5 0.15 0.20 0.34

S600 0.3 0.14 0.20 0.34

Figure 6 EBSD inverse pole figure maps along the drawing

direction (X) of a the S400 cylinder, b the S400 0.5 wire and c the

S400 0.3 wire.

J Mater Sci (2021) 56:4884–4895 4891
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Table 2 Vickers microhardness for S400 and S600 for the SPS 

cylinder (diameter 8 mm) and wires 

Sample Diameter (mm) Microhardness (Hv0_:z) 

S400 8 120 

S400 4 131 

S400 191 

S400 0.5 193 

S600 8 80 

S600 172 

S600 0.5 231 

upon the decrease in wire diameter, which cou.Id 
reflect the refinement of the microst ructure (2, 4). For 
the pure Cu wires, earlier works (4, 9) have shown 
that strengthening originates from the propagation of 
dislocations by an Orowan-type dislocation glide 
mechanism in grains smaller than 250 nm. The Ag­
Cu wires, regardless of the sintering temperature, 
show similar UTS values, in the ranges 700-900 MPa 
at 293 K (Fig. 8a) and 900-1150 MPa at 77 K (Fig. 8b). 

The latter higher values cou.Id reflect the lower 
mobility of the dislocations at 77 K. In all cases, the 
present values are significantly higher than those 
found elsewhere for pure Cu wires prepared from a 
cylinder sintered at 600 °C (4). The Ag NW and the 
Ag/Cu alloy NW therefore appear to have the same 
effect on the mechanical reinforcement of the Ag-Cu 
wires. lt is assumed that the Cu/ Ag alloy NW pre­
sent in the S600 cylinder due to the dissolution of the 
Ag NW have become thinner, elongated and oriented 
in the drawing direction during the WD just like the 
pure Ag NW have been. lt is proposed that, similarly 
to what was observed for the Cu grains, the same 
grain size was reached in the Ag and Ag/Cu NW, 

despite the latter being larger prior to WD. This cou.Id 
show that the 1D-reinforcement effect is more 
dependent on the presence of the 1 D second phase 
dispersed in the matrix than to its composition. 

The elect rical resistivity at 293 K and 77 K of a11 the 
samples is presented in Fig. 9. The electrical resis­
tivity increases upon the decrease in wire diameter, 
because of the grain refinement and the increase in 
the density of grain boundaries acting as scattering 
centers for conduction elect rons. 1t is in the range 
1.93-2.02 µQ cm (Fig. 9a) at 293 K for the S400 wires 
and slightly higher for the S600 wires. This moderate 
increase cou.Id reflect that the 293 K resistivity of the 
Cu grains still domina tes as most of volume of the 
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Figure 7 Stress strain curves t 293 K (a) and 77 K (b) for the 

0.5 mm diameter wires: S400 0.5 ( ) and S600 0.5 ( ). 

S600 wires is still pure Cu and the Ag/Cu alloy NW 

are highly localized around the position of the dis­
solved Ag NW. lndeed, the impact of Ag in solid 
solution in Cu on the increase in resistivity at room 
temperature, measured as 0.355 µQ cm/wt. % Ag 
(i.e. 0.415 µQ cm/vol. % Ag) (24) and 0.200 µQ cm/ 
wt. % Ag (i.e. 0.234 µQ cm/vol. % Ag) (25), would 
have been significantly higher if the samples had 
uniformly been made up of a 1 vol. % Ag/Cu alloy. 
The electrical resistivity at 77 K is lower than at 293 K 
(Fig. 9b), reflecting the negligible electron-phonon 
interactions at low temperature. Interestingly, the 
electrical resistivity vs wire diameters curves of the 
S400 and S600 wires are roughly parallel to each 

other, higher for S600 (0.48--0.56 µQ cm) than for S400 
(0.380-51 µQ cm). By contrast to what is observed for 
the UTS, this indicates a dramatic influence of the 



dissolution of the Ag NW into Ag/Cu alloys NW

upon sintering at 600 �C, although as noted above the

increase could have been higher if the extent of the

spatial dissolution of the Ag NW had been higher,

due to the use of a higher SPS temperature or dura-

tion. The importance of this phenomenon is best seen

on the UTS vs electrical resistivity plot (both at 77 K)

presented in Fig. 10, notably when also compared to

Ag/Cu alloy samples with higher Ag contents [6–8].

Note moreover that the latter samples were prepared

by the melting-solidification route and therefore have

a much more complex microstructure than the pre-

sent powder-metallurgy samples.

Conclusions

Ag NW were mixed with a commercial Cu powder

and the resulting powder (1 vol. % Ag) was divided

in two batches for consolidation into cylinders by

spark plasma sintering. One cylinder was sintered at

only 400 �C and is a nanocomposite sample with no

dissolution of the Ag nanowires. The second cylinder

was sintered at 600 �C, a temperature high enough

for the dissolution of the Ag NW, although it is

spatially limited and results in the formation of Ag/

Cu NW (7 vol. % Ag). Wires with ultrafine elongated

Cu grains were prepared by room temperature wire-

drawing of both cylinders. It is shown firstly that the

Figure 8 Ultimate tensile strength at a 293 K and b 77 K versus

wire diameter for the wires prepared using Cu (black circle) [4]

and the present S400 (blue circle) and S600 (brown square)

cylinders. The error on the UTS measurement is 2%.

Figure 9 Electrical resistivity versus wire diameter at a 293 K

and b 77 K for the wires prepared using Cu (black circle) [4] and

the present S400 (blue circle) and S600 (brown square) cylinders.
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nanocomposite and alloy wires show similar UTS

values (1100 MPa at 77 K), significantly higher than

for pure Cu, reflecting an equivalent strengthening

effect by the Ag NW and the Ag/Cu alloy NW

located at the Cu grain boundaries. It is further

shown that the alloying, although not widespread,

did nevertheless provoke a small but significant

increase in electrical resistivity compared to the

nanocomposite wires. This evidences the need to

obviate alloying during both the design and process

of the wires and to remain as close as possible to pure

Cu, relying only on low-loading nanocomposite

effects for strengthening without compromising the

electrical resistivity. These results could provide

important guidelines for the design and preparation

of ultra-strong yet electrically conducting macro-

scopic wires.
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