

Lean NOx Removal by a Bifunctional (EtOH + NH3) Mixture Dedicated to (Ag/Al2O3 + NH3-SCR) Dual-Bed Catalytic System: Comparison Between WO3/CeZrO2 and Cu–FER as NH3-SCR Catalyst

M. Barreau, M. Delporte, E. Iojoiu, Xavier Courtois, F. Can

▶ To cite this version:

M. Barreau, M. Delporte, E. Iojoiu, Xavier Courtois, F. Can. Lean NOx Removal by a Bifunctional (EtOH + NH3) Mixture Dedicated to (Ag/Al2O3 + NH3-SCR) Dual-Bed Catalytic System: Comparison Between WO3/CeZrO2 and Cu–FER as NH3-SCR Catalyst. Topics in Catalysis, 2019, 62 (1-4), pp.79-85. 10.1007/s11244-018-1104-1 . hal-03108605

HAL Id: hal-03108605 https://hal.science/hal-03108605

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Topics in Catalysis 62 (2019) 79–85 DOI: 10.1007/s11244-018-1104-1

Lean NOx removal by a bifunctional (EtOH+NH₃) mixture dedicated to $(Ag/Al_2O_3+NH_3-SCR)$ dual-bed catalytic system. Comparison between $WO_3/CeZrO_2$ and Cu-FER as NH₃-SCR catalyst.

M. Barreau¹, M. Delporte¹, E. Iojoiu², X. Courtois^{1*}, F. Can^{1*}

¹IC2MP (UMR 7285), Université de Poitiers 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France. ²Renault Trucks - Volvo Group Trucks Technology, 99 route de Lyon – 69806 Saint-Priest Cedex, France

*xavier.courtois@univ-poitiers.fr *fabien.can@univ-poitiers.fr

Abstract: In a previous study, a drastic enhancement of the NOx conversion in EtOH-SCR process was achieved by means of ammonia and ethanol co-feeding over Ag/Al₂O₃ catalyst to avoid the NO₂/NOx ratio dependency of conventional implemented urea-SCR technology. The ammonia activation was mainly attributed to the availability of hydrogen H* species resulting from EtOH dehydrogenation, which promoted the H₂ assisted NH₃-SCR over Ag/Al₂O₃. Additional conversion gain was reached with a dualbed configuration in which a NH₃-SCR catalyst (WO₃/Ce_xZr_{1-x}O₂) was added downstream to the silverbased sample (Ag/Al₂O₃ + NH₃-SCR catalyst). This study deals with the influence of the SCR catalyst formulation on the catalytic performances of the dual-bed system. Oxide-based sample (WO₃/Ce_xZr_{1-x}O₂) and exchanged copper zeolite (Cu_{2.5}-FER) were selected as model NH₃-SCR catalysts. Results shows that WO₃/Ce_xZr_{1-x}O₂ in more appropriate in dual-bed configuration for (EtOH+NH₃)-SCR process because ammonia and ethanol (or its by-products) strongly interacted together on Cu_{2.5}-FER.

Keywords: SCR, DeNO_x, Ag/Al₂O₃, ethanol, NH₃.

1. Introduction

 NO_x reduction from Diesel and lean burn engines remains a major challenge at low temperature. Currently, NO_x conversion is achieved by the urea/NH₃ selective catalytic reduction (SCR) process, which is strongly dependent on the NO_2/NO_x ratio (Eq.1: standard-SCR; Eq. 2: Fast-SCR), itself imposed by the Diesel oxidation catalyst (DOC) located upstream the SCR converter.

 $2 \text{ NH}_3 + 2 \text{ NO} + \frac{1}{2} \text{ O}_2 = 2 \text{ N}_2 + 3 \text{ H}_2 \text{O}$ (Eq. 1)

 $2 \text{ NH}_3 + \text{NO} + \text{NO}_2 = 2 \text{ N}_2 + 3 \text{ H}_2\text{O}$ (Eq. 2)

Unfortunately, the DOC activity also undergoes kinetic limitation at low temperature (175-250°C) and then penalizes the deNO_x efficiency of the SCR converter downstream.

EtOH-SCR process was also described as an attractive way to reduce NO_x over silver-based catalyst [1]. The NO conversion is assumed to be dependent on the nitromethane route formation, based on the ethanol oxidation to acetaldehyde *via* a large variety of adsorbed intermediates. N-containing compounds such as HNCO and NH₃ are also involved in the NO_x reduction mechanism [2]. Unfortunately, this system also suffers from limited activity at low temperature, although partial oxidation of ethanol leads to significant NO₂ emission in the 175-300°C temperature range [3].

In a recent work [4], it was reported that co-feeding of ethanol and ammonia over Ag/Al_2O_3 catalyst is a promising way to enhance the deNO_x efficiency at low temperature (175-250°C), while avoiding the NO₂ dependency. The (EtOH+NH₃)-SCR process avoids the rate-limiting step of nitromethane route formation encountered in the conventional EtOH-SCR mechanism, by three different pathways: the original EtOH-SCR, the NH₃-SCR process (poorly active, even if NO₂ is formed during EtOH-SCR) and more remarkably, by the H₂-assisted NH₃-SCR (H^{*} species were provided by ethanol dehydrogenation into acetaldehyde) *via* the formation of HNO_x intermediate.

However, in this case, the outlet exhaust gas still contained some NH_3 and NO_x (including NO_2) in this low temperature range. Consequently, the $DeNO_x$ efficiency at low temperature (175-300°C) was

supplementary improved by means of the addition of a dedicated NH₃-SCR catalyst (WO₃/CeZrO₂) downstream the Ag/Al₂O₃ sample. This dual-bed configuration achieved NO_x conversions similar to that obtained in the most favorable fast SCR stoichiometry over WO₃/CeZrO₂ catalyst, while only NO was initially introduced, avoiding the DOC dependency. The choice of WO₃/CeZrO₂ as NH₃-SCR catalyst was justified by the need to develop new generations of vanadium free NH₃-SCR catalysts to avoid vanadia sublimation of usual V₂O₅-WO₃-TiO₂ materials [5,6]. Supported transition metal or ceria based oxides such as Fe₂O₃/WO₃/ZrO₂ [7], MnO_x-CeO₂ [8] also including WO₃/Ce_xZr_{1-x}O₂ [9] were likewise proposed. However, iron or copper exchanged zeolite with small pore size to assure a suitable thermal stability, are usually implement as SCR catalyst for automotive application [10], even if the deNO_x activity of these materials is also strongly dependent on the NO₂/NO_x.

This work aims to examine the influence of the NH₃-SCR catalyst formulation on the deNO_x efficiency of the dual-bed system devoted to (EtOH+NH₃)-SCR process. A copper exchanged ferrierite zeolite (Cu_{2.5}-FER) was associated to Ag/Al₂O₃ and results were compared with those previously obtained with WO₃/Ce_xZr_{1-x}O₂ as SCR catalyst. Specific attention was paid to the reactivity of carbon and nitrogen compounds on the downstream WO₃/Ce_xZr_{1-x}O₂ or Cu-FER sample.

2. Experimental part

2.1 Materials

Ag/Al₂O₃ (noted Ag/Al; specific surface area: $160 \text{ m}^2 \text{ g}^{-1}$) and WO₃/Ce_xZr_{1-x}O₂ (noted WO₃/Ce-Zr; specific surface area: $52 \text{ m}^2 \text{ g}^{-1}$) were the same than those used and detailed in [4]. For Ag/Al sample, silver (2.0 wt-%) was added on alumina (Axens) by impregnation of AgNO₃ dissolved in ethanol. After drying, the resulting powder was calcined under synthetic air with 10 % H₂O at 700°C for 4 h. XRD analyses collected using an Empyrean (PANalytical) diffractometer showed no visible reflection assigned to silver species (Ag⁰, Ag₂O, AgO, Ag₂Al₂O₄...). H₂-TPR experiment, performed on a Micromeritics Autochem 2920 after *in-situ* calcination at 450°C, showed a broad H₂ consumption peak, with a maximum at around 260°C. Hydrogen consumption indicated that 67 % of the deposited silver was in metallic state, according to results previously reported by Flura *et al* [11].

For WO₃/Ce-Zr sample, tungsten (6.0 wt-% WO₃) was added on a ceria-zirconia support (40 wt-% of CeO₂, provided by Solvay) by impregnation at 60°C using an aqueous solution of ammonium metatungstate. After drying, the same hydro-treatment that applied to Ag/Al was carried out (700°C, 4 h). No modification of the XRD pattern of the CeZr support was recorded after WO₃ impregnation, and no diffraction peaks attributable to WO₃ was observed, suggesting a good dispersion of tungsten trioxide on WO₃/Ce-Zr.

Copper exchanged zeolite sample was prepared from a ferrierite (FER) zeolite which exhibits a channel system of 10 and 8 member rings (SiO₂/Al₂O₃ = 20, provided by Alfa Aesar). Copper addition (2.5 wt-%, measured by ICP elemental analysis after preparation of the sample) was performed by the ion exchange at pH = 5 as reported in [12]. The resulting powder was finally hydro-treated at 600 °C for 16 hours. The corresponding stabilized samples (denoted Cu_{2.5}-FER) exhibited a specific surface area of 252 m² g⁻¹. No evolution of the ferrierite zeolite structure was observed by XRD analysis after copper exchange and the stabilization treatment. Moreover, CuO phase ($2\theta = 35.5^{\circ}$ and 38.7°) was not detected. H₂-TPR profile of Cu-FER exhibited two main reductions peaks. The first one (200-350°C) is attributed to the reduction of Cu²⁺ species to Cu⁺ and the second one at higher temperature (950°C) corresponds to the reduction of the formed Cu⁺ species into Cu⁰ [13]. These both peaks must exhibit the same H₂ consumption. If present on the catalyst surface, the reduction of CuO species into metallic copper should be also observed in the 200-400°C temperature range [13,14], while copper aluminate (CuAl₂O₄) reduction possibly occurs around 500°C [15]. H₂-TPR profiles were deconvoluted and integrated to assess to the copper distribution: Cu_{2.5}-FER exhibited more than 90% of copper as Cu²⁺ in exchanged position. No CuO was evidenced (in accordance with XRD results), only few percent of copper aluminate were deduced from the deconvolution of the TPR profile. This species may be formed because the zeolite sample exhibited traces of extra-framework aluminium (EFAL).

2.2 Catalytic tests

Catalytic test set up was previously described in [4]. Tests were performed in a quartz tubular microreactor under various realistic reaction mixtures depending on the implemented reductant(s): ethanol (EtOH), ammonia (NH₃), and a blend of both (EtOH+NH₃) (Table 1). The total flow rate was fixed at 333 mL min⁻¹ for 100 mg of powdered catalyst diluted in 100 mg SiC, both sieved between 100 µm and 250 µm, corresponding to a GHSV of 130 000 h⁻¹ toward the catalyst (200 L.h⁻¹.g_{cata}⁻¹; 100 L.h⁻¹.g_{powder}⁻¹). For the dual-bed configuration, 100 mg of NH₃-SCR sample (WO₃/Ce-Zr or Cu_{2.5}-FER) were placed downstream 100 mg of Ag/Al catalyst (no SiC was used for these experiments).

Gaseous NO/NO₂/NH₃/O₂/N₂ mixtures were adjusted by mass-flow controllers (Bronkhorst). For ethanol addition, an aqueous solution containing 8.02 10⁻¹ mol L⁻¹ ethanol was vaporized and mixed upstream the SCR catalyst *via* a micro-nozzle (The Lee Company, $Ø_{nozzle}$ = 50 µm) connected to a HPLC pump (Jasco, PU-2085, 22 µL min⁻¹, Δ P=10 bar). The composition of the inlet and outlet gases were monitored using online MKS 2030 Multigas infrared analyser for NO, NO₂, N₂O, NH₃, CH₃CH₂OH, CH₃CHO, CH₃OH, CH₂O, C₂H₄, CH₄, CO, CO₂ and In fact, CH₃CHO is the main observed C_xH_yO_z-compounds from ethanol conversion and the records of the other C_xH_yO_z products are not presented in this study.

Catalytic test	NO (ppm)	NO ₂ (ppm)	NH₃ (ppm)	EtOH (ppm)	O ₂ (%)	CO2 (%)	H2O (%)	N ₂
Standard-NH ₃ -SCR	400	-	400	-	10	10	8	
Fast-NH ₃ -SCR	200	200	400	-	10	10	8	holonoo
EtOH-SCR	400	-	-	1200	10	10	8	Dalance
(EtOH+NH ₃)-SCR	400	-	400	1200	10	10	8	
(EtOH+NH ₃)-SCO*		-	400	1200	10	10	8	

Table 1. Gas mixtures for the catalytic tests (total rate: 333 mL.min⁻¹).

*oxidation test, referred as selective catalytic oxidation (SCO) experiment.

3. Results and discussion

3.1 Single NH₃-SCR catalyst behaviors: WO₃/Ce-Zr and Cu_{2.5}-FER

Both studied NH₃-SCR catalysts were firstly evaluated in standard and fast NH₃-SCR conditions. In standard-SCR condition (only NO as inlet NO_x, Figure 1A), the NO_x conversions recorded with WO₃/Ce-Zr (\triangle) and Cu_{2.5}-FER (\square) were very close, from approximately 10 % at 175°C and near to 90 % in the 300-450°C temperature range. At temperature higher than 450°C, the NO_x conversion decreased, which was attributed to a competition with the ammonia oxidation reaction, in agreement with previous reported work [9,12]. As expected, the NO_x conversion was considerably improved in fast-SCR condition for both catalysts (Figure 1B), pointing out the major interest to gain NO₂ at low temperature, whereas the usual DOC placed upstream the SCR system is then generally poorly active in NO oxidation. Interestingly, in "fast" SCR condition, Cu_{2.5}-FER sample exhibited significantly higher NO_x conversion rate at 175°C, at 88 % versus 53 % for WO₃/Ce-Zr. This is a promising behavior for a higher deNOx efficiency at low temperature in the dual-bed configuration. For higher temperatures, both catalysts presented higher maximum NO_x conversion rates in the 250-450°C temperature range, while the NH₃ conversions were close to 100 % for both catalysts.

Both single NH₃-SCR catalysts were also evaluated in EtOH-SCR and (EtOH+NH₃)-SCR conditions (Figure 2). In EtOH-SCR condition (Figure 2A), the WO₃/Ce-Zr sample exhibited 12 % ethanol conversion at 175°C and the full conversion was recorded from 350°C. However, the NO_x conversion was very limited, with a maximum of only 7 % at 300°C (Table 2). It results that WO₃/Ce-Zr catalyst is not efficient to reduce NO_x by ethanol. Compared with WO₃/Ce-Zr sample, higher activity in ethanol conversion was recorded for Cu_{2.5}-FER catalyst, with 100 % ethanol conversion since 250°C. The maximum NOx conversion was also improved, but remained moderate with a maximum of 20 % at

450°C. Concomitantly, acetaldehyde outlet concentration reached a maximum of 160 ppm at 250°C for WO₃/Ce-Zr and 120 ppm at 200°C for Cu_{2.5}-FER sample (Figure 2A).

Figure 1. NO_x conversion in NH₃-SCR over WO₃/Ce-Zr (\triangle) and Cu_{2.5}-FER (\Box) catalysts for standard NH₃-SCR (A) and fast NH₃-SCR condition. Reaction mixtures are depicted in Table 1.

Figure 2. EtOH conversion (full line) and CH₃CHO emissions (dotted line) over WO₃/Ce-Zr (\triangle) and Cu_{2.5}-FER (\Box) catalysts for EtOH-SCR (A) and (EtOH+NH₃)-SCR condition. Reaction mixtures are depicted in Table 1.

		WO ₃ /Ce-Zr	Cu _{2.5} -FER			
T (°C)	EtOH-	(EtOH+NI	H₃)-SCR	EtOH-	(EtOH+NH₃)-SCR	
	SCR			SCR		
	NOx	NOx	NH3/NO	NOx	NOx	NH3/NOx
	Conv. (%)	Conv. (%)	_× out	Conv. (%)	Conv. (%)	out
175	1	13	1.0	4	12	0.9
200	0	24	1.0	3	21	0.8
250	3	38	1.0	3	53	0.3
300	7	60	0.8	3	69	0.1
350	4	71	0.2	6	79	0.1
400	2	71	0.1	13	82	0.1
450	0	70	0.1	20	84	0.1
500	1	64	0.1	16	73	0.0

Table 2. NO_x conversion and NH₃/NO_x outlet ratio over WO₃/Ce-Zr or Cu_{2.5}-FER catalysts for EtOH-SCR and (EtOH+NH₃)-SCR experiments.

With NH₃ co-injection ((EtOH+NH₃)-SCR experiments, Figure 2B), ethanol conversion decreased for both catalysts together with lower acetaldehyde emissions compared to EtOH-SCR experiments. However, the impact of NH₃ co-feeding was significantly more pronounced over Cu_{2.5}-FER sample. The temperature for 50 % EtOH conversion increased from approximately 263°C to 268°C for WO₃/Ce-Zr, and from 188°C to 245°C for Cu_{2.5}-FER. As expected, the presence of ammonia in the reaction gas mixture also caused an increase of the NOx conversion (Table 2). Nevertheless, it remained lower than the activity measured in standard NH₃-SCR (Figure 1). For instance at 250°C, the NOx conversion reached 77 % in standard NH₃-SCR for both catalysts, while only 38 % and 53 % was obtained in (EtOH+NH₃)-SCR condition with WO₃/Ce-Z and Cu_{2.5}-FER, respectively. In addition, the NH₃/NO_x outlet ratio reported in Table 2 clearly illustrates an over ammonia consumption for Cu_{2.5}-FER catalyst even at low temperature (T<300°C).

Globally, these results suggest a competitive adsorption of ethanol (or these by-products) with NH_3 for both catalysts. However, compared with WO_3 /Ce-Zr, the exchanged copper-based catalyst presented both stronger interactions between both reductants on the Cu²⁺ active sites and a higher ammonia conversion ability in presence of ethanol.

3.2 Dual-bed system: (Ag/Al+ WO₃/Ce-Zr) vs. (Ag/Al+Cu_{2.5}-FER)

Results obtained with Ag/Al (100 mg) and with the two dual-bed configuration depending on the implemented NH₃-SCR catalyst (100 mg of WO₃/Ce-Zr or Cu_{2.5}-FER placed downstream) are compared in Figure 3 for both EtOH-SCR (1) and (EtOH+NH₃)-SCR (2) conditions. Results are compared in terms of ethanol and NOx conversion (Figure 3 A and B), and NH₃, NO₂ and acetaldehyde outlet concentrations (Figure 3 C, D, E, respectively).

3.2.1 EtOH-SCR condition

In EtOH-SCR condition, whatever the NH₃-SCR catalyst formulation, the ethanol conversion (Figure 3-A1) was enhanced over the dual bed system compared with single Ag/Al catalyst. The combination with Cu_{2.5}-FER (\Box) clearly led to the largest improvement. For instance, the ethanol conversion at 200°C was increased from 34 % over single Ag/Al (\bigcirc) to 60 and 72 % for Ag/Al+WO₃/Ce-Zr (\triangle) and Ag/Al+Cu_{2.5}-FER (\Box), respectively. This result highlighted the higher reactivity of ethanol over the Cu_{2.5}-FER sample. Interestingly, the corresponding CH₃CHO emission (Figure 3-E1) was lower over the dual bed system with WO₃/Ce-Zr than on single Ag/Al sample, suggesting a specific reactivity of acetaldehyde over the SCR catalyst. Note that the higher CH₃CHO emission at 200°C over Cu_{2.5}-FER is correlated to the gain in ethanol conversion.

The addition of a SCR catalyst downstream Ag/Al led to a limited NO_x conversion improvement (Figure 3 B1) despite the full conversion of the emitted NO₂ from the Ag/Al catalyst in the 150-300°C temperature range (Figure 3-D1). The NO₂ consumption was not consistent with the increase of DeNO_x efficiency and, unfortunately, the Cu_{2.5}-FER sample did not present an optimal use of the available NO₂. In fact, higher NO outlet concentration was observed over dual-bed system whatever the NH₃-SCR formulation compared to single Ag/Al sample (results not shown) which suggests a specific reactivity of NO₂ with EtOH by-products to produce NO, in accordance to acetaldehyde yield presented in Figure 3-E1.

Figure 3. Comparison of Ag/Al (\bigcirc) and dual-bed Ag/Al+WO₃/Ce-Zr (\triangle) or Ag/Al+Cu_{2.5}-FER (\square) system for EtOH-SCR (1) and (EtOH+NH₃)-SCR (2) condition.

Complementary tests were performed using acetaldehyde instead of ethanol as reductant. The activities in fast-SCR conditions ($NO_2/NO_x = 0.5$) and in CH₃CHO oxidation by O₂ (without NO_x) were investigated. Results (not shown) would correspond to the CH₃CHO - NO₂ stoichiometry of Eq. 3:

 $CH_3CHO + NO_2 + 2O_2 = NO + 2CO_2 + 2H_2O$ (Eq. 3)

Note that ammonia emitted from Ag/Al was also partially converted after addition of a SCR catalyst, with a higher activity over $Cu_{2.5}$ -FER. However, this conversion mostly occurred in a temperature range for which the NO_x conversion was already completed over Ag/Al.

3.2.2 (EtOH+NH₃)-SCR condition

When NH₃ was additionally injected with ethanol in the inlet gas mixture, similar ethanol conversions were observed over Ag/Al+WO₃/Ce-Zr, combination, compared to the EtOH-SCR condition (Figure 3-A2 vs. Figure 3-A1). To the opposite, the association of Ag/Al+Cu_{2.5}-FER led to a decrease in EtOH conversion in the 175-300°C temperature range, probably associated to a strong competition between ethanol and ammonia since NH₃ is highly converted on Cu_{2.5}-FER in this temperature range (Figure 3-C2). This assumption is consistent with results obtained when the catalytic tests were performed over the single Cu_{2.5}-FER sample (Table 2). Co-injection of (EtOH+NH₃) also led to a lower CH₃CHO outlet concentration (Figure 3-E2) than that observed in EtOH-SCR condition, suggesting again a competitive reactivity of acetaldehyde with co-fed ammonia over NH₃-SCR sample. Acetaldehyde may be either consumed to reduce NO_x or oxidized over WO₃/Ce-Zr and Cu_{2.5}-FER. Nevertheless, the single WO₃/Ce-Zr and Cu_{2.5}-FER catalysts presented a poor activity for NO_x reduction in EtOH-SCR experiments (maximum NOx conversion lower than 20 %, Table 2), that tends to validate the oxidation route of CH₃CHO by NO₂, as previously proposed (Eq. 3).

Figure 3-B2 recalls that a remarkable deNO_x activity was reached at low temperature with the coinjection of ethanol and NH₃ using the (Ag/Al+WO₃/Ce-Zr) dual bed configuration (\triangle symbols). The NO_x conversion was then ranked between 46 and 95 % in the 175-250°C temperature range, close to the activity observed in the most favourable fast-SCR stoichiometry, while only NO was initially injected. Unfortunately, addition of Cu_{2.5}-FER downstream Ag/Al sample did not allow the expected improvement in the deNO_x efficiency, which remained lower than that observed with WO₃/Ce-Zr. The obtained NO_x conversion reached only 33 % and 52 % at 175°C and 200°C, respectively. The gain in NO_x conversion appeared then not directly correlated with the NH₃ consumption. Finally, it appears that Cu_{2.5}-FER zeolite-based catalyst (i) was highly reactive towards oxygenated hydrocarbon compounds (ethanol and its by-products) and (ii) exhibited interaction between ethanol (and its by-products) and NH₃, which inhibited the expected NO-NO₂-NH₃ reactivity to improve the deNO_x efficiency. To highlight this interactions, supplementary tests were performed over Cu_{2.5}/FER without NO_x in the feed stream 3.2.3 EtOH(+NH₃)-SCO condition

The ammonia and ethanol conversions recorded in oxidation conditions (referred as SCO tests in Table 1) are plotted in Figure 4. Firstly, with a blend of EtOH+NH₃ (full line), the ammonia conversion exhibited a maximum near 300°C, then decreased before rose again when ethanol conversion reached 100 %. This behavior clearly indicates that both reductants competed on similar active sites. This assumption is also supported by the fact that the ethanol conversion was dramatically affected at low temperature when ethanol was mixed with ammonia. On the contrary, the ammonia conversion was strongly favored on Cu_{2.5}-FER when NH₃ was mixed with ethanol, in accordance with results previously reported in Figure 3-C2. A direct reaction between ammonia and ethanol (or its by-products) is then suspected. This point have to be investigated to potentially observe amination/imination reactions such as C₂H₅OH + NH₃ = CH₃CH₂NH₂ + H₂O or CH₃CHO + NH₃ = CH₃CHNH + H₂O.

Figure 4. Oxidation tests (400 ppm NO and/or 1200 ppm EtOH, 10 % O₂,10 % CO₂, 8 % H₂O) over Cu_{2.5}-FER sample. Ethanol (\Box) and ammonia (\blacksquare) conversion depending on the considered mixture: single reductant mixture (dotted lines) or with a mix of them (full lines).

4. Conclusion

This aim of this work was to compare two SCR catalysts formulation in the dual-bed system devoted to the (EtOH+NH₃)-SCR process working with only NO as introduced NO_x. Compared with WO₃/CeZrO₂, the studied Cu_{2.5}-FER catalyst exhibited similar standard-SCR behaviour but promising higher fast-SCR activity at low temperature. Unfortunately, in the dual-bed system, the Cu_{2.5}-FER sample led to a lower deNO_x efficiency than WO₃/CeZrO₂, despite a significantly higher ammonia conversion rate. Results showed that ammonia and ethanol strongly interacted together on Cu_{2.5}-FER. Possible products formation from amination/imination reactions have to be investigated.

Acknowledgments: The authors thank the European communities (FEDER) and the "Région Nouvelle Aquitaine" for financial support.

References

[1] Miyadera T (1993) Appl. Catal B 2:199-205

[2] Flura A, Courtois X, Can F, Royer S, Duprez D (2013) Top. Catal. 56:94-103

[3] Johnson II WL, Fisher GB, Toops TJ (2012) Catal. Today 184:166-177

[4] Barreau M, Tarot M-L, Duprez D, Courtois X, Can F (2018), Appl. Catal. B 220:19-30

[5] Michalow-Mauke KA, Lu Y, Kowalski K, Graule T, Nachtegaal M, Krocher O, Ferri D (2015) ACS catalysis 5:5657-5672

[6] Liu X, Wu X, Xu T, Weng D, Si Z, Ran R (2016) Chin. J. Cat. 37:1340-1346

[7] Apostolescu N, Geiger B, Hizbullah K, Jan MT, Kureti S, Reichert D, Schott F, Weisweiler W (2006) Appl. Catal., B 62:104-114

[8] Qi G, Yang RT, Chang R (2001) Appl. Catal. B. 51:93-106

[9] Can F, Berland S, Royer S, Courtois X, Duprez D (2013) ACS Catal. 3:1120-1132

[10] Nova I, Tronconi E (2014) Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts, Springer, New York

[11] Flura A, Can F, Courtois X, Royer S, Duprez D (2012) Appl. Catal. B 126:275-289

[12] Tarot M-L, Barreau M, Duprez D, Lauga V, Iojoiu EE, Courtois X, Can F (2018) Catalysts 8:3

[13] Bulánek R, Wichterlová B, Sobalík Z, Tichý J (2001) Appl. Catal. B. 31:13-25

[14] Delahay G, Coq B, Broussous L (1997) Appl. Catal. B 12:49-59

[15] Dumas JM, Geron C, Kribii A, Barbier J (1989) Appl. Catal. B 47:9-15