
HAL Id: hal-03108627
https://hal.science/hal-03108627

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Newton method for stochastic control problems
Emmanuel Gobet, Maxime Grangereau

To cite this version:
Emmanuel Gobet, Maxime Grangereau. Newton method for stochastic control problems. SIAM Jour-
nal on Control and Optimization, 2022, 60 (5), pp.2996-3025. �10.1137/21M1408567�. �hal-03108627�

https://hal.science/hal-03108627
https://hal.archives-ouvertes.fr


Newton method for stochastic control problems ∗

Emmanuel GOBET † and Maxime GRANGEREAU ‡

Abstract

We develop a new iterative method based on Pontryagin principle to solve stochastic control problems. This
method is nothing else than the Newton method extended to the framework of stochastic controls, where the state
dynamics is given by an ODE with stochastic coefficients. Each iteration of the method is made of two ingredients:
computing the Newton direction, and finding an adapted step length. The Newton direction is obtained by solving
an affine-linear Forward-Backward Stochastic Differential Equation (FBSDE) with random coefficients. This is done
in the setting of a general filtration. We prove that solving such an FBSDE reduces to solving a Riccati Backward
Stochastic Differential Equation (BSDE) and an affine-linear BSDE, as expected in the framework of linear FBSDEs
or Linear-Quadratic stochastic control problems. We then establish convergence results for this Newton method.
In particular, sufficient regularity of the second-order derivative of the cost functional is required to obtain (local)
quadratic convergence. A restriction to the space of essentially bounded stochastic processes is needed to obtain
such regularity. To choose an appropriate step length while fitting our choice of space of processes, an adapted
backtracking line-search method is developed. We then prove global convergence of the Newton method with the
proposed line-search procedure, which occurs at a quadratic rate after finitely many iterations. An implementation
with regression techniques to solve BSDEs arising in the computation of the Newton step is developed. We apply it
to the control problem of a large number of batteries providing ancillary services to an electricity network.

1 Introduction

In this paper, we introduce a new method to solve stochastic control problems, which is a generalization of the
Newton method to the particular (infinite-dimensional) setting of stochastic control problems. We consider problems
in general filtrations with a linear dynamic. For the sake of simplicity, we restrict ourselves to the one-dimensional
setting (meaning the state and control variables are real-valued stochastic processes). The general form of problems
we consider is:

J(u) := E
[∫ T

0 l
(
t, ω,ut,ω,Xu

t,ω

)
dt + Ψ(ω,Xu

T,ω)
]

s.t. Xu
t,ω = x0 +

∫ t

0 (αs,ωus,ω + βs,ωXu
s,ω)ds + Mt,ω.

 −→ min
u
. (1.1)

To properly introduce the Newton method for stochastic control problems, we give an overview of state-of-the-art
numerical methods for this class of problems, then a brief introduction to the Newton method for the optimization of
functions taking values in Rd with d ∈N.

State of the art of numerical methods for stochastic control problems Standard approaches to solve stochas-
tic control problems are based either on Bellman dynamic programming principle, either on Pontryagin’s optimality
principle.
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The dynamic programming principle gives rise to a non-linear Partial Differential Equation (PDE) called Bellman’s
equation, which is satisfied by the value function under reasonable conditions [Pha09; Kry08]. Finite-difference
methods to solve this type of PDE have been studied in [GŠ09] and [BZ03] for instance, which allow to reduce
the problem to a high dimensional non-linear system of equations. Among other methods based on Bellman’s
principle, the Howard’s policy improvement algorithm is an iterative algorithm where a linearized version of the
Bellman’s equation is solved at each step. This method has been introduced by Howard in [How60], in the context
of Markovian decision processes. A global convergence rate for Howard policy improvement algorithm (and a
variant) for stochastic control problems have been recently established in [KŠS20b]. Deep-learning methods have
also been applied to solve the non-linear Bellman PDE arising in this context [HJW18].

Another approach to solve stochastic optimal control is the Pontryagin principle, which gives rise to a Forward-
Backward Stochastic Differential Equation, see [Zha17]. Methods to solve this type of equations include fixed-point
methods such as Picard iterations or the method of Markovian iterations for coupled FBSDEs in [BZ+08]. They
converge for small time horizon under the assumption of Lipschitz coefficients, but convergence can be proved
for arbitrary time horizon under some monotony assumption [PT99], using norms with appropriate exponential
weights. Among methods related to fixed-point iteration, the Method of Successive Approximations is an iterative
method based on Pontryagin’s principle, which was proposed in [CL82] for deterministic control problems. However,
convergence is not guaranteed in general. This method is refined in the yet to be published work [KŠS20a], for
stochastic control problems, using an a modification of the Hamiltonian, called augmented Hamiltonian, which allows
to show global convergence, and even establish a convergence rate for particular structures of problems. Solvability
of FBSDEs for arbitrary time horizon under monotony conditions can be proved using the continuation method in
[HP95; Yon97; PW99]. In this method, the interval is divided in smaller sub-intervals, with boundary conditions
ensuring consistency of the overall representation. Then a fixed point argument is done on each sub-interval. This
method is well developed theoretically to prove the existence of solutions of a FBSDE constructively, but rarely used
to design algorithms to solve the problem numerically. We mention however [Ang+19] which uses the continuation
method to design numerical schemes to solve Mean-Field Games. Another method to solve FBSDEs is the Four
step scheme introduced in [MPY94], which allows to compute a so-called decoupling field as solution of a quasi-
linear PDE. This decoupling field allows to express the adjoint variable as a feedback of the state variable. Some
Deep-learning based algorithms have been recently proposed to solve FBSDEs in [Ji+20] and [HL20].

The case of linear FBSDEs and of linear quadratic stochastic optimal control problems has been extensively
studied see for instance [Bis76; Yon99; Yon06]. Our result builds on these works, as our algorithm is based on
successive linearizations of non-linear FBSDEs obtained by a Taylor expansion.

Preliminary on the Newton method in Rd. Consider a twice-differentiable convex function f : x ∈ Rd
7→ R.

We wish to solve the minimization problem minx∈Rd f (x) If f is strongly convex and its second-order derivative is
Lipschitz-continuous [Kan48; NW06; BV04] or if f is strictly convex and self-concordant [NN94; BV04] (meaning
that f is three times differentiable and d

dα∇
2 f (x + αy)

∣∣∣
α=0
� 2

√
yT∇2 f (x) y∇2 f (x), for all x, y in Rd), then the Newton

method gives a sequence of points which converges locally quadratically to the global minimizer of f . This means
that if the initial point is sufficiently close to the optimum, the convergence of the sequence to this point is very fast.
The pseudo-code for the Newton method is given in Algorithm 1.

Algorithm 1 Newton’s method

1: ε > 0, k = 0, x(0) fixed
2: while |∇ f (x(k))| > ε do
3: Compute Newton direction ∆x solution of the linear equation ∇2 f (x(k))(∆x) = −∇ f (x(k))
4: Compute new iterate x(k+1) = x(k) + ∆x.
5: k← k + 1
6: end while
7: return x(k)

To obtain global convergence of the Newton method (i.e., convergence to the optimum no matter the choice
of the initial point), a common procedure is to use line search methods, allowing to choose a step size σ and to
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define new iterates by the formula x(k+1) = x(k) + σ∆x instead of the standard Newton method which considers the
case σ = 1. Among them, given β ∈ (0, 1), the backtracking line search procedure allows to find the largest value
among {1, β, β2, β3, ...} which satisfies a sufficient decrease condition. Its pseudo-code is given in Algorithm 2. The
combination of Newton method with backtracking line search gives a globally convergent method [BV04] in Rd.

Algorithm 2 Backtracking line search procedure

1: Inputs: Current point x ∈ R, Current search direction ∆x, β ∈ (0, 1), γ ∈ (0, 1).
2: σ = 1.
3: while f (x + σ∆x) > f (x) + γσ∇ f (x) · ∆x do
4: σ← βσ.
5: end while
6: return x + σ∆x.

Our contributions. To solve numerically the problem proposed in (1.1), we extend the Newton method to the
infinite-dimensional setting of convex stochastic control problems in general filtrations, where the dynamics is an
affine-linear Ordinary Differential Equation (ODE). This iterative method generates a sequence of points which are
solution of successive Linear-Quadratic approximation of the stochastic control problem around a current estimate
of the solution, see Proposition 3.2. Equivalently, it can be interpreted as successive linearizations of the For-
ward Backward Stochastic Differential Equation (FBSDE) arising from the stochastic Pontryagin’s principle around
a current estimate of the solution, see Proposition 3.3.

In section 3.2, a full methodology is proposed to solve affine-linear FBSDEs with random coefficients in general
filtrations, which arise when computing the Newton step. The methodology is quite standard, though the framework
is a bit unusual as we do not assume Brownian filtrations. In particular, we show that solving the solution of linear
FBSDEs or the computation of the Newton step require solving a Riccati BSDE and an affine-linear BSDE, see
Theorem 3.7 and Corollary 3.8.

The convergence of Newton’s method typically requires sufficient regularity of the second-order derivative of
the cost functional, see [Kan48; NW06] for the case of a Lipschitz second order derivative and [NN94] for the self-
concordant case. Such regularity is not guaranteed in our case: a counter-example (Example 3.9) is given to show
that even under strong assumptions (namely, the regularity of the running and terminal costs), the second-order
derivative of the cost functional J may fail to be sufficiently regular in the infinite-dimensional space considered. To
tackle this issue, we show that an appropriate restriction of the problem to essentially bounded processes allows to
obtain the desired regularity of the second-order derivative of the cost function to minimize, see Theorem 3.11. Local
quadratic convergence can thus be expected in this framework [Kan48]-[NW06, Theorem 3.5, p. 44]. However, as
in the case of Newton’s method in Rn, global convergence may fail in our infinite-dimensional setting, even when
the function to minimize is strongly convex with Lipschitz-continuous bounded second-order derivative. We give a
counter-example (Example 3.12) to show that such pathological behaviors may occur in our setting. To obtain global
convergence, a new line-search method tailored to our infinite-dimensional framework is proposed (see Algorithm
4) and global convergence results are derived for the Newton method combined with this line-search method (see
Algorithm 5) under convexity assumptions, see Theorem 3.15.

We then apply our results to solve an energy management problem, which consists in a set of many weakly-
interacting symmetric batteries controlled to minimize the total operational costs and power imbalance. A Markovian
framework is assumed and regression techniques are used to compute efficiently all the conditional expectations
required for the computation of the Newton direction. This allows to obtain a fully implementable version of the
Newton method with Backtracking line search (see Algorithm 8).

Numerical results show the performance of the Newton method which of the proposed Backtracking line-search
procedure. On the other hand, we show numerically that the natural extension of the standard Backtracking line
search is not adapted to our infinite-dimensional setting: the algorithm takes ridiculously small steps and the gradient
norm does not decrease after a few iterations, see Figures 6b and 6d. The numerical results are consistent with
what we expect, with the asymmetric loss function allowing to penalize more heavily positive than negative power
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imbalance. We then discuss the choice of some hyper-parameters of the regression methods used to solve the
BSDEs.

Organization of the paper. Section 2 introduces the general framework of stochastic control problems studied.
Classical results under suitable assumptions are derived: well-posedness, existence and uniqueness of a minimizer,
Gateaux and Fréchet differentiability, as well as necessary and sufficient optimality conditions 2.6. We then prove the
second-order differentiability of the problem (Proposition 2.8) and show that the second-order differential is valued in
the space of isomorphisms of the ambient process space (Corollary 3.8). Section 3 defines the Newton step and its
two equivalent interpretations (Propositions 3.2 and3.3). We show that the computation of the Newton step amounts
to solve an affine-linear FBSDE, for which we show existence and uniqueness of the solutions, and we prove the
computation of the Newton step reduces to solving a Backward Riccati Stochatic Differential equation and an affine-
linear BSDE (Theorem 3.7 and Corollary 3.8). We then show Lipschitz-continuity of the second-order derivative of
the cost when considering bounded processes. An adapted line-search, called Gradient Backtracking Line Search,
as well as Newton’s method with line search are given. We prove global convergence for this method as well as
quadratic convergence after finitely many iterations (Theorem 3.15). Section 4 provides a full implementation and
the numerical results of the Newton method on the stochastic optimal control problem of a large number of batteries
tracking power imbalance. Some proofs are postponed in Section 5 to ease the reading.

Notations. We list the most common notations used in all this work.
� Numbers, vectors, matrices. R, N, N∗ denote respectively the set of real numbers, integers, positive integers.
For n ∈N∗, [n] denotes the set of integers {1, ...,n}, and for m, p ∈N with m ≤ p, [m : p] denotes the set {m, ..., p}.The
notation |x| stands for the Euclidean norm of a vector x, without further reference to its dimension. For a given matrix
A ∈ Rp

⊗Rd, A> ∈ Rd
⊗Rp refers to its transpose. Its norm is that induced by the Euclidean norms in Rp and Rd, i.e.

|A| := supx∈Rd,|x|=1 |Ax|. Recall that |A>| = |A|. For p ∈N∗, Idp stands for the identity matrix of size p × p.

� Functions, derivatives. When a function (or a process) ψ depends on time, we write indifferently ψt(z) or ψ(t, z) for
the value of ψ at time t, where z represents all other arguments of ψ.
For a smooth function g : Rq

7→ Rp, gx represents the partial derivative of g with respect to x. However, a subscript
xt refers to the value of a process x at time t (and not to a partial derivative with respect to t).

� Probability. To model the random uncertainty on the time interval [0,T] (T > 0 fixed), we consider a complete
filtered probability space (Ω,F ,F,P). We assume that the filtration F := {Ft}0≤t≤T is right-continuous, augmented
with the P-null sets. For a vector/matrix-valued random variable V, its conditional expectation with respect to the
sigma-field Ft is denoted by Et [Z] = E [Z|Ft]. Denote by P the σ-field of predictable sets of [0,T] ×Ω.
All the quantities impacted by the control u are upper-indexed by u, like Zu for instance.
As usually, càdlàg processes stand for processes that are right continuous with left-hand limits. All the martingales
are considered with their càdlàg modifications.

� Spaces. Let k ∈ N∗. We define L2([0,T],Rk) (resp. L∞([0,T],Rk)) as the Banach space of square integrable
(resp. bounded) deterministic functions f on [0,T] with values in Rk. Since the arrival space Rk will be unimportant,
we will skip the reference to it in the notation and write the related norms as

‖ f ‖L2
T

:=
( ∫ T

0
| f (t)|2dt

) 1
2

, ‖ f ‖L∞T := sup
t∈[0,T]

| f (t)|.

The Banach space of Rk-valued square integrable random variables X is denoted by L2(Ω,Rk), or simply L2
Ω

. We
also define the Banach space of Rk-valued essentially bounded random variables X, denoted by L∞(Ω,Rk), or
simply L∞

Ω
. The associated norms are

‖X‖L2
Ω

:= E
[
|X|2

] 1
2 ; ‖X‖L∞

Ω
:= essup|X| = inf

M
{M | P(|X| ≤M) = 1} .

The Banach space H2,2([0,T] × Ω,Rk) (resp. H2,2
P

([0,T] × Ω,Rk)) is the set of all F-adapted (resp. F-predictable)

processes ψ : [0,T] × Ω → Rk such that E
[(∫ T

0 |ψt|
2dt

)]
< +∞. The Banach space H∞,2

(
[0,T] ×Ω,Rk

)
stands
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for the elements of H2,2
(
[0,T] ×Ω,Rk

)
satisfying E

[
supt∈[0,T] |ψt|

2
]
< +∞. The Banach space H∞,∞

(
[0,T] ×Ω,Rk

)
(resp. H∞,∞

P

(
[0,T] ×Ω,Rk

)
) stands for the space of essentially bounded processes in H2,2

(
[0,T] ×Ω,Rk

)
(resp.

H2,2
P

(
[0,T] ×Ω,Rk

)
). Here again we will omit the reference to Rk and [0,T]×Ω, which will be clear from the context.

The associated norms are:

‖ψ‖H2,2 := E
[(∫ T

0
|ψt|

2dt
)] 1

2

; ‖ψ‖H∞,2 := E

 sup
t∈[0,T]

|ψt|
2


1
2

; ‖ψ‖H∞,∞ := essup sup
t∈[0,T]

|ψt|.

The space of martingales inH∞,2 is denotedM2 and the space of martingales vanishing at t = 0 is denotedM2
0.

2 Control problem: setting, assumptions and preliminary results

2.1 Setting and assumptions

We consider a stochastic control problem where the state dynamic is given by an ordinary differential equation,
which is relevant for applications such as control of energy storage/conversion systems. Problems with a more
general state dynamics, given by a stochastic differential equation with uncontrolled diffusion or jump terms can
also be embedded in this framework, see Remark 2.1. In the field of energy management, this can be used to
model water dams for instance, where the level of stored water depends on decisions (pumping, ...) and exogenous
random processes, like water inflows arising from the rain or the ice melting in the mountains. More generally it
allows to model a problem of control of an energy storage system subject to an exogenous random environment,
which makes sense in a context of high renewable penetration.

We assume that the coefficients of the control problem are random, without any Markovian assumption and we
do not suppose that the filtration is Brownian. We do not consider control nor state constraints. For clarity of the
presentation, the results are established in the one dimensional-case, i.e., both the state and control variables are
real-valued processes. However, they could be established in a higher dimension setting.

J(u) := E
[∫ T

0 l
(
t, ω,ut,ω,Xu

t,ω

)
dt + Ψ(ω,Xu

T,ω)
]

s.t. Xu
t,ω = x0 +

∫ t

0 αs,ωus,ωds.

 −→ min
u∈H2,2

P

. (2.1)

We consider the following regularity assumptions on the problem:

(Reg-1) The function l : (t, ω,u, x) ∈ [0,T] ×Ω ×R ×R 7→ l(t, ω,u, x) ∈ R is P ⊗ B(R) ⊗ B(R)-measurable. The function
Ψ : (ω, x) ∈ Ω ×R 7→ ψ(ω, x) ∈ R is FT ⊗ B(R)-measurable. Besides, l and Ψ satisfy the growth conditions:

|l(t, ω,u, x)| ≤ C(l)
t,ω + C

(
|u|2 + |x|2

)
,

|Ψ(ω, x)| ≤ C(Ψ)
ω + C|x|2,

with C(l)
∈H1,1, C(Ψ)

∈ L∞T and C > 0 a deterministic constant. We assume besides x0 ∈ L2
Ω

.

(Reg-2) Assumption (Reg-1) holds and the function l is C1 with respect to (u, x) and Ψ is C1 with respect to x with
derivatives satisfying:

|l′v(t, ω,u, x)| ≤ C(l′)
t,ω + C′ (|u| + |x|) , v ∈ {u, x},

|Ψ′x(ω, x)| ≤ C(Ψ′)
ω + C′|x|,

with C(l′)
∈H2,2, C(Ψ′)

∈ L2
T and C′ > 0 a deterministic constant.

(Reg-3) Assumptions (Reg-1)-(Reg-2) hold and the functions l and Ψ are C1 with respect to (u, x) with Lipschitz con-
tinuous derivatives.
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(Reg-4) Assumptions (Reg-1)-(Reg-2)-(Reg-3) hold and the functions l and Ψ are C2 with respect to (u, x) with bounded
second derivatives (uniformly in (t, ω,u, x)).

(Reg-5) Assumptions (Reg-1)-(Reg-2)-(Reg-3)-(Reg-4) hold and the mappings l and Ψ have lipschitz-continuous sec-
ond derivatives. Besides, the bounds C(l) and C(l′) introduced earlier are in H∞,∞, and the constants C(Ψ) and
C(Ψ′) are in L∞T . We assume besides x0 ∈ L∞Ω .

We introduce the assumption of linearity of the dynamic:

(Lin-Dyn) The dynamic is affine-linear given by Φ : (t, ω,u, x) 7→ αt,ωut,ω, with α ∈H∞,∞
P

.

We consider the following convexity assumptions on the problem:

(Conv-1) The mapping l is convex in (u, x) and Ψ is convex in x.

(Conv-2) Assumption (Conv-1) holds and the mapping l is µ-strongly convex in u, with µ > 0. In particular, under
Assumption (Reg-4), l′′uu is uniformly bounded from below by µ.

Remark 2.1. The assumption (Lin-Dyn) is not restrictive and one could consider general affine-linear dynamics of
the form:

Xu
t,ω = x0 +

∫ t

0
(αs,ωus,ω + βs,ωXu

s,ω)ds + Mt,ω,

with M an uncontrolled (Ft)-adapted càdlàg uncontrolled process. Without loss of generality, we can assume M = 0,
as we can reformulate the obtained problem in terms of X̃u = Xu

−M, up to minor modifications of l and Ψ. In the
case M = 0, we can directly show for general β ∈H∞,∞:

Xu
t,ω = exp

(∫ t

0
βs,ωds

) (
x0 +

∫ t

0
αs,ωus,ω exp

(
−

∫ s

0
βr,ωdr

)
us,ωds

)
and thus the problem is equivalent to:

J(u) := E
[∫ T

0 l̃
(
t, ω,ut,ω, X̃u

t,ω

)
dt + Ψ̃(X̃u

T,ω)
]

s.t. X̃u
t,ω = x0 +

∫ t

0 α̃s,ωus,ωds.

 −→ min
u∈H2,2

P

.

with: 
l̃(t, ω,u, x) := l

(
(t, ω,u, exp

(∫ t

0 βs,ωds
)

x
)
,

α̃t,ω := αt,ω exp
(
−

∫ t

0 βs,ωds
)
,

Ψ̃(ω, x) = Ψ
(
ω, exp

(∫ T

0 βs,ωds
)

x
)
.

2.2 Well-posedness, existence and uniqueness of an optimal control

Proposition 2.2. Under Assumption (Reg-1) and (Lin-Dyn), for any u ∈H2,2
P

, one can define Xu
∈H∞,2 by:

Xu
t = x0 +

∫ t

0
αsusds. (2.2)

Besides, we have ‖Xu
‖H∞,2 ≤

√
T‖α‖H∞,∞‖u‖H2,2 + ‖x0‖L2

Ω
, ‖Xu

− Xv
‖H∞,2 ≤

√
T‖α‖H∞,∞‖u − v‖H2,2 and J(u) < +∞.

Proposition 2.3. Under Assumption (Reg-2)-(Lin-Dyn)-(Conv-2), J is continuous and strongly convex, coercive
(i.e., lim

‖u‖H2,2

J(u) = +∞) and hence J has a unique minimizer inH2,2
P

.

Proof. The continuity of u ∈ H2,2
P
7→ Xu

∈ H∞,2 holds thanks to (Lin-Dyn), by Lebesgue’s continuity theorem. The
continuity of J stems from this fact, Lebesgue’s continuity theorem and (Reg-2). Under assumption (Conv-2), J is
µ-strongly convex and coercive. Besides, H2,2

P
is reflexive, as it is a Hilbert space. Therefore, by [Bre10, Corollary

3.23, pp.71], J has a unique minimizer u∗ ∈H2,2
P

. �
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2.3 First-order necessary and sufficient optimality conditions

We first prove first-order differentiability properties of the state variable and the cost function with respect to the
control variable under suitable assumptions.

Lemma 2.4. The application ΦX : u ∈ H2,2
P
7→ Xu

∈ H∞,2 is Fréchet-differentiable. Besides, for any (u, v) ∈ (H2,2
P

)2,
the derivative of ΦX at point u in direction v is independent from u and given by:

Ẋv :=
( d

dε
ΦX(u + εv)

)
|ε=0

=

∫ t

0
αsvsds = Xv

− x0. (2.3)

Besides, we have the following estimate:

‖Ẋv
‖H∞,2 ≤ C‖v‖H2,2 .

Proof. The application u ∈H2,2
P
7→ Xu

∈H∞,2 is Gateaux-differentiable at u ∈H2,2
P

in direction v ∈H2,2
P

with derivative
Ẋv := Xv

− x0 ∈H∞,2. In particular, ΦX is continuously differentiable and therefore Fréchet-differentiable. The bound
‖Ẋv
‖H∞,2 ≤ C‖v‖H2,2 arises from Cauchy-Schwarz inequality and the assumption α ∈H∞,∞. �

Proposition 2.5. Suppose Assumptions (Reg-3) and (Lin-Dyn) hold. Then for any u ∈ H2,2
P

, consider Xu
∈ H∞,2

given in (2.2) and define Yu by:

Yu
t = Et

[
Ψ′x(Xu

T) +

∫ T

t
l′x(s,us,Xu

s )ds
]
. (2.4)

Then, Yu is well-defined and in H∞,2. Besides, J is Fréchet-differentiable and admits a gradient at u denoted
∇J(u) ∈H2,2

P
given by:

∀u ∈H2,2
P
,dP ⊗ dt − a.e., (∇J(u))t = l′u(t,ut,Xu

t ) + αtYu
t−. (2.5)

Besides, we have the following estimates for a deterministic constant C independent of u and v:

∀u ∈H2,2
P
, ‖Yu

‖H∞,2 + ‖∇J(u)‖H2,2 ≤ C(1 + ‖u‖H2,2 + ‖x0‖L2
Ω

),

∀(u, v) ∈ (H2,2
P

)2, ‖Yu
− Yv
‖H∞,2 + ‖∇J(u) −J(v)‖H2,2 ≤ C‖u − v‖H2,2 .

Proof. The regularity assumptions combined with the estimation on ‖Xu
‖H∞,2 directly show that Yu

∈H∞,2 with:

‖Yu
‖H∞,2 ≤ C(1 + ‖u‖H2,2 + ‖x0‖L2

Ω
)

‖Yu
− Yv
‖H∞,2 ≤ C‖u − v‖H2,2 .

Admitting first the expression (2.5) for ∇J(u), we can deduce from the regularity assumptions the bounds claimed.
Let us now prove that J is Fréchet-differentiable as well as the expression of ∇J(u). By Lebesgue’s differenti-

ation theorem and Lemma 2.4, the application J is Gateaux-differentiable at u in direction v with derivative given
by:

J̇(u, v) :=
( d

dε
J(u + εv)

)
|ε=0

= E

[
Ψ′x(Xu

T)Ẋv
T +

∫ T

0

(
l′x(s,us,Xu

s )Ẋv
s + l′u(s,us,Xu

s )vs

)
ds

]
. (2.6)

Define the martingale Mu
∈ H∞,2 by Mu

t := Et

[
ψ′x(Xu

T) +
∫ T

0 l′x(s,us,Xu
s )ds

]
. Then Yu

t = Mu
t −

∫ t

0 l′x(s,us,Xu
s )ds so

that (Yu,Mu) satisfies the following BSDE in (Y,M) ∈H2,2
×M

2
0:−dYt = l′x(t,ut,Xu

t )dt − dMt,

YT = Ψ′x(Xu
T).
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Then, applying Integration by Parts Formula in [Pro03, Corollary 2, p. 68] to the product Yu
· Ẋv between 0 and T

yields, using Ẋv
0 = 0, Yu

T = Ψ′x(Xu
T), the fact that Ẋv is continuous with finite variations and the fact that

∫ t

0+ Ẋv
s dMu

s is
a càdlàg martingale inH∞,2, see [Pro03, Theorem 20 p.63, Corollary 3 p.73, Theorem 29 p.75]:

J̇(u, v) = E

[
Yu

TẊv
T +

∫ T

0

(
l′x(s,us,Xu

s )Ẋv
s + l′u(s,us,Xu

s )vs

)
ds

]
= E

[∫ T

0

(
l′x(s,us,Xu

s )Ẋv
s + l′u(s,us,Xu

s )vs + Yu
sαsvs − Ẋv

s l′x(s,us,Xu
s )
)

ds
]

= E

[∫ T

0

(
αsYu

s + l′u(s,us,Xu
s )
)

vsds
]

= E

[∫ T

0

(
αsYu

s− + l′u(s,us,Xu
s )
)

vsds
]
.

In the last inequality, we used the fact that Yu has countably many jumps, and that the Lebesgue integral is left
unchanged by changing the integrand on a countable set of points. This yields the expression of ∇J(u). In particular,
the previous estimates imply that J has a Lipschitz continuous gradient and is therefore Fréchet-differentiable.

�

Theorem 2.6 (First order necessary and sufficient optimality conditions). 1. Suppose Assumptions (Reg-3) and
(Lin-Dyn) hold. Assume u ∈ H2,2

P
is a minimizer of J . Define Xu

∈ H∞,2 by (2.2) and Yu
∈ H∞,2 by (2.4).

Then, necessarily,

l′u(t,ut,Xu
t ) + αtYu

t− = 0, dP ⊗ dt − a.e. (2.7)

2. Under Assumptions (Reg-3), (Conv-1) and (Lin-Dyn), if (u,Xu,Yu) ∈H2,2
P
×H∞,2 ×H∞,2 satisfies (2.7) with Xu

given by (2.2) and Yu given by (2.4), then u is a solution of (2.1), i.e., a minimizer of J .

Proof. 1. Under (Reg-3), J is Gateaux-differentiable and an optimal control is necessary a critical point of J ,
hence ∇J(u) = 0, which yields (2.7).

2. Under (Conv-1) and (Lin-Dyn), J is convex and J is Gateaux-differentiable under (Reg-3), so that (2.7) is a
sufficient optimality condition.

�

2.4 Second-order differentiability

We now turn to second-order differentiability of the cost functional, necessary for the Newton method. We then
prove a key result showing the invertibility of the second order derive of J , and the form of the inverse. This shows
the existence and provides a characterization of the Newton step.

Lemma 2.7. Suppose Assumptions (Reg-4) and (Lin-Dyn) hold. Then the mapping

ΦY :

H2,2
P
7→H∞,2

u 7→ Yu

is Gateaux-differentiable. Furthermore, for all u, v in H2,2
P

, DΦY(u)(v) = Ẏu,v is defined by the following affine-linear
BSDE with Lipschitz coefficients:

Ẏu,v
t = Et

[
Ψ′′xx(Xu

T)Ẋv
T +

∫ T

t

(
l′′xu(s,us,Xu

s )vs + l′′xx(s,us,Xu
s )Ẋv

s

)
ds

]
. (2.8)

Besides, we have the following estimate:

‖Ẏu,v
‖H∞,2 ≤ C‖v‖H2,2 .
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Proof. By our assumptions, Ẏu,v is well defined and by Lebesgue’s differentiation theorem and Lemma 2.4, it is
straightforward that ΦY is Gateau-differentiable and that: DΦY(u)(v) = Ẏu,v. Applying Lebesgue’s theorem and using
our estimation on ‖Ẋv

‖H∞,2 , one gets ‖Ẏu,v
‖H∞,2 ≤ C‖v‖H2,2 . �

Proposition 2.8 (Second-order differentiability). Suppose Assumptions (Reg-4) and (Lin-Dyn) hold. Then the
mapping J is twice Gateaux differentiable and its second-order derivative ∇2

J :H2,2
P
7→ L(H2,2

P
) is given by:

∀v ∈H2,2,dP ⊗ dt − a.e.,
(
∇

2
J(u)(v)

)
t
= l′′uu(t,ut,Xu

t )vt + l′′ux(t,ut,Xu
t )Ẋv

t + αtẎu,v
t− . (2.9)

Besides, we have the following estimate:

‖∇
2
J(u)(v)‖H2,2 ≤ C‖v‖H2,2 ,

where C is a constant independent of u. In other words, for any u ∈ H2,2
P

, ∇2
J(u) is a continuous endomorphism of

H2,2
P

.

Proof. Applying Lebesgue’s differentiation theorem to ∇J(u) given by (2.5) yields (2.9), using Lemmas 2.4 and
2.7. The continuity of ∇2

J(u) for all u ∈ H2,2
P

results from the previous estimates, our assumptions and Lebesgue’s
differentiation theorem. �

The computation of the Newton step ∆u amounts to solve the equation ∇2
J(u)(∆u) = −∇J(u), as expected by

an infinite-dimensional generalization of the Newton method in Rd. The following theorem is the key result which
guarantees that this infinite dimensional equation has a unique solution, as we show invertibility of the second
order derivative of the cost function at any admissible point. This theorem also makes the connection between the
computation of the Newton step and the solution of an auxiliary Linear-Quadratic stochastic control problem, or
equivalently, with the solution of an affine-linear FBSDE with random coefficients.

Theorem 2.9. Suppose Assumptions (Conv-2), (Reg-4) and (Lin-Dyn) hold. Let (u,w) ∈ H2,2
P
×H2,2

P
and define

Xu
∈H∞,2 by (2.2). We introduce the following auxiliary (linear-quadratic) stochastic control problem:

minv∈H2,2
P

J̃
quad,u,w(v)

s.t. X̃t =
∫ t

0 αsvsds.
(2.10)

where J̃quad,u,w(v) is defined by:

E

[∫ T

0

{1
2

l′′uu
(
t,ut,Xu

t
)

v2
t +

1
2

l′′xx
(
t,ut,Xu

t
)

X̃2
t + l′′ux

(
t,ut,Xu

t
)

X̃tvt − wtvt

}
dt +

1
2

Ψ′′xx(Xu
T)X̃2

T

]
.

Then J̃quad,u,w has a unique minimizer ũu,w
∈H2,2

P
defined by

l′′uu(t,ut,Xu
t )ũu,w

t + l′′ux(t,ut,Xu
t )X̃u,w

t + αtỸu,w
t− = wt,

where (X̃u,w, Ỹu,w) ∈H∞,2 ×H∞,2 are given by:X̃u,w
t =

∫ t

0 αsũu,w
s ds,

Ỹu,w
t = Et

[
Ψ′′xx(Xu

T)X̃u,w
T +

∫ T

t

(
l′′xu(s,us,Xu

s )ũu,w
s + l′′xx(s,us,Xu

s )X̃u,w
s

)
ds

]
.

In particular, (ũu,w, X̃u,w, Ỹu,w) ∈ H2,2
P
×H∞,2 ×H∞,2 is the unique solution of an affine-linear FBSDE with random

coefficients (which depend on the stochastic process u ∈ H2,2
P

). Besides, for any u ∈ H2,2
P

, ∇2
J(u) ∈ L(H2,2

P
) is

invertible and for any w ∈H2,2
P

,
(
∇

2
J(u)

)−1
(w) = ũu,w.

Proof. Introduce the auxiliary running cost function l̃u,w : [0,T] × Ω × R × R 7→ R defined by l̃u,w(t, ω, ũ, x̃) =
1
2 l′′uu

(
t,ut,Xu

t

)
ũ2

t + 1
2 l′′xx

(
t,ut,Xu

t

)
x̃2

t + l′′ux

(
t,ut,Xu

t

)
ũtx̃t − wtũt, where we dropped the reference to ω for simplicity.

Introduce as well the auxiliary terminal cost function Ψ̃u,w : Ω × R 7→ R defined by Ψ̃u,w(ω, x̃) = 1
2 Ψ′′xx(Xu

T)x̃2. Then
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Assumptions (Reg-4), (Lin-Dyn) and (Conv-2) are verified for the auxiliary minimization problem of J̃quad,u,w, with l
and Ψ respectively replaced by l̃u,w and Ψ̃u,w. Applying Proposition 2.3 to the auxiliary problem shows the existence
and uniqueness of a minimizer, denoted ũu,w. Applying Theorem 2.6 to the auxiliary problem, we have existence
and uniqueness of (X̃u,w, Ỹu,w) ∈H∞,2 ×H∞,2 such that (ũu,w, X̃u,w, Ỹu,w) ∈H2,2

P
×H∞,2 ×H∞,2 is the (unique) solution

of the FBSDE: 
X̃u,w

t =
∫ t

0 αsũu,w
s ds,

Ỹu,w
t = Et

[
Ψ′′xx(Xu

T)X̃u,w
T +

∫ T

t

(
l′′xu(s,us,Xu

s )ũu,w
s + l′′xx(s,us,Xu

s )X̃u,w
s

)
ds

]
,

l′′uu(t,ut,Xu
t )ũu,w

t + l′′ux(t,ut,Xu
t )X̃u,w

t + αtỸu,w
t− = wt.

In particular, one has X̃u,w = Ẋũu,w and Ỹu,w = Ẏũu,w . The last equation therefore writes l′′uu(t,ut,Xu
t )ũu,w

t +l′′ux(t,ut,Xu
t )Ẋũu,w

t +

αtẎũu,w

t− = wt. Recognizing ∇2
J(u)(ũu,w) in the left-hand side (see (2.9)), we get in particular the existence and

uniqueness of ũu,w
∈ H2,2

P
solution of the equation ∇2

J(u)(ũu,w) = w. This holds for all w ∈ H2,2
P

. We thus obtain the
invertibility of ∇2

J(u) and the expression (∇2
J(u))−1(w) = ũu,w, for all u,w ∈H2,2

P
. �

3 The Newton method for stochastic control problems

3.1 Definition and interpretation of the Newton step

Definition 3.1. Suppose Assumptions (Conv-2), (Reg-4) and (Lin-Dyn) hold. Let u ∈H2,2
P

and define Xu
∈H∞,2 by

(2.2). The Newton step ∆u of J at the point u ∈H2,2
P

is defined by ∆u = −(∇2
J(u))−1(∇J(u)) ∈H2,2

P
.

The following Proposition shows that computation of the Newton step at point u, −(∇2
J(u))−1(∇J(u)) amounts

to solve a Linear-Quadratic approximation of the original problem around the current point u, based on a point-wise
second order expansion of the cost and a first order expansion of the dynamic.

Proposition 3.2. Suppose Assumptions (Conv-2), (Reg-4) and (Lin-Dyn) hold. Let u ∈ H2,2
P

and define Xu
∈ H∞,2

by (2.2). Denote by θu
t := (t,ut,Xu

t ). The Newton step ∆u = −(∇2
J(u))−1(∇J(u)) ∈ H2,2

P
of J at the point u is the

unique minimizer inH2,2
P

of the Linear-Quadratic approximation JLQ,u of J around u, defined by:

∀v ∈H2,2
P
, JLQ,u(v) :=E

[∫ T

0

{1
2

l′′uu
(
θu

t
)

v2
t +

1
2

l′′xx
(
θu

t
)

(Ẋv
t )2 + l′′ux

(
θu

t
)

Ẋv
t vt + l′u

(
θu

t
)

vt + l′x
(
θu

t
)

Ẋv
t + l

(
θu

t
)}

dt
]

+ E
[1
2

Ψ′′xx(Xu
T)(Ẋv

T)2 + Ψ′x(Xu
T)Ẋv

T + Ψ(Xu
T)

]
,

where Ẋv
t =

∫ t

0 αsvsds.

Proof. Introduce the auxiliary running cost function lLQ,u : [0,T]×Ω×R×R 7→ R defined by lLQ,u(t, ũ, x̃) = 1
2 l′′uu

(
θu

t

)
ũ2

t +
1
2 l′′xx

(
θu

t

)
x̃2

t + l′′ux

(
θu

t

)
ũx̃ + l′u

(
θu

t

)
ũ + l′x

(
θu

t

)
x̃ + l

(
θu

t

)
, where we dropped the reference to ω for simplicity. Introduce as

well the auxiliary terminal cost function ΨLQ,u : Ω ×R 7→ R defined by ΨLQ,u(ω, x̃) = 1
2 Ψ′′xx(Xu

T)x̃2 + Ψ′x(Xu
T)x̃ + Ψ(Xu

T).
Then Assumptions (Reg-4), (Lin-Dyn) and (Conv-2) are verified for the auxiliary minimization problem of JLQ,u,
with l and Ψ respectively replaced by lLQ,u and ΨLQ,u. Applying Proposition 2.3 to the auxiliary problem shows the
existence and uniqueness of a minimizer of JLQ,u, denoted by û. We can then apply Theorem 2.6 to the auxiliary
problem and get existence and uniqueness of (X̂, Ŷ) ∈ H∞,2 ×H∞,2 such that (û, X̂, Ŷ) ∈ H2,2

P
×H∞,2 ×H∞,2 is the

(unique) triple satisfying:
X̂t =

∫ t

0 αsûsds,

Ŷt = Et

[
Ψ′′xx(Xu

T)X̂T + Ψ′x(Xu
T) +

∫ T

t

(
l′′xu(s,us,Xu

s )ûs + l′′xx(s,us,Xu
s )X̂s + l′x(s,us,Xu

s )
)

ds
]
,

l′′uu(t,ut,Xu
t )ût + l′′ux(t,ut,Xu

t )X̂t + l′u(t,ut,Xu
t ) + αtŶt− = 0.

In particular, we have X̂ = Ẋû by (2.3), Ŷ = Yu + Ẏu,û by (2.4) and(2.8). Besides, the last equation is equivalent to
∇J(u) + ∇2

J(u)(û) = 0 by (2.5) and (2.9). In particular, the minimizer û of JLQ,u is nothing else than the Newton
step of J at point u. �
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Without surprises, solving such a linear-quadratic stochastic control problem is equivalent to solving an affine-
linear FBSDE. This gives a second interpretation of the Newton step as solution of the linearized first order optimality
conditions of the control problem, summed up in the following Proposition.

Proposition 3.3. Suppose Assumptions (Conv-2), (Reg-4) and (Lin-Dyn) hold. Let u ∈ H2,2
P

and define Xu
∈ H∞,2

by (2.2). Let ∆u ∈ H
2,2
P

be the Newton step of J at the point u ∈ H2,2
P

. Define (Xu,Yu, Ẋ∆u , Ẏ∆u ) ∈ H∞,2 ×H∞,2 ×
H∞,2 ×H∞,2 by: 

Xu
t = x0 +

∫ t

0 αsusds,

Yu
t = Et

[
Ψ′x(Xu

T) +
∫ T

t l′x(s,us,Xu
s )ds

]
,

Ẋ∆u
t =

∫ t

0 αs(∆u)sds,

Ẏ∆u
t = Et

[
Ψ′′x (Xu

T)Ẋ∆u
T +

∫ T

t

(
l′′xx(s,us,Xu

s )Ẋ∆u
s + l′′xu(s,us,Xu

s )(∆u)s

)
ds

]
.

Then Xu + Ẋ∆u is the first-order approximation of v 7→ Xu+v evaluated at v = ∆u, Yu + Ẏ∆u is the first-order ap-
proximation of v 7→ Yu+v evaluated at v = ∆u and ∆u is the zero of the linearized gradient of J around u, i.e.,
∇J(u) + ∇2

J(u)(∆u) = 0.

Proof. This is a direct consequence of Lemmas 2.4 and 2.7, as well as the definition of the Newton step 3.1. �

Remark 3.4. In Brownian filtrations, one can derive similar results with more general dynamics of the state variable.
Consider the following dynamic (controlled diffusion):

Xt = x0 +

∫ t

0
(αsus + βsXs + γs)ds +

∫ t

0
(ᾱsus + β̄sXs + γ̄s)dWs.

We make the same assumptions on the cost functional. One can apply Pontryagin principle to show necessary
and sufficient optimality condition of order 1. The computation of the second-order derivative can be adapted to
this particular case as well. Then, one can show that the Newton step can be defined in this setting, and that its
computation amounts to solve an affine-linear FBSDE with stochastic coefficients. In this case, as the filtration is
Brownian, the affine-linear FBSDE is computable using directly the results in [Yon06].

3.2 Solution of affine-linear FBSDEs and computation of the Newton step

Computing the Newton step is equivalent to compute the inverse of (∇2
J(u))−1(w) with w = −∇J(u). By Theorem

2.9, computing this quantity is equivalent to solving the following affine-linear FBSDE:
X̃u,w

t =

∫ t

0

{
−
αsl′′ux(s,us,Xu

s )
l′′uu(s,us,Xu

s )
X̃u,w

s −
α2

s

l′′uu(s,us,Xu
s )

Ỹu,w
s +

αsws

l′′uu(s,us,Xu
s )

}
ds,

Ỹu,w
t = Et

[
Ψ′′xx(Xu

T)X̃u,w
T +

∫ T

t

(
l′′uu(s,us,Xu

s )l′′xx(s,us,Xu
s ) − (l′′ux(s,us,Xu

s ))2

l′′uu(s,us,Xu
s )

X̃u,w
s −

l′′xu(s,us,Xu
s )αs

l′′uu(s,us,Xu
s )

Ỹu,w
s +

l′′xu(s,us,Xu
s )ws

l′′uu(s,us,Xu
s )

)
ds

]
,

(3.1)

and then (∇2
J(u))−1(w) is given by:(

(∇2
J(u))−1(w)

)
t
= −

1
l′′uu(t,ut,Xu

t )

(
l′′ux(t,ut,Xu

t )X̃u,w
t + αtỸu,w

t− − wt

)
. (3.2)

Note that (X̃u,w, Ỹu,w) are solution of an affine-linear FBSDE with stochastic coefficients which has the following
structure: Xt = x +

∫ t

0
(AsXs + BsYs + as) ds,

Yt = Et

[
ΓXT + η +

∫ T

t
(CsXs + AsYs + bs) ds

] (3.3)
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with C ≥ 0 (convexity of l with respect to (u, x) and strong convexity of l with respect to u), Γ ≥ 0, B ≤ 0. A, B and C
are inH∞,∞, a and b are inH2,2, Γ ∈ L∞(FT), η ∈ L2(FT) and x ∈ L2(F0).

Affine-linear FBSDEs have been studied in the literature, and a solution method is based on a so-called de-
coupling field, assumed affine-linear, by the structure of the equation. The assumption is that the solution verifies
Y = PX + Π for some P and Π to determine. Standard results in the literature [Yon06] show that P solves a matrix
Riccati BSDE and Π solves an affine-linear BSDE. However, we are outside of the scope of [Yon06], which assumes
a Brownian filtration. The following Lemma gives some results on solutions of Riccati BSDEs in general filtrations.

Lemma 3.5 (One-dimensional Riccati-BSDE under general filtrations). Let A,B,C be processes in H∞,∞ and Γ ∈

L∞(FT). Suppose additionally that Γ ≥ 0 dP-a.e., Bt ≤ 0 dP ⊗ dt-a.e., Ct ≥ 0 dP ⊗ dt-a.e. Then the following Riccati
BSDE with unknown P and stochastic coefficients:

Pt = Et

[
Γ +

∫ T

t

(
2AsPs + BsP2

s + Cs

)
ds

]
(3.4)

has a unique solution inH∞,∞([0,T]) and we have the estimation 0 ≤ Pt ≤ Pt dP ⊗ dt-a.e. with:

Pt = Et

[
Γ exp (2‖A‖H∞,∞ (T − t)) +

∫ T

t
Cs exp (2‖A‖H∞,∞ (s − t)) ds

]
. (3.5)

A general result of Bismut for existence and uniqueness of the solution of Riccati BSDE can be found in [Bis76,
Theorem 6.1]. In section 5.1, we provide our own proof in the one-dimensional case. It is based on the comparison
principle for BSDEs, and allows to prove that the solution of the Riccati BSDE coincides with the solution of a BSDE
with a truncated drift, globally Lipschitz continuous. As a limitation, the comparison principle applies only for one-
dimensional BSDEs. Therefore, our proof cannot be expected to be generalized to higher dimension, except if an
analogous comparison principle for BSDEs with square symmetric matrix unknown is developed, using the order
defined by the cone of positive semi-definite matrices.

We now give a result on the second ingredient allowing to solve coupled linear FBSDEs.

Lemma 3.6. [1-dimensional affine-linear BSDE in general filtrations] Let A, B, C and P be as before. Suppose
a, b ∈H2,2 and η ∈ L2(FT). Define Π ∈H∞,2 by:

Πt = Et

[
η exp

(∫ T

t
(PsBs + As)ds

)
+

∫ T

t
(asPs + bs) exp

(∫ s

t
(PrBr + Ar)dr

)
ds

]
. (3.6)

Then Π is the unique solution inH∞,2 of the BSDE:

Πt = Et

[
η +

∫ T

t
((PsBs + As)Πs + asPs + bs) ds

]
. (3.7)

Additionally, we have the estimation:

‖Π‖H∞,2 ≤
(
‖η‖L2 +

√

T‖a‖H2,2‖P‖H∞,∞ +
√

T‖b‖H2,2

)
e‖PB+A‖H∞,∞T.

The proof is given in Section 5.2. We are now in position of deriving a verification Theorem for the solution of
affine-linear FBSDEs, based on the two previous Lemmas.

Theorem 3.7. [Scalar affine-linear FBSDEs with exogenous noise under general filtrations] Let A,B,C be processes
in H∞,∞ and Γ ∈ L∞(FT). Let a, b ∈ H2,2, x ∈ L2(F0) and η ∈ L2(FT). Suppose additionally that Γ ≥ 0 dP-a.e., Bt ≤ 0
dP ⊗ dt-a.e., Ct ≥ 0 dP ⊗ dt-a.e. Then:

1. The following FBSDE has a unique solution (X,Y) ∈ (H∞,2)2:Xt = x +
∫ t

0
(AsXs + BsYs + as) ds,

Yt = Et

[
ΓXT + η +

∫ T

t
(CsXs + AsYs + bs) ds

]
.
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2. Define P ∈H∞,∞ by (3.4) and Π ∈H∞,2 by (3.6). Define as well X by:

Xt = x +

∫ t

0
((As + BsPs)Xs + BsΠs + as) ds. (3.8)

and

Y = PX + Π. (3.9)

The processes X and Y are well-defined and inH∞,2 with the estimates:

‖X‖H∞,2 ≤
(
‖x‖L2

Ω
+ T‖B‖H∞,∞‖Π‖H∞,2 +

√

T‖a‖H2,2

)
e‖A+PB‖H∞,∞T,

and

‖Y‖H∞,2 ≤ ‖P‖H∞,∞‖X‖H∞,2 + ‖Π‖H∞,2 .

Besides, (X,Y) ∈ (H∞,2)2 is the unique solution of the FBSDE:Xt = x +
∫ t

0
(AsXs + BsYs + as) ds,

Yt = Et

[
ΓXT + η +

∫ T

t
(CsXs + AsYs + bs) ds

]
.

The proof of this Theorem is postponed to Section 5.3. Applying the above result to (3.1) and using (3.2), we get
the following Corollary.

Corollary 3.8 (Explicit computation of the inverse of ∇2
J(u)). Suppose assumptions (Reg-4), (Conv-2) and (Lin-

Dyn) hold. Let u,w ∈H2,2
P

and define Xu and Yu inH∞,2 as in (2.2) and (2.4). Define as well:

Au
t = −

αtl′′ux(t,ut,Xu
t )

l′′uu(t,ut,Xu
t )
,

Bu
t = −

α2
t

l′′uu(t,ut,Xu
t )
,

Cu
t =

l′′uu(t,ut,Xu
t )l′′xx(t,ut,Xu

t ) − (l′′ux(t,ut,Xu
t ))2

l′′uu(t,ut,Xu
t )

,

Γu = Ψ′′xx(Xu
T),

au,w
t =

αtwt

l′′uu(t,ut,Xu
t )
,

bu,w
t =

l′′ux(t,ut,Xu
T)wt

l′′uu(t,ut,Xu
t )

.

(3.10)

Then the following Riccati BSDE with unknown P:

Pt = Et

[
Γu +

∫ T

t

(
2Au

s Ps + Bu
s P2

s + Cu
s

)
ds

]
(3.11)

has a unique solution inH∞,∞, denoted Pu and the following affine-linear BSDE with unknown Π:

Πt = Et

[∫ T

t

(
(Pu

s Bu
s + Au

s )Πs + au,w
s Pu

s + bu,w
s

)
ds

]
. (3.12)

has a unique solution in H∞,2, which is denoted Πu,w. Define X̃u,w
∈ H∞,2 as the unique solution of the following

ordinary differential equation:

X̃t =

∫ t

0

(
(Au

s + Bu
s Pu

s )X̃s + Bu
s Πu,w

s + au,w
s

)
ds. (3.13)
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Then: (
(∇2
J(u))−1(w)

)
t
= −

1
l′′uu(t,ut,Xu

t )

({
l′′ux(t,ut,Xu

t ) + αtPu
t−
}

X̃u,w
t + αtΠ

u,w
t− − wt

)
. (3.14)

Besides, we have:

‖Pu
‖H∞,∞ ≤ C,

‖Πu,w
‖H∞,2 ≤ C‖w‖H2,2 ,

‖(∇2
J(u))−1(w)‖H2,2 ≤ C‖w‖H2,2 ,

for some constant C independent of u and w. In particular, ∇2
J(u) is a bi-continuous isomorphism of H2,2

P
for any

u ∈H2,2
P

.

The proof of this Corollary is postponed to Section 5.4.

3.3 Global convergence of Newton’s method with an adapted line-search method

For linear-quadratic problems with random coefficient, the Newton direction is equal to the optimal solution of the
problem minus the current point, so that the Newton method converges in one iteration.

In the finite-dimensional case, the local quadratic convergence of Newton’s method typically requires the function
to minimize to have a Lipschitz continuous second-order derivative, see [Kan48]-[NW06, Theorem 3.5, p. 44], or
to be self-concordant [NN94]. As self-concordance is not a notion well-defined in our setting, we focus on the first
assumption.

We provide next a -example of J : H2,2
P
7→ R to show that, even under assumption (Reg-5), J may have

a second-order derivative ∇2
J : H2,2

7→ L(H2,2) which is not Lipschitz-continuous. This shows that the (local)
convergence of the Newton method should be established in a different space.

Example 3.9. Let us assume T = 1 and consider J given by:

∀u ∈H2,2
P
, J(u) := E

[∫ 1

0
l(ut)dt

]
, (3.15)

s.t. Xu
t = 0,∀t ∈ [0, 1]. (3.16)

where l is deterministic twice continuously differentiable with derivative given by the oscillating function represented
in Figure 1, which is Lipschitz-continuous, bounded and non-negative. In particular, Assumptions (Reg-5), (Lin-

Figure 1: Oscillating function l′′

Dyn) and (Conv-2), therefore, J is 1-strongly-convex, twice continuously differentiable, with second order-derivative
∇

2
J :H2,2

P
7→ L(H2,2

P
) given by:

∀(u, v) ∈H2,2
P
,∀t ∈ [0, 1], (∇2

J(u)(v))t = l′′(ut)vt.
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This second-order derivative is bounded, and for all u ∈H2,2, ∇2
J(u) :H2,2

P
7→H2,2

P
is a bi-continuous endomorphism

ofH2,2
P

, i.e., ∇2
J(u) is a continuous invertible endomorphism ofH2,2

P
, and its inverse is bounded as well. We have:

∀(u,w) ∈ (H2,2
P

)2,∀t ∈ [0, 1], ((∇2
J(u))−1(w))t =

wt

l′′(ut)
.

In particular, Assumptions (Reg-4), (Lin-Dyn) and (Conv-2) are verified. However, for n ∈ N∗, let us define u(n)
∈

H2,2
P

the constant process with value U(n) given by a Bernoulli random variable with parameter p(n) = 1/n, i.e.,

U(n) = 1 with probability 1/n and 0 else. Let v = 0 ∈ H2,2
P

. Then we have, using l′′(1) = 1 and l′′(0) = 0, E
[
(U(n))2

]
=

E
[
(U(n))4

]
= 1

n :

‖∇
2
J(u(n)) − ∇2

J(v)‖L(H2,2)

‖u(n) − v‖H2,2
≥
‖∇

2
J(u(n))(u(n)) − ∇2

J(v)(u(n))‖H2,2

‖u(n)‖H2,2‖u(n) − v‖H2,2

=
E

[
(l′′(U(n)) − l′′(0))2(U(n))2

]1/2

E
[
(U(n))2]

=
E

[
(U(n))4

]1/2

E
[
(U(n))2]

=
√

n −→
n−→+∞

+∞.

In particular ∇2
J is not Lipschitz-continuous inH2,2

P
endowed with ‖.‖H2,2 .

Under additional uniform boundedness and regularity assumptions, one can actually show that J actually de-
fines an operator from the space of uniformly bounded process in H∞,∞ to reals, that ∇2

J send H∞,∞ on L(H∞,∞)
and is Lipschitz-continuous.

Lemma 3.10. Let the conditions of Theorem 3.7 hold. Define P ∈H∞,∞ as in (3.4), Π ∈H∞,2 by (3.6), X ∈H∞,2 as
in (3.8), Y = PX + Π ∈H∞,2. Suppose additionally that a, b ∈H∞,∞ and x, η ∈ L∞

Ω
. Then Π, X and Y are inH∞,∞ and

we have the estimates:

‖Π‖H∞,∞ ≤
(
‖η‖L∞

Ω
+ T‖a‖H∞,∞‖P‖H∞,∞ + T‖b‖H∞,∞

)
e‖PB+A‖H∞,∞T,

‖X‖H∞,∞ ≤
(
‖x‖L∞

Ω
+ T‖B‖H∞,∞‖Π‖H∞,∞ + T‖a‖H∞,∞

)
e‖A+PB‖H∞,∞T,

‖Y‖H∞,∞ ≤ ‖P‖H∞,∞‖X‖H∞,∞ + ‖Π‖H∞,∞ .

Proof. The fact that Π ∈ H∞,∞ and the estimate on Π are immediate using formula (3.6). The fact that X ∈ H∞,∞

and the estimate on X are a consequence of this latter fact, from definition (3.8) and from Gronwall’s lemma. The
fact that Y ∈H∞,∞ and the estimate on Y directly come from the fact that P, X and Π are inH∞,∞. �

Theorem 3.11 (Stability of H∞,∞). Suppose assumptions (Reg-5), (Lin-Dyn) and (Conv-2) hold. Then, for all
(u, v) ∈H∞,∞

P
, Xu,Yu,∇J(u), Ẋv, Ẏu,v,∇2

J(u)(v) and (∇2
J(u))−1(v) are all inH∞,∞ and besides:

∀(u, v,w) ∈ (H∞,∞
P

)3,

‖Pu
‖H∞,∞ ≤ C,

‖Πu,w
‖H∞,∞ ≤ C‖w‖H∞,∞ ,

‖Xu
‖H∞,∞ + ‖Yu

‖H∞,∞ + ‖∇J(u)‖H∞,∞ ≤ C(1 + ‖u‖H∞,∞ ),

‖Xu
− Xv
‖H∞,∞ + ‖Yu

− Yv
‖H∞,∞ + ‖∇J(u) − ∇J(v)‖H∞,∞ ≤ C‖u − v‖H∞,∞ ,

‖Ẋv
‖H∞,∞ + ‖Ẏu,v

‖H∞,∞ + ‖∇2
J(u)(v)‖H∞,∞ ≤ C‖v‖H∞,∞ ,

‖Ẏu,w
− Ẏv,w

‖H∞,∞ + ‖∇2
J(u)(w) − ∇2

J(v)(w)‖H∞,∞ ≤ C‖u − v‖H∞,∞‖w‖H∞,∞ ,

‖(∇2
J(u))−1(w)‖H∞,∞ ≤ C‖w‖H∞,∞ ,
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where the (generic) constant C > 0 is independent of u, v,w. Note that this implies that ∇2
J defines a Lipschitz-

continuous operator fromH∞,∞
P

to the space of continuous endomorphisms ofH∞,∞
P

, and that ∇2
J(u) and (∇2

J(u))−1

are bounded linear operators, uniformly in u. This also implies that for any u ∈ H∞,∞, the Newton direction

−

(
∇

2
J(u)

)−1
(∇J(u)) is also inH∞,∞

P
.

Proof. Note that for any (X,Y) ∈ (H∞,∞)2, XY ∈H∞,∞ and:

‖XY‖H∞,∞ ≤ ‖X‖H∞,∞‖Y‖H∞,∞ .

Throughout the proof, C denotes a generic deterministic constant depending only on T and the bounds on the data
of the problem and their derivatives inH∞,∞. We have immediately for (u, v) ∈ (H∞,∞)2:

‖Xu
‖H∞,∞ ≤ C(1 + ‖u‖H∞,∞ ),

‖Xu
− Xv
‖H∞,∞ ≤ C‖u − v‖H∞,∞ ,

‖Ẋv
‖H∞,∞ ≤ C‖v‖H∞,∞ .

We also have:

‖Yu
‖H∞,∞ ≤ C(1 + ‖u‖H∞,∞ + ‖Xu

‖H∞,∞ ),

‖Yu
− Yv
‖H∞,∞ ≤ C(‖u − v‖H∞,∞ + ‖Xu

− Xv
‖H∞,∞ ),

‖Ẏu,v
‖H∞,∞ ≤ C(‖v‖H∞,∞ + ‖Ẋv

‖H∞,∞ ).

Combining the first two upper bounds with the estimates on Xu yields the inequality on Yu. Combining the third
estimate with the bound on Ẋv yields:

‖Ẏu,v
‖H∞,∞ ≤ C‖v‖H∞,∞ .

Using the Lipschitz-continuity of the second-order derivatives of l and Ψ, one gets:

‖Ẏu,w
− Ẏv,w

‖H∞,∞ ≤ C (‖u − v‖H∞,∞ + ‖Xu
− Xv
‖H∞,∞ )

(
‖w‖H∞,∞ + ‖Ẋw

‖H∞,∞

)
.

We can use all our previous estimates to get the claimed bound on ‖Ẏu,w
− Ẏv,w

‖H∞,∞ .
We have:

‖∇J(u)‖H∞,∞ ≤ C(1 + ‖u‖H∞,∞ + ‖Xu
‖H∞,∞ + ‖Yu

‖H∞,∞ ),

‖∇J(u) − ∇J(v)‖H∞,∞ ≤ C(‖u − v‖H∞,∞ + ‖Xu
− Xv
‖H∞,∞ + ‖Yu

− Yv
‖H∞,∞ ).

Combining this with the estimates on Xu and Yu yields the estimates on ∇J(u). Using the expression of ∇2
J(u)(v)

derived earlier, we easily get the estimate:

‖∇
2
J(u)(v)‖H∞,∞ ≤ C(‖v‖H∞,∞ + ‖Ẋv

‖H∞,∞ + ‖Ẏu,v
‖H∞,∞ ),

‖∇
2
J(u)(w) − ∇2

J(v)(w)‖H∞,∞ ≤ C(‖u − v‖H∞,∞ + ‖Xu
− Xv
‖H∞,∞ )(‖w‖H∞,∞ + ‖Ẋw

‖H∞,∞ ) + C‖Ẏu,w
− Ẏv,w

‖H∞,∞ .

We get the claimed estimates on ‖∇2
J(u)(v)‖H∞,∞ and ‖∇2

J(u)(w) −J(v)(w)‖H∞,∞ using the previous bounds.
We have the bounds on parameters appearing in(3.10):

‖Au
‖H∞,∞ + ‖Bu

‖H∞,∞ + ‖Cu
‖H∞,∞ + ‖Γu

‖L∞
Ω
≤ C,

‖au,w
‖H∞,∞ + ‖bu,w

‖H∞,∞ ≤ C‖w‖H∞,∞ .

Therefore, we are in the framework of application of Lemma 3.10 for Π = Πu,w, P = Pu and X = X̃u,w, which are
defined in (3.11), (3.12) and (3.13) (with η = 0 and x = 0). This yields:

‖Pu
‖H∞,∞ ≤ C,

‖Πu,w
‖H∞,∞ ≤ C(1 + ‖Pu

‖H∞,∞ )‖w‖H∞,∞ ,
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‖X̃u,w
‖H∞,∞ ≤ C(‖w‖H∞,∞ + ‖Πu,w

‖H∞,∞ ).

We have by (3.14):

‖(∇2
J(u))−1(w)‖H∞,∞ ≤ C(‖w‖H∞,∞ + ‖Πu,w

‖H∞,∞ + (1 + ‖Pu
‖H∞,∞ )‖X̃u,w

‖H∞,∞ ),

which gives the estimate on ‖(∇2
J(u))−1(w)‖H∞,∞ . �

It is well known that, for strongly convex functions, with Lipschitz-continuous second order derivative, local con-
vergence can be shown for the Newton method, see for instance [Kan48] - [NW06, Theorem 3.5, p. 44]. However,
even under such demanding assumptions, it is well-known in a finite-dimensional setting that Newton method is not
guaranteed to converge globally. We provide next a counter-example to the global convergence of Newton method
in our infinite-dimensional framework.

Example 3.12 (Counter-example to global convergence of Newton method). We consider J :H∞,∞ 7→ R given by:

∀u ∈H∞,∞
P

, J(u) := E
[∫ 1

0
F(ut)dt

]
, (3.17)

s.t. Xu
t = 0,∀t ∈ [0, 1], (3.18)

where F : x 7→ R is defined by:

F(x) :=


x2

4 + 4
3 , if |x| > 4,

2|x|
3
2

3 , if 1 ≤ |x| ≤ 4,
x2

2 + 1
6 , if |x| < 1.

Then F is strongly convex, twice continuously differentiable with bounded second order derivative, see Figure 2.

(a) Graph of function F (b) Graph of the first derivative F′ (c) Graph of the second derivative F′′

Figure 2: Graphs of F, its first and second derivatives

Assumptions (Reg-5), (Lin-Dyn) and (Conv-2) hold. Let u(0)
∈ H∞,∞

P
be any stochastic process such that

1 < |u(0)
t,ω| < 4, dP ⊗ dt-a.e. Due to the particular structure of our problem, Newton’s method reduces to the Newton

method applied to F : R 7→ R applied ω by ω and t by t. For 1 < |x0| < 4, Newton’s method (in R) applied to F
with initial guess x0 produces the sequence (xk)k∈N with general term xk = (−1)kx0. Indeed, for 1 ≤ |x| ≤ 4, we have
F′(x) = sign(x)

√
|x| and F′′(x) = 1

2
√
|x|

, so that the Newton iteration is given by:

xk+1 = xk −
F′(xk)
F′′(xk)

= −xk.

Therefore, Newton’s method (in H∞,∞) applied to J with initial guess u(0) produces the sequence (u(k))k∈N with
general term u(k) = (−1)ku(0), which does not converge.

The previous counter-example motivates globalization procedures. We consider Backtracking-line search meth-
ods, which are iterative procedures which allow to select appropriate step lengths such that the Goldstein conditions,
presented in [NW06, p. 36], hold.
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The standard Backtracking line-search method is given in Algorithm 3. It is directly adapted from Backtracking
line-search method in Rn [NW06, Algorithm 3.1, p.37] or [BV04, Algorithm 9.2, p. 464]. Under the assumption
of a strongly convex function with bounded and Lipschitz second order derivative, it can be shown in the finite
dimensional case that the Newton method with the Standard Backtracking line search converges globally, see
[BV04, Section 9.5.3, pp. 488-491].

Algorithm 3 Standard Backtracking line search (compact generic version)

1: Inputs: Current point u ∈H∞,∞
P

, Current search direction ∆u ∈H∞,∞
P

, β ∈ (0, 1), γ ∈ (0, 1).
2: σ = 1.
3: while J(u + σ∆u) > J(u) + γσ〈∇J(u),∆u〉H2,2 do
4: σ← βσ.
5: end while
6: return u + σ∆u.

However, since we do not work in a finite-dimensional setting, the global convergence of the method is not
guaranteed to our knowledge. This is due to the fact that J is a criteria in expectation, whereas we are working
with the norm in H∞,∞. We shall see in our numerical applications that the Standard Backtracking line-search may
prevent the Newton method to converge, see Figures 6b and 6d.

To alleviate this issue, we propose a new Backtracking line-search rule, based on the sup-essential norm of the
gradient, described in Algorithm 4. Hence, we are only working with the norm in H∞,∞, which makes more sense
as we are working with variables inH∞,∞.

Algorithm 4 Gradient Backtracking line search (compact generic version)

1: Inputs: Current point u ∈H∞,∞
P

, Current search direction ∆u ∈H∞,∞
P

, β ∈ (0, 1), γ ∈ (0, 1).
2: σ = 1.
3: while ‖∇J(u + σ∆u)‖H∞,∞ > (1 − γσ)‖∇J(u)‖H∞,∞ do
4: σ← βσ.
5: end while
6: return u + σ∆u.

We show that the Newton method combined with the Gradient Backtracking line search algorithm 4 ensures
global convergence of the method, and that after a finite number of iterations, the algorithm takes full Newton steps,
which ensures quadratic convergence.

Lemma 3.13. Suppose assumptions (Reg-5), (Lin-Dyn) and (Conv-2) hold. For any u ∈ H∞,∞
P

, the Gradient
Backtracking line search terminates in finitely many iterations for the Newton step ∆u := −(∇2

J(u))−1(∇J(u)) ∈
H∞,∞
P

.
Besides, if the algorithm returns σ = 1, then the new point u + ∆u satisfies:

‖∇J(u + ∆u)‖H∞,∞ ≤ min(1 − γ,C‖∇J(u)‖H∞,∞ )‖∇J(u)‖H∞,∞ ,

where C =
L
∇2JC2

(∇2J)−1

2 with L∇2J the Lipschitz constant of ∇2
J :H∞,∞ 7→ L(H∞,∞), and

C(∇2J)−1 := sup
u∈H∞,∞

P

‖(∇2
J(u))−1

‖L(H∞,∞),

which is finite by Theorem 3.11). Conversely, if C‖∇J(u)‖H∞,∞ ≤ (1 − γ) then the algorithm returns σ = 1. On the
other hand, if the algorithm returns σ < 1, then the new iterate u + σ∆u satisfies:

‖∇J(u + σ∆u)‖H∞,∞ ≤ ‖∇J(u)‖H∞,∞ −
βγ(1 − γ)

C
.

Proof. By Taylor-Lagrange formula, using ∆u = −(∇2
J(u))−1(∇J(u)), we have

∇J(u + σ∆u) = ∇J(u) +

∫ 1

0
∇

2
J(u + sσ∆u)(σ∆u)ds,
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= (1 − σ)∇J(u) + σ

∫ 1

0

(
∇

2
J(u + sσ∆u) − ∇2

J(u)
)

(∆u)ds,

which yields by Lipschitz continuity of ∇2
J in L(H∞,∞):

‖∇J(u + σ∆u)‖H∞,∞ ≤ (1 − σ)‖∇J(u)‖H∞,∞ + σ

∫ 1

0
‖∇

2
J(u) − ∇2

J(u + sσ∆u)‖L(H∞,∞)ds‖∆u‖H∞,∞

≤ (1 − σ)‖∇J(u)‖H∞,∞ +
L∇2J

2
σ2
‖∆u‖2H∞,∞

≤

1 − σ +
L∇2JC2

(∇2J)−1

2
‖∇J(u)‖H∞,∞σ2

 ‖∇J(u)‖H∞,∞ .

Notice that, since 0 < γ < 1, for σ > 0 small enough, we have:

1 − σ + C‖∇J(u)‖H∞,∞σ2
≤ 1 − γσ. (3.19)

In particular, the Gradient Backtracking line search terminates after finitely many iterations. Besides, if C‖∇J(u)‖H∞,∞
1−γ ≤

1 then the algorithm stops and returns σ = 1.
Suppose that the algorithm stops with σ = 1, then:

‖∇J(u + ∆u)‖H∞,∞ ≤ min(1 − γ,C‖∇J(u)‖H∞,∞ )‖∇J(u)‖H∞,∞ ,

by the termination criterion and the previous estimate.
Suppose that the algorithm returns σ < 1. Then by the termination criteria of the algorithm, (3.19) implies in

particular that:

−(σ/β) + C‖∇J(u)‖H∞,∞ (σ/β)2 > −γ(σ/β).

This yields:

β(1 − γ)
C‖∇J(u).‖H∞,∞

< σ < 1.

This yields, using the termination criterion of the algorithm, the fact that σ, γ and β are in (0, 1) and the previous
inequality:

‖∇J(u + σ∆u)‖H∞,∞ ≤
(
1 − γσ

)
‖∇J(u)‖H∞,∞

≤

(
1 −

βγ(1 − γ)
C‖∇J(u)‖H∞,∞

)
‖∇J(u)‖H∞,∞

≤ ‖∇J(u)‖H∞,∞ −
βγ(1 − γ)

C
.

�

Remark 3.14. Note that the properties of the backtracking line-search algorithm can be enforced for values of
parameters which are independent on the problem, and in particular, independent from a priori unknown constants
of the problem (bounds on derivatives, constant of strong convexity...). The properties of the problem (regularity,
convexity) only impact the number of iterations of the algorithm.

Theorem 3.15. Suppose assumptions (Reg-5), (Lin-Dyn) and (Conv-2) hold. Then J : H∞,∞ 7→ R is twice
continuously differentiable, with Lipschitz continuous first and second derivatives. Besides ∇2

J is an invertible,

bi-continuous endomorphism of H∞,∞. Let u(0)
∈ H∞,∞. Let γ and β be parameters in (0, 1). Define C =

L
∇2JC2

(∇2J)−1

2
with L∇2J the Lipschitz constant of ∇2

J :H∞,∞
P
7→ L(H∞,∞

P
) and

C(∇2J)−1 := sup
u∈H∞,∞

P

‖(∇2
J(u))−1

‖L(H∞,∞).
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Algorithm 5 Newton’s method with Backtracking line search (compact generic version)

1: Inputs: u(0)
∈H∞,∞

P
, γ ∈ (0, 1), β ∈ (0, 1), ε > 0. k = 0

2: while ‖∇J(u(k))‖H∞,∞ > ε do
3: Compute Newton direction −(∇2

J(u(k)))−1(∇J(u(k))) ∈H∞,∞
P

4: Compute new iterate using Backtracking line-search rule u(k+1) = u(k)
− σ(∇2

J(u(k)))−1(∇J(u(k))) ∈H∞,∞
P

5: k← k + 1
6: end while
7: return u(k)

Define as well:

η =
βγ(1 − γ)

C
,

k1 = inf
{

k ∈N | ‖∇J(u(k))‖H∞,∞ ≤
1 − γ

C

}
.

Then k1 is finite. Besides, after k1 iterations, the step length is always 1 and Newton method with Gradient Back-
tracking line search converges quadratically, i.e.,

∀k ≥ k1, C‖∇J(u(k+1))‖H∞,∞ ≤
(
C‖∇J(u(k))‖H∞,∞

)2
,

∀k ≥ k1, ‖∇J(u(k))‖H∞,∞ ≤
(1 − γ)2k−k1

C
.

Besides, u(k) converges to u∗ ∈H∞,∞ which is the minimizer of J , and the asymptotic convergence is quadratic, i.e.,

∀k ≥ k1, C‖u(k+1)
− u∗‖H∞,∞ ≤ C2

‖u(k)
− u∗‖2H∞,∞ ,

∀k ≥ k1 + 1, ‖u(k)
− u∗‖H∞,∞ ≤

‖(∇2
J)−1

‖L(H∞,∞)

γC
(1 − γ)2k−k1 .

Proof. By the previous lemma, the sequence
(
‖∇J(u(k))‖H∞,∞

)
k∈N

is monotone decreasing.

We first prove that k1 < +∞. Let k ≤ k1. Then ‖∇J(u(k))‖H∞,∞ >
1−γ

C . If at iteration k, the gradient backtracking line
search returns a unit step length σ = 1, then by Lemma 3.13:

‖∇J(u(k+1))‖H∞,∞ ≤ (1 − γ)‖∇J(u(k))‖H∞,∞

≤ ‖∇J(u(k))‖H∞,∞ − η,

where we used the assumption ‖∇J(u(k))‖H∞,∞ >
1−γ

C and β ∈ (0, 1).
Else, at iteration k, the gradient backtracking line search returns a step length σ < 1 and still by Lemma 3.13,

‖∇J(u(k+1))‖H∞,∞ ≤ ‖∇J(u(k))‖H∞,∞ − η.

This yields:

∀k ≤ k1, ‖∇J(u(k))‖H∞,∞ ≤ ‖∇J(u(0))‖H∞,∞ − kη.

Since η > 0, this yields existence and finiteness of k1, which is bounded from above by ‖∇J(u(0))‖H∞,∞
η + 1.

Besides, for all k ≥ k1, we have ‖∇J(u(k))‖H∞,∞ ≤
1−γ

C since the sequence
(
‖∇J(u(k))‖H∞,∞

)
k∈N

is monotone
decreasing. In that case, Lemma 3.13 shows that the algorithm takes unit step length and:

C‖∇J(u(k+1))‖H∞,∞ ≤ C2
‖∇J(u(k+1))‖2H∞,∞ .

This combined with C‖∇J(u(k1))‖ ≤ 1 − γ yields:

∀k ≥ k1, C‖∇J(u(k))‖H∞,∞ ≤ (1 − γ)2k−k1 .
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From that and since the algorithm takes unit step length after iteration k1, we deduce:

∀k ≥ k1, ‖u(k+1)
− u(k)

‖H∞,∞ = ‖(∇2
J(u(k)))−1(∇J(u(k)))‖H∞,∞

≤ ‖(∇2
J)−1

‖L(H∞,∞)‖∇J(u(k))‖H∞,∞

≤ ‖(∇2
J)−1

‖L(H∞,∞)
(1 − γ)2k−k1

C
.

In particular, this yields the absolute convergence of the series Sn =
∑n

k=0 vn of general term v0 = u(0) and vk =

u(k)
− u(k−1) for k > 1. Hence (Sn)n∈N converges in H∞,∞ and so does (u(k))k∈N. Denote u∗ ∈ H∞,∞ the limit point of

(u(k))k∈N. By continuity of ∇J : H∞,∞ 7→ H∞,∞, u∗ is a critical point of J and hence, by strong convexity of J , u∗ is
the unique minimizer of J . Besides, as the algorithm takes unit step length σ = 1 after k1 iterations,

∀k ≥ k1, ‖u(k+1)
− u∗‖H∞,∞ = ‖u(k)

− (∇2
J(u(k)))−1(∇J(u(k))) − u∗‖H∞,∞

= ‖u(k)
− u∗ − (∇2

J(u(k)))−1(∇J(u(k)) − ∇J(u∗))‖H∞,∞

≤ ‖(∇2
J(u(k)))−1

‖L(H∞,∞)‖∇J(u(k)) − ∇J(u∗) − ∇2
J(u(k))(u(k)

− u∗)‖H∞,∞

≤
‖(∇2
J(u(k)))−1

‖L(H∞,∞)L∇2J

2
‖u(k)

− u∗‖2H∞,∞ ,

by Taylor-Lagrange’s formula and Lipschitz continuity of ∇2
J :H∞,∞ 7→ L(H∞,∞).

Besides, for all k > k1,

‖u(k)
− u∗‖H∞,∞ ≤

+∞∑
j=k

‖u( j+1)
− u( j)

‖H∞,∞

≤
‖(∇2
J)−1

‖L(H∞,∞)

C

 +∞∑
j=k

(1 − γ)2 j−k1


=
‖(∇2
J)−1

‖L(H∞,∞)

C

 +∞∑
j=0

(1 − γ)2 j+k−k1


≤
‖(∇2
J)−1

‖L(H∞,∞)

C
(1 − γ)2k−k1

1 +

+∞∑
j=0

(1 − γ)2 j


≤
‖(∇2
J)−1

‖L(H∞,∞)

C
(1 − γ)2k−k1

 +∞∑
j=0

(1 − γ) j


≤
‖(∇2
J)−1

‖L(H∞,∞)

Cγ
(1 − γ)2k−k1

where we used k > k1 and the fact that 2 j+k−k1 ≥ 2 j + 2k−k1 for all j ≥ 1. �

4 Application: energy storage system control for power balancing

4.1 Problem setting

We consider N identical batteries with energy capacity Emax operated in order to balance production and consump-
tion on an electricity network. Other types of energy storage systems could be considered. For instance, one
could replace batteries in this application by a large population of Thermostatically Controlled Loads (TCLs), which
include water heaters, Air Conditioners, Heat pumps,... provided a first order affine-linear model of their tempera-
ture dynamic is used. The global consumption on the network is given by a deterministic function NPcons, where
Pcons is the total consumption divided by the number of batteries. The assumption of a deterministic consumption
profile can be justified by the fact that it is the aggregation of a large number of small independent consumption
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profiles, which allows to use the law of large numbers. We assume additionally a total solar power production NPsun,
i.e. Psun is the total solar production divided by the number of batteries on the network (we do not account for
wind power, although this could easily be included in the model). We follow [Bad+18] by setting Psun = Psun,maxXsun

where Psun,max : [0,T] 7→ R is a deterministic function (the clear sky model) represented in 3a and Xsun solves a
Fisher-Wright type SDE which dynamics is

dXsunt = −ρsun(Xsunt − xsun,reft )dt + σsun(Xsunt )k1 (1 − Xsunt )k2 dW̃t, (4.1)

with k1, k2 ≥ 1/2. As proved in [Bad+18], there is a strong solution to the above SDE and the solution Xsun takes
values in [0, 1]. Since the drifts are affine-linear, the conditional expectation of the solution of (4.1) is known in closed
forms (this property is intensively used in [BSS05]):

Et
[
Psuns

]
=

(
Psunt

Psun,maxt
exp(−ρsun(s − t)) +

∫ s

t
ρsunxsun,refτ exp(−ρsun(s − τ))dτ

)
Psun,maxs , (4.2)

for s ≥ t. This will allow us to speed up computations of the conditional expectations Et
[
Psuns

]
and E

[
Psuns

]
as

required when deriving the optimal control. The value of the parameters used are given in the following table.
Empirical quantile plot (obtained by simulation of 10000 i.i.d. trajectories) as well as one example trajectory of Psun

are given in Figure 3b.

Table 1: Parameter values for the simulation of PV power production

ρsun xsun,ref σsun k1 k2

0.75 h−1 0.5 0.8 0.8 0.7

(a) Time evolution of Psun,max
(b) Empirical quantiles of Psun, obtained with M = 10000 sam-
ples, and one realization of Psun

Figure 3: Graphical statistics of the evolution of Psun

Our goal is to minimize global cost for the control of N batteries, which are composed of operational costs for
battery management and a penalization for power balance imbalance, represented in Figure 41.

We assume a production profile per battery Pprodt = Pconst − E
[
Psunt

]
, which can be easily computed using the

model on Psun.
Denoting by u(n) the power supplied by battery n ∈ [N] and by X(n) its normalized state of charge, we wish to

solve the following stochastic control problem:

min
u∈H2,2

P

E

∫ T

0

 1
N

N∑
n=1

µ

2
(u(n)

t )2 +
1
N

N∑
n=1

ν
2

(
X(n)

t −
1
2

)2

+L

 1
N

N∑
n=1

u(n)
t + Psunt − E

[
Psunt

]
 dt +

1
N

N∑
n=1

ρ

2

(
X(n)

T −
1
2

)2
,

(4.3)
1Icons made by Freepik and Smashicons from www.flaticon.com
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Figure 4: Power imbalance on the network

s.t. X(n)
t = x(n)

0 −

∫ t

0

u(n)
s

Emax
ds. (4.4)

The first two terms as well as the last term in the cost functional represent the sum of the operational costs for
individual batteries. We penalize quadratically power supplied or absorbed by the batteries (first term) and penalize
deviations of the normalized states of charge of the batteries from the reference value 1/2 (second and last term).
The third term represents a penalization term for the power imbalance 1

N
∑N

n=1 u(n)
t +Psunt −P

cons
t +Pprodt = 1

N
∑N

n=1 u(n)
t +

Psunt − E
[
Psunt

]
, using Pprodt = Pconst − E

[
Psunt

]
. The state variable X(n) represents the normalized state of charge

of battery n, i.e., the energy stored divided by the maximal capacity Emax = 150 kWh. In particular, the total
installed storage capacity corresponds to 5 hours of the PV panels production at full capacity, which is 30 kW,
which corresponds to about 300 squared meters of photo-voltaic panels, with the current technology. Equivalently,
assuming a availability rate of 12% for solar (accounting for seasonality, intermittency and unavailability at night),
about 40 hours of the average solar production, where the availability rate is defined as the average power production
divided by the maximal power capacity. We consider simple ideal batteries with charging and discharging efficiencies
equal to 1. We do not enforce the state constraints X(n)

∈ [0, 1]. We will consider a non-quadratic loss function L
given by:

L(x) =


1
2λx2

−
δ
6εx3 if − ε ≤ x ≤ ε,

1
2 (λ − δ)x2 + δε

2 x − δ
6ε

2 if x ≥ ε,
1
2 (λ + δ)x2 + δε

2 x + δ
6ε

2 if x ≤ −ε.
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In this case, L is C2 with δ
ε -Lipschitz-continuous second order derivatives and is represented in Figure 5 for λ =

2, δ = 1, ε = 0.1.

Figure 5: Loss function L with λ = 2, δ = 1, ε = 0.1

The function L penalizes more energy production deficit (as compared to its expected value). Indeed, such
situation possibly requires the use of extra production units with high carbon footprint, which is clearly to discard as
often as possible. We will use the following parameter values for the cost functional.

Table 2: Parameter values for the cost functional

µ ν ρ λ δ ε

1 kW−2 h−1 5 h−1 10000 10 kW−2 h−1 5 kW−2 h−1 1 kW

4.2 Solving the stochastic control problem

Applying a similar methodology as in Theorem 2.6, one can show that it is equivalent to solve the stochastic control
problem (4.3) and the following high-dimension coupled FBSDE:

∀n ∈ [N],


X(n)

t = x(n)
0 −

∫ t

0
u(n)

s
Emax

ds,

Y(n)
t = Et

[
ρ(X(n)

T − 1/2) +
∫ T

t ν(X(n)
s − 1/2)ds

]
,

µu(n)
t +L′

(
1
N

∑N
j=1 u( j)

t + Psunt − E
[
Psunt

])
−

Y(n)
t−
Emax

= 0.

(4.5)

There exists a unique solution (u(n),X(n),Y(n))n∈[N] ∈ (H2,2
P
×H∞,2 ×H∞,2)N of the above FBSDE, and (u(n))n∈[N]

is the unique solution of the stochastic control problem (4.3). The above FBSDE (4.5) is a high-dimensional fully
coupled FBSDE. To solve it, introduce

(ū, X̄, Ȳ) :=

 1
N

N∑
j=1

u( j),
1
N

N∑
j=1

X( j),
1
N

N∑
j=1

Y( j)

 .
Introduce as well

(
u(n),∆,X(n),∆,Y(n),∆

)
n∈[N]

:=
(
u(n)
− ū,X(n)

− X̄,Y(n)
− Ȳ

)
. Then for all n ∈ [N],

(
u(n),∆,X(n),∆,Y(n),∆

)
is a
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solution of the linear FBSDE: 
X(n),∆

t = x(n)
0 − x̄0 −

∫ t

0
u(n),∆

s
Emax

ds,

Y(n),∆
t = Et

[
ρX(n),∆

T +
∫ T

t νX(n),∆
s ds

]
,

µu(n),∆
t −

Y(n),∆
t−
Emax

= 0.

(4.6)

To solve efficiently this linear FBSDE, we use Theorem ??. Let us turn to the computation of (ū, X̄, Ȳ). Notice that
(ū, X̄, Ȳ) is solution of the following FBSDE, where we denoted x̄0 = 1

N
∑N

j=1 x( j)
0 :

X̄t = x̄0 −
∫ t

0
ūs
Emax

ds,

Ȳt = Et

[
ρ(X̄T − 1/2) +

∫ T

t ν(X̄s − 1/2)ds
]
,

µūt +L′
(
ūt + Psunt − E

[
Psunt

])
−

Ȳt
Emax

= 0.

(4.7)

We will assume x̄0 = 0.5 in our case study. This FBSDE fully characterizes the solution of the following stochastic
control problem, called coordination problem:

min
ū∈H2,2

J̄(ū) := E
[∫ T

0

{
µ

2
ū2

t +
ν
2

(
X̄t −

1
2

)2

+L(ūt + Psunt − E
[
Psunt

]
)
}

dt +
ρ

2

(
X̄T −

1
2

)2]
s.t. X̄t = x̄0 −

∫ t

0

ūs

Emax
ds.

Proposition 2.3 shows that there exists a unique solution of the coordination problem. By applying Theorem 2.6,
we deduce the existence and uniqueness of a solution (ū, X̄, Ȳ) ∈ H2,2

P
× H∞,2 × H∞,2. To solve the non-linear

FBSDE (4.7), we use Newton’s method globalized with (Gradient) Backtracking Line Search, noting that the random
parameters of the problem are uniformly bounded.

Let ū(k) be the (candidate) control variable at iteration k. We define the associated state variable X̄(k) at iteration
k:

X̄(k)
t = x̄0 −

∫ t

0

ū(k)
s

Emax
ds, (4.8)

the adjoint variable Ȳ(k) at iteration k:

Ȳ(k)
t = Et

[
ρ(X̄(k)

T − 1/2) +

∫ T

t
ν(X̄(k)

s − 1/2)ds
]
. (4.9)

Applying Proposition 2.5 to J̄ , the gradient of the cost at ū(k) is given by:

(∇J̄(ū(k)))t = µū(k)
t +L′

(
ū(k)

t + Psunt − E
[
Psunt

])
−

Ȳ(k)
t−

Emax
. (4.10)

The Newton direction u̇(k) = −(∇2
J̄(ū(k)))−1(∇J̄(ū(k))) at the point ū(k) is given by:

u̇(k)
t =

Ẏ(k)
t− + Ȳ(k)

t− −
{
µū(k)

t +L′
(
ū(k)

t + Psunt − E
[
Psunt

])}
Emax{

µ +L′′
(
ū(k)

t + Psunt − E
[
Psunt

])}
Emax

,

where (Ẋ(k), Ẏ(k)) satisfy: Ẋ(k)
t = −

∫ t

0
u̇(k)

s
Emax

ds,

Ẏ(k)
t = Et

[
ρẊ(k)

T +
∫ T

t νẊ(k)
s ds

]
.
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This comes from the application of Theorem 2.9 which gives the expression of the inverse of the second order
derivative at ū(k), applied to −∇J̄(ū(k)). Eliminating u̇(k), we obtain the following affine-linear FBSDE for (Ẋ(k), Ẏ(k)):

Ẋ(k)
t =

∫ t

0

−Ẏ(k)
s − Ȳ(k)

s +
{
µū(k)

s +L′
(
ū(k)

s + Psuns − E
[
Psuns

])}
Emax{

µ +L′′
(
ū(k)

s + Psuns − E [Psuns ]
)}
E2

max

ds,

Ẏ(k)
t = Et

[
ρẊ(k)

T +
∫ T

t νẊ(k)
s ds

]
.

To solve this FBSDE arising at iteration k, we apply Theorem 3.7 in our particular framework, with the following
values for the parameters: 

At = 0,

Bt =
−1{

µ +L′′
(
ū(k)

t + Psunt − E
[
Psunt

])}
E2

max

,

Ct = ν,

Γ = ρ,

at =
−Ȳ(k)

t + µū(k)
t Emax +L′

(
ū(k)

t + Psunt − E
[
Psunt

])
Emax{

µ +L′′
(
ū(k)

t + Psunt − E
[
Psunt

])}
E2

max

,

bt = 0,

η = 0,

x = 0.

Introduce the Riccati BSDE with stochastic coefficients:

P(k)
t = Et

ρ +

∫ T

t

ν − 1{
µ +L′′

(
ū(k)

s + Psuns − E [Psuns ]
)}
E2

max

(P(k)
s )2

 ds

, (4.11)

and the linear BSDE:

Π(k)
t = Et


∫ T

t

 −P(k)
s

E2
max

(
µ +L′′

(
ū(k)

s + Psuns − E [Psuns ]
))Π(k)

s +

(
µū(k)

s +L′
(
ū(k)

s + Psuns − E
[
Psuns

]))
Emax − Ȳ(k)

s

E2
max

(
µ +L′′

(
ū(k)

s + Psuns − E [Psuns ]
)) P(k)

s

 ds

.
(4.12)

Then, u̇(k) is given by the following feedback expression:

u̇(k)
t =

P(k)
t− Ẋ(k)

t + Π(k)
t− + Ȳ(k)

t− −
{
µū(k)

t +L′
(
ū(k)

t + Psunt − E
[
Psunt

])}
Emax{

µ +L′′
(
ū(k)

t + Psunt − E
[
Psunt

])}
Emax

. (4.13)

The process Ẋ(k) satisfies:

Ẋ(k)
t =

∫ t

0

−P(k)
s Ẋ(k)

s −Π(k)
s − Ȳ(k)

s +
{
µū(k)

s +L′
(
ū(k)

s + Psuns − E
[
Psuns

])}
Emax{

µ +L′′
(
ū(k)

s + Psuns − E [Psuns ]
)}
E2

max

ds,

and Ẏ(k) = P(k)Ẋ(k) + Π(k), according to Theorem 3.7.
To be able to practically implement the Newton method with (Gradient) Backtracking line search, the conditional

expectations in the equations or expressions of Ȳ(k), P(k), Π(k) in (4.9), (4.11) and (4.12) need to be estimated. We
focus on these aspects in the next section.

4.3 Practical implementation

The simulations have been performed on Python 3.7, with an Intel-Core i7 PC at 2.1 GHz with 16 Go memory. The
process Xsun is simulated using an Euler scheme with time step h = T

NT
= 0.5 h, with T = 24 h and NT = 48. The

number of Monte-Carlo simulations is M = 10000.
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4.3.1 Linear Least-Squares Regression

To provide an implementation to compute the conditional expectation in the expression of Ȳ(k), P(k), Π(k) in (4.9),
(4.11) and (4.12), we take advantage on the Markovian framework and use Linear-Least Square regression [GT16a].
We use this method to obtain closed-loop feedback expressions of the solutions of each BSDE, with respect to the
Markovian underlying extended state process (Xsun, X̄(k)).

Notations To simplify the notations, we write (u(k),X(k),Y(k)) = (u(k)
τ ,X

(k)
τ ,Y

(k)
τ )τ∈[NT] the discretized process asso-

ciated (ū(k), X̄(k), Ȳ(k)) in the following on the time grid (τh)τ∈[NT](not be be confused with (u(n),X(n),Y(n)) which is the
optimal control, state and adjoint variable of battery n). We also use the notation Xsun,hτ,m for values of the mth simulated
(discretized) approximation of Xsun at time τh.

Definition 4.1 (Linear Least-Squares Regression (LLSR) [GT16a]). For l ≥ 1 and for probability spaces (Ω,F ,P)
and (Rl,B(Rl), ν), let S be a F ⊗B(Rl)-measurableR-valued function such that S(ω, ·) ∈ L2(B(Rl), ν) for P-a.e. ω ∈ Ω.
LetK := span(φ f ) f=1,...,N f be the vector space spanned by N f deterministic functions (φ f ) f=1,...,N f . The Least-Squares
approximation of S in the space K with respect to ν is the dP ⊗ dν-a.e. unique F ⊗ B(Rl)-measurable function S?

given by:

S?(ω, ·) = arg inf
φ∈K

∫
|φ(x) − S(ω, x)|2ν(dx).

We say that S? solves OLS(S,K , ν).
In particular, if νM = 1

M
∑M

m=1 δχ(m) is a discrete probability measure on (Rl,B(Rl)) where χ(1), χ(2), ..., χ(M) : Ω →

Rl are i.i.d. random variables with distribution ν. For an F ⊗ B(Rl)-measurable R-valued function S such that
|S(ω, χ(m)(ω))| < ∞ for any m and P-a.e. ω ∈ Ω, the Least-Squares approximation of S in the space K with respect
to νM is the P − a.e. unique F ⊗ B(Rl)-measurable function S? given by:

S?(ω, ·) = arg inf
φ∈K

1
M

M∑
m=1

|φ(χ(m)(ω)) − S(ω, χ(m)(ω))|2.

Informally, relying on the Markovian framework, we wish to use LLSR to obtain approximations of the solutions
of the BSDE at time step τ in the form of closed-loop feedback with respect to the current value of the extended
state variable (Xsun,hτ ,X(k)

τ ), i.e., we wish to determine Φ(k)
Y,τ, Φ(k)

P,τ, Φ(k)
Π,τ to obtain estimates of the form:

Y(k)
τ ' ΦY,τ(Xsun,hτ ,X(k)

τ ); P(k)
t ' ΦP,τ(Xsun,hτ ,X(k)

t ); Π(k)
τ ' ΦΠ,τ(Xsun,hτ ,X(k)

τ ).

We introduce the notation ν(k)
τ,[M] = 1

M
∑M

m=1 δXsun,h[τ:NT ],m,u
(k)
[τ:NT ],m,X

(k)
[τ:NT ],m

for the empirical measure. We define Kτ as the

3-dimensional vector space of functions spanned by (φτ,1, φτ,2, φτ,3) taking as arguments (z[τ:NT], v[τ:NT], x[τ:NT]) ∈
R3(NT−τ+1) and returning respectively 1, zτ and xτ. Hence φ1 spans the vector space of constant functions, while φ2

and φ3 span the vector space of linear functions depending only on the two state variables at time τ.
We could consider more features in the function spaceKτ to allow more accurate functional representation. This

is left for further investigation.

4.3.2 Ensuring the respect of a priori bounds for the solution of Riccati BSDE

In addition to this, we truncate P(k) at each iteration, using a priori upper and lower bounds. This helps to stabilize
the LLSR algorithm [GT16b]. Let us introduce PUB and PLB the unique solutions of the Riccati ordinary differential
equations:

d
dt

PUB
t =

(PUB
t )2

(λ + µ + δ)E2
max
− ν, PUB

T = ρ

d
dt

PLB
t =

(PLB
t )2

(λ + µ − δ)E2
max
− ν, PLB

T = ρ.
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Note that both equations can be easily solved analytically and numerically using similar arguments as when com-
puting P∆. Using the (uniform) bounds:

∀x ∈ R, λ − δ ≤ L′′(x) ≤ λ + δ,

it can be show by comparison principle for BSDEs in general filtrations [ØZ12, Theorem 3.4, p. 710] that

PLB
t ≤ P(k)

t ≤ PUB
t , (4.14)

for all t ∈ [0,T], dP-a.e. We use this to truncate the numerical approximation of P(k).

4.3.3 Other parameters and implementation details

We choose the parameter values γ = β = 0.1. The parameter γ is linked to the acceptance rate of the (possibly
reduced) Newton step, and 0.1 is a good trade-off between the need of sufficient reduction and a high acceptance
rate. The choice β = 0.1 ensures that when sufficient reduction is not achieved, the step is sufficiently reduced to
provide an acceptable step length with high probability.

4.3.4 The algorithms considered

We implement and compare Newton’s method combined with two backtracking line-search: the standard backtrack-
ing line-search Algorithm 3 and the Gradient Backtracking line-search 4 designed in this paper. To estimate the
mean value of a random variable given an i.i.d. samples of this random variable, we use the empirical mean, which
is an unbiased estimator. To estimate ‖X‖H∞,∞ given i.i.d. sample trajectories (Xτ,m)τ∈[NT],m∈[M], we use the estimator
supτ∈[NT],m∈[M] Xτ,m, which is lower biased (neglecting the impact of time discretization on the bias). More accurate
estimators based on extreme-value theory could be used, see for instance [ANR17]. Practical implementations of
Algorithms 3, 4 and 5 are respectively given by Algorithms 6, 7 and 8. We use the initial guess u(0) = 0 for Newton
method. However, using the easily computable solution of the linear quadratic problem obtained by replacing the
non-quadratic loss L by the quadratic loss function Lquad : x 7→ λx2

2 could allow to find a better initial guess (warm
start). Though we do not show the results of such a procedure, numerical experiments show that this amounts to
reduce by 1 the number of Newton iterations required to obtain a given accuracy.

4.3.5 On the stopping criteria of the Newton method

Ideally, the stopping criteria of the Newton method with Gradient Backtracking line-search should be ‖∇J̄(u(k))‖H∞,∞ ≤
ε. However, the norm of the gradient as estimated is erroneous, due to discretization and regression errors, and
shold be estimated on a test set, distinct from the training set used in the algorithm. Hence, finding a relevant
stopping criteria is a difficult task and left for further investigation. In practice, we shall replace the ”while” loop by a
”for” loop with a fixed number of iterations, and monitor the estimated norm of the gradient along iterations.
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Algorithm 6 Standard Backtracking line search with Linear Least Square Regression

1: Inputs: Current control: (u(k)
τ,m)τ∈[NT],m∈[M], current state (X(k)

τ,m)τ∈[NT],m∈[M], (u̇(k)
τ,m)τ∈[NT],m∈[M] Newton direction,

(Ŷ(k)
τ )τ∈[NT] regression functions for adjoint variable Y(k), (β, γ) ∈ (0, 1)2, M trajectories of solar irradiance

(Xsun,hτ,m )τ∈[NT],m∈[M].
2: σ = 1.
3: repeat
4: u(k+1) = u(k) + σu̇(k).
5: Compute (X(k+1)

τ,m )τ∈[NT],m∈[M] by an Euler scheme. See (4.8).
6: σ← βσ.
7: {Computation of discretized gradient (4.10).}
8: ∇J

(k)
τ,m = µu(k)

τ,m +L′
(
u(k)
τ,m + Xsun,hτ,m P

sun,max
τh − E

[
Psun
τh

])
−

1
Emax

Ŷ(k)
τ (Xsun,hτ,m ,u(k)

τ,m,X
(k)
τ,m).

9: {Computation of cost function.}

10: J
(k+1)
m =

∑NT
τ=1

(
µ
2 (u(k+1)

τ,m )2 + ν
2

(
X(k+1)
τ,m −

1
2

)2
+L

(
u(k+1)
τ,m + Xsun,hτ,m P

sun,max
τh − E

[
Psun
τh

]))
h +

ρ
2

(
X(k+1)

NT ,m
−

1
2

)2
.

11: J
(k)
m =

∑NT
τ=1

(
µ
2 (u(k)

τ,m)2 + ν
2

(
X(k)
τ,m −

1
2

)2
+L

(
u(k)
τ,m + Xsun,hτ,m P

sun,max
τh − E

[
Psun
τh

]))
h +

ρ
2

(
X(k)

NT ,m
−

1
2

)2
.

12: until 1
M

∑M
m=1J

(k+1)
m ≤

1
M

∑M
m=1

(
J

(k)
m + γσ

∑NT
τ=1 ∇J

(k)
τ,mu̇(k)

τ,mh
)
{Sufficient decrease of cost}

13: σ← σ/β {Correction of σ which has been reduced one too many times.}
14: for τ = NT, .., 1 do
15: Define the empirical measure ν(k+1)

τ,[M] := 1
M

∑M
m=1 δXsun,h[τ:NT ],m,u

(k+1)
[τ:NT ],m,X

(k+1)
[τ:NT ],m

.

16: {Regression of adjoint variable. See (4.9) and Definition 4.1.}
17: Compute Ŷ(k+1)

τ solution of OLS(SYτ ,Kτ, ν
(k+1)
τ,[M]) with SYτ (z[τ:NT], v[τ:NT], x[τ:NT]) = ρ(xNT −1/2)+

∑NT
j=τ+1 ν(x j−1/2)h.

18: end for
19: return u(k+1) , X(k+1), Ŷ(k+1).

Algorithm 7 Gradient Backtracking line search with Linear Least Square Regression

1: Inputs: (u(k)
τ,m)τ∈[NT],m∈[M], (X(k)

τ,m)τ∈[NT],m∈[M], (u̇(k)
τ,m)τ∈[NT],m∈[M], (Ŷ(k)

τ )τ∈[NT], (β, γ) ∈ (0, 1)2, M trajectories of solar
irradiance (Xsun,hτ,m )τ∈[NT],m∈[M].

2: σ = 1.
3: repeat
4: u(k+1) = u(k) + σu̇(k).
5: Compute (X(k+1)

τ,m )τ∈[NT],m∈[M] by an Euler scheme. See (4.8).
6: for τ = NT, .., 1 do
7: Define the empirical measure ν(k+1)

τ,[M] := 1
M

∑M
m=1 δXsun,h[τ:NT ],m,u

(k+1)
[τ:NT ],m,X

(k+1)
[τ:NT ],m

.

8: {Adjoint variable regression. See (4.9) and Definition 4.1.}
9: Compute Ŷ(k+1)

τ solution of OLS(SYτ , Kτ, ν
(k+1)
τ,[M]) with SYτ (z[τ:NT], v[τ:NT], x[τ:NT]) = ρ(xNT − 1/2) +

∑NT
j=τ+1 ν(x j −

1/2)h.
10: end for
11: σ← βσ
12: {Computation of discretized gradient (4.10).}
13: ∇J

(k+1)
τ,m = µu(k+1)

τ,m +L′
(
u(k+1)
τ,m + Xsun,hτ,m P

sun,max
τh − E

[
Psun
τh

])
−

1
Emax

Ŷ(k+1)
τ (Xsun,hτ,m ,u(k+1)

τ,m ,X(k+1)
τ,m ).

14: ∇J
(k)
τ,m = µu(k)

τ,m +L′
(
u(k)
τ,m + Xsun,hτ,m P

sun,max
τh − E

[
Psun
τh

])
−

1
Emax

Ŷ(k)
τ (Xsun,hτ,m ,u(k)

τ,m,X
(k)
τ,m).

15: until maxτ∈[NT],m∈[M]

∣∣∣∣∇J (k+1)
τ,m

∣∣∣∣ ≤ (1 − γσ)
∣∣∣∣ maxτ∈[NT],m∈[M]

∣∣∣∣∇J (k)
τ,m

∣∣∣∣ {Sufficient decrease condition}
16: σ← σ/β {Correction of σ which has been reduced one too many times.}
17: return u(k+1) , X(k+1), Ŷ(k+1).
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Algorithm 8 Newton method with Least-Square Regression and backtracking line search

1: Initialization: M trajectories of solar irradiance (Xsun,hτ,m )τ∈[NT],m∈[M].
2: Set k = 0.
3: Set (u(0)

τ,m)τ∈[NT],m∈[M] = 0.
4: Compute (X(0)

τ,m)τ∈[NT],m∈[M] by an Euler scheme. See (4.8).
5: for τ = NT, .., 1 do
6: {Regression function of adjoint state variable, see (4.9) and Definition 4.1.}
7: Define the empirical measure ν(0)

τ,[M] := 1
M

∑M
m=1 δXsun,h[τ:NT ],m,u

(0)
[τ:NT ],m,X

(0)
[τ:NT ],m

.

8: Ŷ(0)
τ solution of OLS(SYτ , Kτ, ν

(0)
τ,[M]) with SYτ (z[τ:NT], v[τ:NT], x[τ:NT]) = ρ(xNT − 1/2) +

∑NT
j=τ+1 ν(x j − 1/2)h.

9: end for
10: while Stopping criteria not met do
11: for τ = NT, ..., 1 do
12: {Regression functions for P(k) and Π(k) solutions of (4.11) and (4.12). See Definition 4.1. Truncation of the

estimator of P(k) to verify the a priori bounds (4.14).}
13: Define the empirical measure ν(k)

τ,[M] := 1
M

∑M
m=1 δXsun,h[τ:NT ],m,u

(k)
[τ:NT ],m,X

(k)
[τ:NT ],m

.

14: P̂(k)
τ as the projection on the convex set [PLB

τ ,PUB
τ ] of the solution of OLS(SP(k)

τ
, Kτ, ν

(k)
τ,[M]) with

SP(k)
τ

(z[τ:NT], v[τ:NT], x[τ:NT]) = ρ +

NT∑
j=τ+1

− 1

E2
max

{
µ + l′′

(
z j, v j

)} (
P̂(k)

j (z j, x j)
)2

+ ν

 h.

15: Π̂(k)
τ solution of OLS(S

Π
(k)
τ

, Kτ, ν
(k)
τ,[M]) with S

Π
(k)
τ

(z[τ:NT], v[τ:NT], x[τ:NT]) given by
NT∑

j=τ+1

− P̂(k)
j (z j, x j)

E2
max

{
µ + l′′j (z j, v j)

}Π̂(k)
j (z j, x j) +

(
µv j + l′j(z j, v j)

)
Emax − Ŷ(k)

j (z j, x j)

E2
max

{
µ + l′′j (z j, v j)

} P̂(k)
j (z j, x j)

 h,

where we used the notations l′′j (z, v) := L′′
(
v + zPsun,maxjh − E

[
Psunjh

])
and l′j(z, v) := L′

(
v + zPsun,maxjh − E

[
Psunjh

])
16: end for
17: {Computation of Newton step by feedback expression (4.13).}
18: for m = 1 ∈ [M] do
19: Ẋ(k)

1,m = 0.
20: for τ = 1, ..NT do
21: Denote P̂(k)

τ,m = P̂(k)
τ (Xsun,hτ,m ,X(k)

τ,m), Π̂(k)
τ,m = Π̂(k)

τ (Xsun,hτ,m ,X(k)
τ,m) and Ŷ(k)

τ,m = Ŷ(k)
τ (Xsun,hτ,m ,X(k)

τ,m).

22: u̇(k)
τ,m =

P̂(k)
τ,mẊ(k)

τ,m + Π̂(k)
τ,m + Ŷ(k)

τ,m

Emax

{
µ +L′′

(
u(k)
τ,m + Xsun,hτ,m P

sun,max
τh − E

[
Psun
τh

])} − µu(k)
τ,m +L′

(
u(k)
τ,m + Xsun,hτ,m P

sun,max
τh − E

[
Psun
τh

])
µ +L′′

(
u(k)
τ,m + Xsun,hτ,m P

sun,max
τh − E

[
Psun
τh

])
23: Ẋ(k)

τ+1,m = Ẋ(k)
τ,m −

1
Emax

u̇(k)
τ,mh.

24: end for
25: end for
26: Backtracking line search to get u(k+1), X(k+1) and Ŷ(k+1).
27: k← k + 1.
28: end while
29: return (u?,X?, Ŷ?):=(u(k),X(k), Ŷ(k)).
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4.4 Analysis of the numerical performance

Figure 6b shows that initially both backtracking line-search methods return full Newton steps, which suggests that
our initial guess u(0) is located in the quadratic convergence area for the Newton method. However, from iteration 3,
the standard Backtracking line-search takes ridiculously small step lengths, as σ = β13 = 10−13. Hence, the method
fails to converge, as is suggest by Figures 6c and 6d which show that the H∞,∞ and H2,2 norm of the gradient is
stationary from iteration 3. This shows that the Standard Backtracking line-search is not adapted to our setting.

On the other hand, Figures 6c and 6d suggest that the Newton method with Gradient Backtracking line-search
converges, as the norm of the gradient (as considered in H2,2 and H∞,∞) decreases along iterations. Hence, this
shows that the Gradient Backtracking line-search procedure is better suited for our application than the (naive)
standard backtracking line-search method.

Moreover, we would expect theoretically that
(
‖∇J̄(ū(k))‖H∞,∞

)
k∈N

decreases quadratically fast. However, this
is not the case, see Figure 6c: after the third iteration, the convergence is not quadratic anymore, although the
algorithm takes full steps σ = 1 at all iterations, see Figure 6b. We believe this comes from the regression steps,
which introduce some residual errors in the computations of Ȳ(k), P(k) and Π(k).

The cost decreases quickly for the first iterations for the Newton method combined with both Backtracking line-
search procedures, see Figure 6e. From iteration 3, the Newton method with standard backtracking line-search
does not make any progress (the step size is ridiculously small), while it is no longer decreasing for the Gradient
Backtracking line-search, see Figure 6f. This is not surprising as our result states the convergence of the norm of
the gradient (in H∞,∞) to 0, and not that the cost is decreasing along iterations. Besides, the number of samples
considered M = 10000 may explain this non-monotonic behavior of the cost along iterations of the Newton method
gradient backtracking line-search.

(a) Running computation time (in sec-
onds)

(b) Number of step size reductions by
the backtracking line-search

(c) Numerical approximation of
‖∇J(u(k))‖H∞,∞ along iterations

//

(d) Numerical approximation of
‖∇J(u(k))‖H2,2 along iterations

(e) Cost along iterations
(f) Cost along iterations from iteration
3

Figure 6: Comparison of performances of Newton method with the two Backtracking line search methods

4.5 Over-fitting, under-fitting, and automatic tuning of regression parameters by cross-
validation

Over-fitting or under-fitting may occur in the regression steps and could be dealt with by introducing validation
steps (by splitting the sample into a training set and a validation set) allowing automatic parameter tuning at each
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step. As examples, one could consider introducing regularization or use other functional spaces. Fine-tuning of the
regression parameters by cross-validation would allow lower generalization errors, but at the expenses of a higher
computational cost. Moreover, there are many heterogeneous regression steps, each of them requiring a particular
treatment: good regression parameters have no reason to be the same for Y(k), P(k) and Π(k) and may change
according to the time step considered and along the iterations. To give one example, one could consider regressing
against the state variable X̄(k) instead of (X̄(k), Xsun) for the regression steps of processes at time steps after the
sun set, because the solar irradiance does not play any role in the problem as it is canceled out by Psun,max which
is null after sunset. We do not focus on these over-fitting or under-fitting issues in this paper, and simply consider
a general regression procedure with a functional space spanned by affine-linear functions of the extended state
(X̄(k), Xsun). Incorporating cross-validation steps for automatic parameter tuning (functional space, regularization) in
our algorithm is an interesting perspective of our work.

4.6 Analysis of the results from the application point of view

For completeness, we give some brief comments on the numerical results, from the point of view of the application.
Figure 7a represents the evolution of the power imbalance without the control mechanism. Figure 7b represents
the evolution of the power imbalance with a quadratic (symmetric) loss function Lquad : x 7→ λx2, which gives
a linear quadratic structure to the coordination sub-problem, which makes it particularly easy to solve. Figure 7c
represents the evolution of the power imbalance with the asymmetric loss functionL. By comparing the uncontrolled
case with the two controlled case, we can see that the power imbalance range has been significantly reduced
(noticing the change of scale of the graphs). This shows efficiency of the proposed control mechanism to reduce the
power imbalance. The asymmetric loss function L tends to penalize more heavily negative imbalance than positive
imbalance, which creates an asymmetry in the probability distribution of the power imbalance, see Figure 7c, to
be compared with the symmetry of the probability distribution of the power imbalance in the case of a symmetric
loss function Lquad, see Figure 7b. For all plots, we add the realization of the power imbalance for one scenario
of solar irradiance (the same scenario as the one plotted in Figure 3b). The power imbalance is null at night in
the uncontrolled case, as there is no solar production. There is no power imbalance in the controlled case before
sunrise in the controlled case. However, for some scenarios, there is a non-zero power imbalance in the controlled
case, which arises from the fact that the state of charge of the batteries at sunset might be far away from its target
terminal value 1/2. Hence, the batteries are used after sunset in this case in order to take into account the target
terminal value of the state of charge.

(a) Uncontrolled power imbalance
Psun − E [Psun]

(b) Controlled power imbalance ū +

Psun − E [Psun] - symmetric loss Lquad
(c) Controlled power imbalance ū +

Psun − E [Psun] - asymmetric loss L

Figure 7: Power imbalance

One may wonder if the control mechanism proposed respects the constraint on the states of charge of the
batteries, which must lie in [0, 1], even for an initial state of charge close to 0 or 1. The quantiles of the state of
charge of one of the batteries participating to the control mechanism is plotted in Figure 8, depending on the initial
value of the state of charge. One can in particular see that, even for initial value of the state of charge close to 0 or
1, the state of charge of the battery remains between these two values with high probability. For all plots, we add the
realization of the state of charge of the battery considered for one scenario of solar irradiance (the same scenario
as the one plotted in Figure 3b).
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(a) x0 = 0.9 (b) x0 = 0.5 (c) x0 = 0.1

Figure 8: Percentiles of the state of charge of a battery participating to the control mechanism - Sensitivity to initial
condition

5 Proofs

5.1 Proof of Lemma 3.5

Proof. For M > 0 we introduce: 
f (t, p) := 2‖A‖H∞,∞ |p| + Ct,

f (M)(t, p) := CM

(
2Atp + Btp2 + Ct

)
,

f (t, p) := −2‖A‖H∞,∞ |p| − ‖B‖H∞,∞p2,

where the clipping operator CM is defined by CM : x ∈ R 7→ min(max(x,−M),M) = max(min(x,M),−M) ∈ [−M,M].
Notice that for any p ∈ R and any M > 0, by our assumptions, we have dP ⊗ dt-a.e. on [0,T]:

f (t, p) = min( f (t, p),M) (M > 0, f (t, p) ≤ 0)

≤ min(2Atp + Btp2 + Ct,M) (Monotony of min)

≤ CM

(
2Atp + Btp2 + Ct

)
(∀x ∈ R,min(x,M) ≤ CM(x))

= f (M)(t, p)

≤ max
(
−M, 2Atp + Btp2 + Ct

)
(∀x ∈ R,CM(x) ≤ max(−M, x))

≤ max
(
−M, 2‖A‖H∞,∞ |p| + Ct

)
(Monotony of max,B ≤ 0)

= f (t, p) (−M ≤ 0 ≤ Ct ≤ 2‖A‖H∞,∞ |p| + Ct).

Consider the BSDEs:

Pt :=
∫ T

t
f (s,Ps)ds, (5.1)

P(M)
t := Et

[
Γ +

∫ T

t
f (M)(s,P(M)

s )ds
]
, (5.2)

Pt := Et

[
Γ +

∫ T

t
f (s,Ps)ds

]
. (5.3)

First, the BSDE (5.1) is actually an ODE with locally Lipschitz-continuous driver, and therefore, by Cauchy-Lipschitz
theorem has a unique solution on some maximal interval (τ,T]. The null function is clearly the unique solution of
(5.1) and τ = −∞. This yields the well-posedness of P and the explicit expression Pt = 0,∀t ∈ [0,T].

Second, we notice that (5.2) and (5.3) are BSDE with Lipschitz drivers, so that they are well-defined on [0,T],
according to [EPQ97, Theorem 5.1] or [ØZ12, Theorem 3.1, p. 705]. Notice that dP ⊗ dt-a.e., for any p ∈ R,

0 ≤ Γ ; f (t, p) ≤ f (M)(t, p) ≤ f (t, p).
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By comparison theorem for BSDEs (see [ØZ12, Theorem 3.4, p. 710].), we get for all M > 0, dP ⊗ dt-a.e. on
[0,T]:

0 = Pt ≤ P(M)
t ≤ Pt.

Besides, P satisfies for some martingale M ∈ M0:−dPt =
(
2‖A‖H∞,∞Pt + Ct

)
dt − dMt,

PT = Γ.
(5.4)

Using the Integration by Parts formula in [Pro03, Corollary 2, p. 68] to t 7→ Pt exp (−2‖A‖H∞,∞ (T − t)) yields the explicit
expression (3.5) and the estimation on ‖P‖H∞,∞ . Now notice that for M > M0 := 2‖A‖H∞,∞‖P‖H∞,∞ + ‖B‖H∞,∞‖P‖2H∞,∞ +

‖C‖H∞,∞ , we have:

∀p ∈ [0, ‖P‖H∞,∞ ],dP ⊗ dt − a.e., f (M)(t, p) = 2Atp + Btp2 + Ct. (5.5)

Since 0 ≤ P(M)
t ≤ Pt, dP ⊗ dt-a.e., we get, for M > M0:

P(M)
t = Et

[
Γ +

∫ T

t

(
2AsP

(M)
s + Bs

(
P(M)

s

)2
+ Cs

)
ds

]
.

This shows existence of solution of the Riccati BSDE (3.4).
Let us now turn to uniqueness. Consider two solutions P and Q of the Riccati BSDE (3.4). By application of the

comparison principle for BSDEs, we obtain with similar arguments as before:

dP ⊗ dt − a.e., 0 ≤ Pt ≤ Pt, 0 ≤ Qt ≤ Pt,

and therefore, for M > M0, (5.5) shows that P and Q are both solutions of the BSDE (5.2), which has Lipschitz driver,
hence a unique solution, according to [EPQ97, Theorem 5.1] or [ØZ12, Theorem 3.1, p. 705]. In particular, P = Q,
which yields uniqueness of solutions of (3.4). �

5.2 Proof of Lemma 3.6

Proof. Define Π by (3.6) and define as well:

Rt := exp
(∫ t

0
(PsBs + As)ds

)
Πt +

∫ t

0
(asPs + bs) exp

(∫ s

0
(PrBr + Ar)dr

)
ds = Et [RT],

St := exp
(
−

∫ t

0
(PsBs + As)ds

)
.

Then R ∈ H∞,2 and R is an (Ft)-adapted càdlàg martingale. Then, apply integration by parts formula [Pro03,
Corollary 2, p. 68] to the product SR, using the fact that S is continuous with finite variations. After reorganizing
terms and using that R has countable jumps, we find:−dΠt = ((PtBt + At)Πt + atPt + bt) dt + StdRt,

ΠT = η,

and
∫ t

0+ SsdRs is a càdlàg martingale inH∞,2, see [Pro03, Theorem 20 p.63, Corollary 3 p.73, Theorem 29 p.75]. We
then find that Π solves (3.7) and it is the unique solution of this BSDE, as the BSDE has a Lipschitz driver, according
to [EPQ97, Theorem 5.1] or [ØZ12, Theorem 3.1, p. 705]. �
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5.3 Proof of Theorem 3.7

Proof. 1. FBSDEs have been studied in the general case in [Zha17] and [MY99]. In the affine-linear case, the
result is a consequence of [Yon06] and the Martingale Representation Theorem if the filtration is Brownian.
However, for more general filtrations, the result is outside the scope of [Yon06] and we provide a proof for this
case, restricting ourselves to one-dimensional control and state processes.

Consider the following auxiliary linear-quadratic stochastic control problem:

J
quad(u) := E

[∫ T

0

(
1
2 u2

t + 1
2 CtX2

t + btXt

)
dt + 1

2 ΓX2
T + ηXT

]
s.t. Xt = x +

∫ t

0 (AsXs +
√
−Bsus + as)ds.

 −→ min
u∈H2,2

P

. (5.6)

Our assumptions show that Jquad satisfies the hypothesis of Proposition 2.3 and therefore, it has a unique
minimizer u∗ ∈H2,2.

The function Jquad also satisfies the assumptions of first order sufficient optimality conditions (see second
point of Theorem 2.6), so that, if we define (X∗,Y∗) ∈H∞,2 ×H∞,2 by:X∗t = x +

∫ t

0 (AsX∗s +
√
−Bsu∗s + as)ds,

Y∗t = Et

[
ΓX∗T + η +

∫ T

t

(
CsX∗s + AsY∗s + bs

)
ds

]
,

we have

u∗t +
√
−BtY∗t− = 0.

By eliminating u∗ using the last equation and using the fact that the Lebesgue integral is left unchanged by
changing the value of the integrand on a countable set, this shows that (X∗,Y∗) satisfies the FBSDE:Xt = x +

∫ t

0
(AsXs + BsYs + as) ds,

Yt = Et

[
ΓXT + η +

∫ T

t
(CsXs + AsYs + bs) ds

]
,

Let us turn to uniqueness. Consider two solutions (X1,Y1) and (X2,Y2) of the above FBSDE. Then (u1,X1,Y1)
and (u2,X2,Y2) with ui

t = −
√
−BYi

t− for i = 1, 2 are both solutions of:
Xt = x +

∫ t

0 (AsXs +
√
−Bsus + as)ds,

Yt = Et

[
ΓXT + η +

∫ T

t
(CsXs + AsYs + bs) ds

]
,

ut +
√
−BtYt− = 0.

Hence u1 and u2 are both solutions of the first order conditions characterizing minimizers of Jquad by Theorem
2.6 and by Proposition (2.3), u1 = u2. This shows X1 = X2, then Y1 = Y2, hence the existence and uniqueness
of a solution of the FBSDE.

2. By our previous results, P and Π are well defined inH∞,∞ andH∞,2 respectively. Then X given in (3.8) solves
an affine-linear ODE and the assumption on the coefficients show that it is well-defined (non-explosion) and
given by:

∀t ∈ [0,T], Xt = x exp
(∫ t

0
(As + BsPs)ds

)
+

∫ t

0
(BsΠs + as) exp

(∫ t

s
(Ar + BrPr)dr

)
ds.

The estimates on X and Y = PX + Π in the spaces H∞,2 come directly from that and Lemma 3.6. Let us now
prove that (X,Y) is a solution of the affine-linear FBSDE, which will conclude the proof, by uniqueness of the
solution of such FBSDE, by the previous point. Using Y = PX + Π, it is easy to show that X satisfies:

Xt = x +

∫ t

0
(AsXs + BsYs + as) ds.
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It remains to show that Y satisfies the BSDE:

Yt = Et

[
ΓXT + η +

∫ T

t
(CsXs + AsYs + bs) ds

]
.

To do that, use the fact that Y = PX + Π by definition so that YT = PTXT + ΠT = ΓXT + η so that the terminal
condition is verified. Introduce M(P) inM2

0 ∩H
∞,∞ and M(Π) inM2

0 such that:−dPt = (2AtPT + BtP2
t + CT)dt − dM(P)

t ,

PT = Γ,

and: −dΠt = ((PtBt + At)Πt + atPt + bt) dt − dM(Π)
t ,

PT = η.

Then, use the integration by parts formula in Protter [Pro03, Corollary 2, p. 68], combined with the fact that X
is continuous with finite variations. We get:

−dYt = −(dPt)Xt − Pt(dXt) − dΠt

= (2AtPT + BtP2
t + CT)Xtdt − XtdM(P)

t − Pt(AtXt + BtYt + at)dt + ((PtBt + At)Πt + atPt + bt) dt − dM(Π)
t

= (At(PtXt + Πt) + BtPt(PtXt + Πt − Yt) + CtXt + bt) dt − XtdM(P)
t − dM(Π)

t

= (AtYt + CtXt + bt)dt − XtdM(P)
t − dM(Π)

t .

Using the fact that the last two terms are the increments of true martingales inM2
0 (as X ∈ H∞,2 and M(P)

∈

M
2
0 ∩H

∞,∞), this concludes the proof.
�

5.4 Proof of Corollary 3.8

Proof. It just remains to prove the estimates:

‖Pu
‖H∞,∞ ≤ C,

‖Πu,w
‖H∞,2 ≤ C‖w‖H2,2 ,

‖(∇2
J(u))−1(w)‖H2,2 ≤ C‖w‖H2,2 ,

for some constant C independent of u and w. Using the assumption of bounded second-order derivative and the
fact that l is strongly convex in u (implying that l′′uu is uniformly bounded from below by a non-negative constant), we
get for a constant C independent from u and w:

‖Au
‖H∞,∞ + ‖Bu

‖H∞,∞ + ‖Cu
‖H∞,∞ + ‖Γu

‖L∞
Ω
≤ C,

‖au,w
‖H∞,∞ + ‖bu,w

‖H∞,∞ ≤ C‖w‖H∞,∞ .

We get the bounds on ‖Pu
‖H∞,∞ and ‖Πu,w

‖H∞,2 by using the estimates on ‖P‖H∞,∞ and ‖Π‖H∞,2 obtained in Lemmas
?? and 3.6, with η = 0 and x = 0. The bound on ‖(∇2

J(u))−1(w)‖H2,2 is then obtained using the strong convexity of l
with respect to u and using the expression (3.2). �

6 Conclusion

In this paper, we extend the Newton method to the framework of stochastic control problems, which amounts to
consider successive linearizations of the optimality system found by using the stochastic Pontryagin principle. We

36



show that the computation of the Newton step amounts to solve a linear FBSDE with random coefficients (with
some sign conditions), which in turn reduces to solving a Riccati BSDE and a linear BSDE. Then, an appropriate
restriction of the space of processes is considered to obtained desirable regularity for the control problem, allowing
to prove convergence results for the Newton method. To obtain a global convergence, an appropriate line-search
which fits our infinite-dimensional setting is proposed. Global convergence of the Newton method combined with
this adapted line-search is then proved theoretically. The Newton method is implemented on a problem of joint
control of many identical batteries in order to maintain power balance on a given network. In particular, regression
techniques are used in order to compute the solutions of the linear and non-linear BSDEs arising when computing
the Newton step. So far, we have considered low dimensional problems: the regression steps are performed in R2

and the control and state variables are one-dimensional. In higher dimension, we expect a curse of dimensionality
when solving the BSDEs using regression method. Other methods like Deep-learning could help solve the issue.
However, the Newton method is iterative and training a network at each iteration seems computationally expensive.
We also expect the Newton method to be applicable to other settings, like controlled diffusions for instance, which
would change the form of the Riccati BSDEs arising when solving the successive linearizations of the FBSDE
characterizing the optimal control. Other interesting perspectives to our work include designing appropriate stopping
criteria in the Newton method implemented using regression techniques, or incorporate automatic tuning procedures
for the hyper-parameters in regression steps in the algorithm.
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