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Influence of the Sodium Impregnation Solvent on the Deactivation of Cu/FER-Exchanged Zeolites Dedicated to the SCR of NO x with NH 3
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The effect of the sodium addition mode was investigated on model Cu/FER selective catalytic reduction (SCR) catalysts with two copper loadings (2.8 wt. % and 6.1 wt. %) in order to compare samples with or without over-exchanged copper. Na was added by wet-impregnation using two solvents: water or ethanol. Catalysts were evaluated in Standard and Fast-SCR conditions, as well as in NO and NH 3 oxidation. They were characterized by H 2 -TPR, NO and NH 3 adsorption monitored by FT-IR. As expected, whatever the copper loading, ammonia adsorption capacity was decreased by Na additions. Interestingly, characterizations also showed that Na impregnation in water favors the migration of the Cu-exchanged species, leading to the formation of CuO extra-framework compounds. Consequently, for both copper loadings, Na impregnation in water led to a stronger catalyst deactivation than impregnation in ethanol. Finally, the NO x conversion at low temperature (250 • C) appeared mainly affected by the loss in NH 3 adsorption capacity whereas the deNO x deactivation at high temperature (500 • C) was rather governed by the decrease in the exchanged copper ratio, which also induced a partial inhibition of NO and NH 3 oxidation behaviors.

Introduction

Selective catalytic reduction of NO x by ammonia (NH 3 -SCR) is an effective method to control nitrogen oxides emissions from fixed-source exhaust gases. The main involved reactions are the "Standard-SCR" reaction (Equation (1)) and the "Fast-SCR" reaction (Equation (2)). Table 1. Catalysts characterizations.

[Cu] (wt. %) n Cu /n Al Na Impregn Solvent

[Na] (ppm/µmol g -1 ) nNa/n Al SBET (m 2 g -1 ) Vµ (i) (cm 3 g -1 )

Vtotal (ii) (cm 3 (i) : microporous volume deduced from N 2 adsorption/desorption at 77 K; (ii) : total porous volume deduced from N 2 adsorption/desorption at 77 K; (iii) : Lewis acid sites (L); Brønsted acid sites (B) ratio determined by NH 3 adsorption at 50 • C.

Na Impregnated Catalysts

All the sodium loading from Inductively Coupled Plasma (ICP) elemental analysis are reported in Table 1 depending on the copper content and the Na impregnation solvent.

For each Cu 2.8 /FER and Cu 6.1 /FER catalyst, four Na loadings from 4300-4500 ppm to 19,000-20,300 ppm were obtained by sodium impregnation in water. The specific surface areas of the highest loaded samples were decreased to 265-270 m 2 g -1 , compared with 352 m 2 g -1 for the fresh catalysts (Table 1). In addition, the XRD patterns of the corresponding samples point out the appearance of CuO for Cu 2.8 /FER whereas the intensity of the CuO peaks significantly increased for Cu 6.1 /FER (Supplementary Materials Figures S3 andS4).

Sodium loadings after impregnation in ethanol were ranked between 3900-14,200 ppm and 8700-15,200 ppm for Cu 2.8 /FER and Cu 6.1 /FER, respectively. No evolution of the XRD patterns was observed compared with the sodium free catalyst (patterns not shown), unlike the impregnation of Na in water. This first result already predicts an effect of the sodium solvent toward physico-chemical properties of the materials. The specific surface areas for the higher Na amounts decreased to 240-250 m 2 g -1 (Table 1).

Catalytic Activity

NO x conversions obtained over stabilized Cu 2.8 /FER and Cu 6.1 /FER samples (without sodium) are reported in Figure 1 for the Standard-SCR and Fast-SCR conditions. Please remind that the catalytic tests in Fast-SCR condition were performed with lower amount of catalyst (15 mg versus 50 mg for the Standard-SCR condition) to limit the deNO x efficiency and to possibly distinguish a deactivation by sodium addition. properties of the materials. The specific surface areas for the higher Na amounts decreased to 240-250 m 2 g -1 (Table 1).
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NOx conversions obtained over stabilized Cu2.8/FER and Cu6.1/FER samples (without sodium) are reported in Figure 1 for the Standard-SCR and Fast-SCR conditions. Please remind that the catalytic tests in Fast-SCR condition were performed with lower amount of catalyst (15 mg versus 50 mg for the Standard-SCR condition) to limit the deNOx efficiency and to possibly distinguish a deactivation by sodium addition. In Standard-SCR condition (Figure 1A), the best activity at low temperature was achieved by the Cu6.1/FER catalyst with a full NOx conversion at around 300 °C. However, the NOx conversion showed a net drop in the 350-500 °C temperature range. It is assigned to a competition between the NOx reduction reaction and the ammonia oxidation reaction, leading to a lack in ammonia to reduce NOx. To the opposite, Cu2.8/FER sample presented an expanded operating temperature window, with around 90-95% of NOx conversion from 300 to 500 °C. The maximum outlet N2O concentration was recorded at 500 °C, at 1.5 and 5 ppm for Cu2.8/FER and Cu6.1/FER, respectively.

Compared with the Standard-SCR condition, higher NOx conversions were observed at low temperature (200 °C) in Fast-SCR condition (Figure 1B), especially taking into account that the implemented catalyst weight was divided by more than 3. Again, a decrease in NOx conversion was denoted at temperature higher than 350-400 °C, especially for Cu6.1/FER samples, attributed to the ammonia oxidation reaction. The maximum outlet N2O concentration (500 °C) was then a little increased, at 4 and 7 ppm for Cu2.8/FER and Cu6.1/FER, respectively.

Standard-SCR and Fast-SCR catalytic tests were also performed on the Cu/FER zeolite containing various sodium loadings. Preliminary tests were performed with catalysts submitted to the impregnation procedures in water or ethanol, but without sodium salt. Results (not shown) indicated no change in the catalytic behavior.

In order to illustrate the influence of both sodium content and sodium impregnation solvent (water or ethanol) on the deNOx efficiency of both Cu2.8/FER and Cu6.1/FER catalysts, two representative temperatures were selected: 250 °C was chosen to compare the deNOx behaviors at "low" temperature, while 500 °C was selected for the "high" temperature comparisons. Figure 2 compares the loss of the NOx conversion (expressed as a percentage of loss compared with the Na free samples) at "low" and "high" selected temperatures, depending on the sodium content (water and ethanol solvents are presented in blue and red lines, respectively). Note that the N2O outlet concentration was not affected by sodium additions. Na in water. This first result already predicts an effect of the sodium solvent toward physico-chemical properties of the materials. The specific surface areas for the higher Na amounts decreased to 240-250 m 2 g -1 (Table 1).
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In Standard-SCR condition, when sodium was impregnated on Cu6.1/FER via the water pathway (blue line), the deactivation at 250 °C (Figure 2A) appeared rather limited until 12,500 ppm of Na content, with a loss of NOx conversion of 20%. Beyond, the deNOx efficiency rapidly dropped to achieve deactivation over 80% for the higher Na content (around 2% of Na deposit). Interestingly, Na deposition using ethanol as solvent (red line) led to different observations. For approximately the same Na content (15,000 ppm), the loss in NOx conversion was around 50% when sodium was impregnated in ethanol versus 70% when sodium was impregnated in water.

Over Cu2.8/FER, same trends were obtained: the most pronounced decrease was observed for sodium impregnation in water (blue line). However, for this catalyst with the low copper loading, the influence of the sodium solvent appeared a little less marked than for Cu6.1/FER. Finally, for Na contents higher than 14,200 ppm impregnated in water, similar NOx conversions were observed in Standard-SCR condition whatever the catalyst (i.e., Cu6.1/FER or Cu2.8/FER). This suggests that beyond a threshold value of Na deposit, both catalysts tend to exhibit similar remaining active sites.
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It appears that the NO x conversion was strongly affected by the sodium loading. However, the deactivation acted differently depending on both the Na solvent (i.e., water or ethanol) and the SCR inlet condition (Standard or Fast-SCR experiments).

In Standard-SCR condition, when sodium was impregnated on Cu 6.1 /FER via the water pathway (blue line), the deactivation at 250 • C (Figure 2A) appeared rather limited until 12,500 ppm of Na content, with a loss of NO x conversion of 20%. Beyond, the deNO x efficiency rapidly dropped to achieve deactivation over 80% for the higher Na content (around 2% of Na deposit). Interestingly, Na deposition using ethanol as solvent (red line) led to different observations. For approximately the same Na content (15,000 ppm), the loss in NO x conversion was around 50% when sodium was impregnated in ethanol versus 70% when sodium was impregnated in water.

Over Cu 2.8 /FER, same trends were obtained: the most pronounced decrease was observed for sodium impregnation in water (blue line). However, for this catalyst with the low copper loading, the influence of the sodium solvent appeared a little less marked than for Cu 6.1 /FER. Finally, for Na contents higher than 14,200 ppm impregnated in water, similar NO x conversions were observed in Standard-SCR condition whatever the catalyst (i.e., Cu 6.1 /FER or Cu 2.8 /FER).

This suggests that beyond a threshold value of Na deposit, both catalysts tend to exhibit similar remaining active sites.

At high temperature, it was previously described that the competitive reaction between ammonia oxidation and NO x reduction was enhanced over the most loaded copper catalyst (Cu 6.1 /FER). Nevertheless, Figure 2B clearly shows that at 500 • C, for both studied copper loading, sodium impregnation in ethanol (red lines) had few impact on the NO x conversion up to 14,200 ppm Na content. On the opposite, strong deactivations were denoted when Na was impregnated in water (blue line). The NO x conversion loss for approximately 2% Na then reached 65% and 86% for Cu 6.1 /FER and Cu 2.8 /FER, respectively.

In Fast-SCR condition, no influence of Na deposits on the NO 2 availability (from NO oxidation into NO 2 ) is expected since the optimal inlet NO 2 /NO x ratio is already fixed to 0.5. Only other parameters should be involved in the deactivation mechanism. In fact, Figure 2C reports that the NO x conversion at 250 • C was decreased with similar tendencies with sodium contents, whatever the Na impregnation route (water or ethanol) and regardless the copper loading (Cu 2.8 /FER or Cu 6.1 /FER). The decrease rate appeared less marked than in Standard-SCR condition.

At 500 • C (Figure 2D), similar behaviors to those denoted in Figure 2B (Standard-SCR) are observed: the ethanol impregnation solvent did not induce a strong deactivation of the catalysts whereas impregnation with water induced the same NO x conversion loss than in Standard-SCR condition.

Finally, for the two studied catalysts with different copper loadings, the sodium impregnation in water strongly impacted the catalytic activity compare with the impregnation in ethanol. Moreover, when Na was added in water, almost the same catalytic activities were reached for the highest sodium loadings for both catalysts with different copper contents, whereas the initial catalytic activities were different. Considering the needed functions for the NH 3 -SCR activity, the decrease in activity of the catalysts could be attributed to alteration of the redox properties and/or to a poisoning of the acidic sites. Results described in this section, indicate that sodium addition in water or ethanol did not led to the same effects on the catalysts behaviors. Consequently, dedicated characterizations were performed to gain information about the Na poisoning and the influence of the Na impregnation solvent.

Redox Properties and Copper Characterization

In this section, the influence of the sodium impregnation solvent was examined through redox properties of Cu 2.8 /FER and Cu 6.1 /FER catalysts. Both NH 3 and NO oxidation catalytic tests and H 2 -TPR experiments were carried out. Additionally, NO adsorption monitored by infrared spectroscopy was also performed to assess to the copper state.

NH 3 and NO Oxidation

As described in the previous section, the oxidation performances of Cu 2.8 /FER and Cu 6.1 /FER are suspected to be differently affected by the sodium loading and impregnation solvent. Catalytic oxidation of NH 3 and NO experiments were then performed over all the studied samples. The ammonia oxidation by oxygen is not expected since it induces an undesired reductant consumption, but it also accounts for ammonia activation. NO oxidation is mainly involved in Standard-SCR condition to promote the Fast-SCR stoichiometry. Experiments were performed from 300 • C up to 500 • C for ammonia oxidation and from 350 • C up to 500 • C for NO oxidation, but only data recorded at 450 • C are reported in Figure 3 as representative results. The NO oxidation rates recorded at 450 °C depending on the sodium loading are depicted Figure 3B. Whatever the test, the NO oxidation rate remained low, with a maximum of 30% recorded with sodium free Cu6.1/FER. Indeed, as expected, the highest NO oxidation activities were observed for the highest loaded copper catalyst [START_REF] Sultana | Influence of co-cations on the formation of Cu + species in Cu/ZSM-5 and its effect on selective catalytic reduction of NO x with NH 3[END_REF][START_REF] Mihai | The effect of Cu-loading on different reactions involved in NH 3 -SCR over Cu-BEA catalysts[END_REF]. With the sodium free Cu2.8/FER sample, the NO oxidation rate was limited at 7%. Addition of sodium by impregnation in water led first to an improvement of the NO oxidation rate, until 18% for 5400 ppm Na, but the rate then decreased down to 14% for approximately 2% Na. On the contrary, no influence of the Na content was observed when the alkali element was added by impregnation in ethanol. Results differed on Cu6.1/FER catalyst: Na addition led to a similar decrease in the oxidation behavior whatever the impregnation solvent. Note that the same tendencies were observed at lower temperatures (data not shown). Finally, the sodium impregnation in water or ethanol resulted in similar trends than those observed for NH3 oxidation. Especially, the redox function appeared not affected on the Cu2.8/FER sample when Na was added in ethanol.

Concerning the general influence of Na addition in water, in copper-exchanged zeolite, various assumption can be advanced to explain why NH3 and NO oxidation properties were enhanced over Cu2.8/FER, whereas opposite results emerged over higher copper content material (Cu6.1/FER). Indeed, the increase in NO oxidation behavior of copper-exchanged zeolite is commonly attributed to the formation of bulk copper (CuO), whether by thermal aging or copper loading increase [START_REF] Sultana | Influence of co-cations on the formation of Cu + species in Cu/ZSM-5 and its effect on selective catalytic reduction of NO x with NH 3[END_REF][START_REF] Mihai | The effect of Cu-loading on different reactions involved in NH 3 -SCR over Cu-BEA catalysts[END_REF].

In fact, when sodium was added by impregnation in water, the XRD patterns pointed out the appearance of CuO for Cu2.8/FER while the intensity of the CuO peaks significantly increased for Cu6.1/FER. On the contrary, no evolution of the XRD patterns was observed when sodium was added With sodium free samples, full ammonia oxidation was observed with the highest loaded copper catalyst (Cu 6.1 /FER, Figure 3A). The ammonia oxidation then appeared fully selective in N 2 since neither NO x nor N 2 O were recorded (detection limits close to 1 ppm for these N-products). To the opposite, 78% of NH 3 was converted over Cu 2.8 /FER sample. These results are in accordance with SCR tests presented Figure 1 which illustrate that the competitive reactivity between NH 3 oxidation by O 2 and NO x reduction by NH 3 at high temperature is more significant over the Cu 6.1 /FER catalyst. Both NH 3 oxidation activity and selectivity were impacted by Na poisoning. Concerning the Cu 2.8 /FER catalyst, Na deposits in water (Cu 2.8 (W)/FER) firstly enhanced the NH 3 conversion into N 2 . Increasing the sodium content at 12,800 ppm led to NO formation which was also associated with a decrease in the NH 3 conversion, especially for 19,000 ppm Na. To the opposite, sodium impregnation in ethanol (Cu 2.8 (Et)/FER) did not alter the oxidation of NH 3 by O 2 . For Cu 6.1 /FER sample, both Na impregnations in water or ethanol led to a deactivation of the catalyst, but in a less extent with ethanol, as illustrated in Figure 3A. Interestingly, at 450 • C, the deactivation of NH 3 oxidation properties was again associated with the formation of oxidized compounds, mainly NO (no N 2 O was recorded). NO was emitted in a lower extent at 400 • C, but similar evolutions of the ammonia conversion were observed depending on the Na loading, as illustrated in Figure S5 (Supplementary Materials).

The NO oxidation rates recorded at 450 • C depending on the sodium loading are depicted Figure 3B. Whatever the test, the NO oxidation rate remained low, with a maximum of 30% recorded with sodium free Cu 6.1 /FER. Indeed, as expected, the highest NO oxidation activities were observed for the highest loaded copper catalyst [START_REF] Sultana | Influence of co-cations on the formation of Cu + species in Cu/ZSM-5 and its effect on selective catalytic reduction of NO x with NH 3[END_REF][START_REF] Mihai | The effect of Cu-loading on different reactions involved in NH 3 -SCR over Cu-BEA catalysts[END_REF]. With the sodium free Cu 2.8 /FER sample, the NO oxidation rate was limited at 7%. Addition of sodium by impregnation in water led first to an improvement of the NO oxidation rate, until 18% for 5400 ppm Na, but the rate then decreased down to 14% for approximately 2% Na. On the contrary, no influence of the Na content was observed when the alkali element was added by impregnation in ethanol. Results differed on Cu 6.1 /FER catalyst: Na addition led to a similar decrease in the oxidation behavior whatever the impregnation solvent. Note that the same tendencies were observed at lower temperatures (data not shown). Finally, the sodium impregnation in water or ethanol resulted in similar trends than those observed for NH 3 oxidation. Especially, the redox function appeared not affected on the Cu 2.8 /FER sample when Na was added in ethanol.

Concerning the general influence of Na addition in water, in copper-exchanged zeolite, various assumption can be advanced to explain why NH 3 and NO oxidation properties were enhanced over Cu 2.8 /FER, whereas opposite results emerged over higher copper content material (Cu 6.1 /FER). Indeed, the increase in NO oxidation behavior of copper-exchanged zeolite is commonly attributed to the formation of bulk copper (CuO), whether by thermal aging or copper loading increase [START_REF] Sultana | Influence of co-cations on the formation of Cu + species in Cu/ZSM-5 and its effect on selective catalytic reduction of NO x with NH 3[END_REF][START_REF] Mihai | The effect of Cu-loading on different reactions involved in NH 3 -SCR over Cu-BEA catalysts[END_REF].

In fact, when sodium was added by impregnation in water, the XRD patterns pointed out the appearance of CuO for Cu 2.8 /FER while the intensity of the CuO peaks significantly increased for Cu 6.1 /FER. On the contrary, no evolution of the XRD patterns was observed when sodium was added in ethanol. Consequently, the increase in oxidation properties after Na addition in water over Cu 2.8 /FER could be attributed to the formation of CuO while the observed decrease in oxidation behavior for Cu 6.1 /FER could be attributed to CuO sintering. A copper migration from exchange location to extra-framework, leading to CuO formation can be then suspected. After impregnation in ethanol, only copper sintering of extra-framework copper species can be postulated (after Na addition, samples were hydrothermally aged at 700 • C for 16 h).

In order to gain more information about of the sodium poisoning effects toward the copper state, especially depending on the Na solvent, samples were thereafter characterized by H 2 -TPR and NO adsorption monitored by FT-IR.

Temperature Programmed Reduction by Hydrogen (H 2 -TPR)

Generally, for copper-exchanged-based zeolites, two reductions peaks are expected. The first one is attributed to the reduction of Cu 2+ species to Cu + and the second one at higher temperature corresponds to the reduction of Cu + to Cu 0 [START_REF] Bulánek | Reducibility and oxidation activity of Cu ions in zeolites: Effect of Cu ion coordination and zeolite framework composition[END_REF]. However, for some zeolites, such as Cu/Faujasite (FAU), two H 2 consumption peaks related to the reduction of Cu 2+ to Cu + can be detected, depending of the location of the copper in the zeolite [START_REF] Delahay | Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods[END_REF]. In case of extra-framework copper, the direct reduction of CuO species into metallic copper can be observed in the 200-400 • C temperature range [START_REF] Bulánek | Reducibility and oxidation activity of Cu ions in zeolites: Effect of Cu ion coordination and zeolite framework composition[END_REF][START_REF] Delahay | Selective catalytic reduction of nitrogen monoxide by decane on copper-exchanged beta zeolites[END_REF]. In addition, coper aluminate species (CuAl 2 O 4 ) may be formed if traces of extra-framework aluminum (EFAL) remains in the zeolite samples, due for instance to dealumination caused by hydrothermal treatments. CuAl 2 O 4 reduction by H 2 should then occurs around 500 • C [START_REF] Dumas | Preparation of supported copper catalysts[END_REF]. Besides, it was reported that the reduction temperature of exchanged copper species are depending on the zeolite Si/Al ratio, with a decrease in the reduction peak temperature with the increase of the Si/Al ratio [START_REF] Ribeiro | TPD and H 2 -TPR studies for characterisation of CuMOR catalysts the role of Si/Al ratio, copper content and cocation[END_REF]. Moreover, the temperatures of copper reduction also decrease with the increase the sodium content as cocation [START_REF] Bulánek | Reducibility and oxidation activity of Cu ions in zeolites: Effect of Cu ion coordination and zeolite framework composition[END_REF][START_REF] Ribeiro | TPD and H 2 -TPR studies for characterisation of CuMOR catalysts the role of Si/Al ratio, copper content and cocation[END_REF].

Obviously, no reduction peak was observed for the host Ferrierite zeolite (results not shown). Figure 4 reports the TPR profiles of Cu 2.8 /FER and Cu 6.1 /FER TPR samples depending on the Na loading for Na addition performed in water. For all catalysts, the measured H 2 /Cu ratio based on hydrogen consumption until 1000 • C was always very close to 1 (Table 1). It indicates a total Cu 2+ to Cu 0 reduction, whatever the copper and sodium loadings. Consequently, there is neither evidence of copper stabilization in Cu I state nor reduction of other species than Cu 2+ , such as carbonates associated with Na addition for instance.

Figure 4 reports the TPR profiles of Cu2.8/FER and Cu6.1/FER TPR samples depending on the Na loading for Na addition performed in water. For all catalysts, the measured H2/Cu ratio based on hydrogen consumption until 1000 °C was always very close to 1 (Table 1). It indicates a total Cu 2+ to Cu 0 reduction, whatever the copper and sodium loadings. Consequently, there is neither evidence of copper stabilization in Cu I state nor reduction of other species than Cu 2+ , such as carbonates associated with Na addition for instance. S2 in Supplementary Materials). However, different species of Cu 2+ and Cu + may be also reduced in this temperature range [START_REF] Dumas | Preparation of supported copper catalysts[END_REF][START_REF] Severino | Nature of copper active sites in the carbon monoxide oxidation on Cual 2 O 4 and cucr 2 o 4 spinel type catalysts[END_REF].

After addition of 4500 ppm Na by impregnation in water (Cu 2.8 /FER), the first peak corresponding to the reduction of exchanged Cu 2+ to Cu + was shifted to lower temperature, at 290 • C. The reduction peak assigned to the second-step of Cu + reduction to Cu 0 is still observed at higher temperature (T = 950 • C), but the corresponding H 2 consumption was decreased compared with the sodium free sample. It became lower than for the reduction peak associated to the first reduction-step. Additionally, reduction peak centered at 520 • C was then well defined in the intermediate temperature range which corresponds to the reduction of CuAl 2 O 4 species. Same evolutions were observed with the increase in the sodium contents, with a continuous decrease in the high temperature peak consumption (950 • C) in favor of the 250-450 • C region hydrogen consumption. The intermediate reduction peak was more or less well defined depending on the Na loading.

The Cu 6.1 /FER sample exhibited TPR profiles with a first reduction-step with two components (T = 250 • C (shoulder) and 300 • C, Figure 4B). Extra-framework copper was expected for these sample since for 100% exchange (Cu/Al = 0.5), the copper loading should be around 4.5 wt. % copper. Then, the first reduction peak contained Cu 2+ and CuO reduction. The second peak around 460 • C can be associate with copper aluminate and the last peak at 900 • C corresponds to the second step of exchanged copper reduction, from Cu + to Cu 0 . Again, addition of sodium by impregnation in water led to the disappearance of the high temperature reduction peak while the H 2 consumption in the 200-300 • C temperature range increased.

Based on this results and literature data, H 2 -TPR profiles were deconvoluted to assess to the copper distribution (Figure S6): the H 2 consumption related to the peak centered at around 950 • C (attributed to Cu + in exchanged position) was deduced to the integration of the broad low reduction peak(s). The remaining H 2 consumption was attributed to the one step bulk CuO reduction. In accordance with the XRD characterizations, H 2 consumptions attributed to CuO species increased with the sodium loadings. The intermediate temperature range reduction was attributed to copper aluminates reduction. However, this peak was not always well defined and some H 2 consumptions were then difficult to address and not attributed. Finally, the copper distribution deduced from these deconvolutions are reported in Figure 5.

Based on this results and literature data, H2-TPR profiles were deconvoluted to assess to the copper distribution (Figure S6): the H2 consumption related to the peak centered at around 950 °C (attributed to Cu + in exchanged position) was deduced to the integration of the broad low reduction peak(s). The remaining H2 consumption was attributed to the one step bulk CuO reduction. In accordance with the XRD characterizations, H2 consumptions attributed to CuO species increased with the sodium loadings. The intermediate temperature range reduction was attributed to copper aluminates reduction. However, this peak was not always well defined and some H2 consumptions were then difficult to address and not attributed. Finally, the copper distribution deduced from these deconvolutions are reported in Figure 5. For the sodium free Cu2.8/FER sample, more than 90% of copper appeared to be in exchanged position. No CuO was evidenced, only few percent of copper aluminate were deduced from the deconvolution of the TPR profile. After addition of 4500 ppm Na (in water), only 60% of copper Based on this results and literature data, H2-TPR profiles were deconvoluted to assess to the copper distribution (Figure S6): the H2 consumption related to the peak centered at around 950 °C (attributed to Cu + in exchanged position) was deduced to the integration of the broad low reduction peak(s). The remaining H2 consumption was attributed to the one step bulk CuO reduction. In accordance with the XRD characterizations, H2 consumptions attributed to CuO species increased with the sodium loadings. The intermediate temperature range reduction was attributed to copper aluminates reduction. However, this peak was not always well defined and some H2 consumptions were then difficult to address and not attributed. Finally, the copper distribution deduced from these deconvolutions are reported in Figure 5. For the sodium free Cu2.8/FER sample, more than 90% of copper appeared to be in exchanged position. No CuO was evidenced, only few percent of copper aluminate were deduced from the deconvolution of the TPR profile. After addition of 4500 ppm Na (in water), only 60% of copper
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Based on this results and literature data, H2-TPR profiles were deconvoluted to assess to the copper distribution (Figure S6): the H2 consumption related to the peak centered at around 950 °C (attributed to Cu + in exchanged position) was deduced to the integration of the broad low reduction peak(s). The remaining H2 consumption was attributed to the one step bulk CuO reduction. In accordance with the XRD characterizations, H2 consumptions attributed to CuO species increased with the sodium loadings. The intermediate temperature range reduction was attributed to copper aluminates reduction. However, this peak was not always well defined and some H2 consumptions were then difficult to address and not attributed. Finally, the copper distribution deduced from these deconvolutions are reported in Figure 5. For the sodium free Cu2.8/FER sample, more than 90% of copper appeared to be in exchanged position. No CuO was evidenced, only few percent of copper aluminate were deduced from the deconvolution of the TPR profile. After addition of 4500 ppm Na (in water), only 60% of copper
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Based on this results and literature data, H2-TPR profiles were deconvoluted to assess to the copper distribution (Figure S6): the H2 consumption related to the peak centered at around 950 °C (attributed to Cu + in exchanged position) was deduced to the integration of the broad low reduction peak(s). The remaining H2 consumption was attributed to the one step bulk CuO reduction. In accordance with the XRD characterizations, H2 consumptions attributed to CuO species increased with the sodium loadings. The intermediate temperature range reduction was attributed to copper aluminates reduction. However, this peak was not always well defined and some H2 consumptions were then difficult to address and not attributed. Finally, the copper distribution deduced from these deconvolutions are reported in Figure 5. For the sodium free Cu2.8/FER sample, more than 90% of copper appeared to be in exchanged position. No CuO was evidenced, only few percent of copper aluminate were deduced from the deconvolution of the TPR profile. After addition of 4500 ppm Na (in water), only 60% of copper
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Based on this results and literature data, H2-TPR profiles were deconvoluted to assess to the copper distribution (Figure S6): the H2 consumption related to the peak centered at around 950 °C (attributed to Cu + in exchanged position) was deduced to the integration of the broad low reduction peak(s). The remaining H2 consumption was attributed to the one step bulk CuO reduction. In accordance with the XRD characterizations, H2 consumptions attributed to CuO species increased with the sodium loadings. The intermediate temperature range reduction was attributed to copper aluminates reduction. However, this peak was not always well defined and some H2 consumptions were then difficult to address and not attributed. Finally, the copper distribution deduced from these deconvolutions are reported in Figure 5. For the sodium free Cu2.8/FER sample, more than 90% of copper appeared to be in exchanged position. No CuO was evidenced, only few percent of copper aluminate were deduced from the deconvolution of the TPR profile. After addition of 4500 ppm Na (in water), only 60% of copper ): no attributed.

For the sodium free Cu 2.8 /FER sample, more than 90% of copper appeared to be in exchanged position. No CuO was evidenced, only few percent of copper aluminate were deduced from the deconvolution of the TPR profile. After addition of 4500 ppm Na (in water), only 60% of copper remained in exchange position, whereas approximately 33% corresponded to aluminate and 7% to CuO. Increasing the sodium loadings did not significantly affect the ratio of copper aluminate anymore, but it led to the disappearance on exchanged Cu 2+ in favor of CuO.

Before sodium addition, the Cu 6.1 /FER catalyst exhibited around 31% of exchange copper, 15% of aluminate and 54% of CuO. Again, it clearly appears that the amount of exchanged copper decreased with a remarkable continuous drop with Na loading (water as solvent), in favor of CuO formation. For instance, the amount of exchanged copper in Cu 6.1(W) /FER sample dropped to 24% with 4300 ppm Na and only 7% with 20,300 ppm of sodium.

These results are in accordance with the assumption previously postulated about the oxidation behavior of the corresponding catalysts (Section 2.3.1). After Na impregnation with water as solvent, the highest NO and NH 3 oxidation activities is correlated with the presence of copper oxide (CuO). During this impregnation procedure, sodium and copper probably compete to take place in the exchange positions. Consequently, part of the exchanged copper was moving out the zeolite framework, leading to the formation of extra-framework CuO and possibly CuAl 2 O 4 due to the presence of traces of alumina.

When sodium amounts were added using ethanol as impregnation solvent, results significantly differ.

On Cu 2.8 /FER sample (H 2 -TPR profiles not shown), the Na addition in ethanol did not led to a shift the reduction temperatures of Cu 2+ to Cu + and Cu + to Cu 0 . However, a reductions peak appeared at 520 • C. It represents around 25% of hydrogen consumed for each sample containing sodium and can be attributed to CuAl 2 O 4 . Then, a quarter of the initially exchanged copper migrated out the framework and react with residual alumina. A weak peak was also observed near 740 • C (excepted for 3900 ppm of Na). The corresponding hydrogen consumption was only 2% of the total hydrogen consumption and its attribution is not clear. It is reported as "not attributed" in Figure 5. Interestingly, the hydrogen consumption of the first peak (Cu 2+ → Cu + ) was very close to the hydrogen consumption of the highest temperature reduction peak (Cu + → Cu 0 ), indicating that there is no clear evidence of CuO formation, as illustrated in Figure 5. Same trends were observed for Cu 6.1 /FER catalyst. Figure 5 show that sodium impregnation in ethanol led only to small changes in copper distribution. Especially, no supplementary CuO formation was observed.

Finally, it appears that sodium impregnation in ethanol led to significantly lower interaction with exchanged copper than using water as sodium salt solvent. Using water, the amount of exchanged copper continuously decreased with the Na loading, leading to CuO formation. On the opposite, the sodium impregnation in ethanol did not significantly affect the copper distribution

In the next section, the copper state was also examined by NO adsorption monitored by FT-IR spectroscopy.

NO Adsorption Monitored by FT-IR Spectroscopy

Copper species in Cu-exchanged zeolite were largely studied in the literature by FT-IR adsorption experiments of probe molecules [START_REF] Deka | Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NO x[END_REF]. NO molecule is commonly used to investigate the oxidation state of copper cations in zeolites, due to its ability to form stable nitrosyl adducts with both Cu 2+ and Cu + cations. Several types of Cu species can co-exist, as solvated (Cu 2+ -(OH) -) + ions [START_REF] Dědeček | Role of hydrated Cu ion complexes and aluminum distribution in the framework on the Cu ion siting in ZSM-5[END_REF] or Cu 2+ monomers or (Cu 2+ -O 2--Cu 2+ ) 2+ dimmers [START_REF] Costa | Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu-ZSM5[END_REF].

IR spectra of adsorbed NO on the Na-free catalysts containing 2.8% and 6.1% Cu are reported in Figure 6A. The interaction between NO and Cu/FER resulted in the formation of two nitrosyl complexes [Cu 2+ -NO and Cu + -NO]. The main IR bands at 1905-1910 cm -1 are characteristic of NO adsorbed on Cu 2+ ions. NO adsorbed on Cu + ions led to nitrosyl species at around 1810 cm -1 [START_REF] Henriques | An FT-IR study of NO adsorption over Cu-exchanged MFI catalysts: Effect of Si/Al ratio, copper loading and catalyst pre-treatment[END_REF]. The presence of Cu + sites may result from the high vacuum applied for the FT-IR experiments. However, similar copper species distribution, namely Cu 2+ and Cu + sites, were observed over both samples with 2.8% and 6.1% copper. Dinitrosyl species were not observed. The effect of Na impregnation solvent over Cu species of Cu2.8/FER and Cu6.1/FER is presented in Figure 6B,C, respectively. Note that only the highest soda-content materials were examined.

For the Cu2.8/FER catalyst (Figure 6B), similar IR bands were observed after impregnation of Na in ethanol. Notably, characteristic IR bands of NO adsorbed on Cu 2+ ions were still observed, in similar intensity. These results are in good agreement with H2-TPR experiments which revealed that Na impregnation in ethanol did not significantly impacted the copper distribution. Interestingly, Na addition in water led to opposite results since Cu 2+ species were largely affected. More precisely, the band at 1908 cm -1 was shifted to lower wavenumbers, at 1897 cm -1 . The band at 1908 cm -1 is assigned to the interaction between NO and isolated Cu 2+ ions having a square pyramidal configuration [START_REF] Hadjiivanov | Identification of neutral and charged N x O y surface species by IR spectroscopy[END_REF] whereas the component at lower wavenumbers, at around 1897 cm -1 , is attributed to Cu 2+ sites with a square planar configuration and adjacent to a single framework aluminum atom. It only appeared after sodium addition in water which highlights interactions between Na and exchanged copper using this solvent. The band at 1808 cm -1 , assigned to nitrosyl species adsorbed on Cu + ion, was not observed. The effect of Na impregnation solvent over Cu species of Cu 2.8 /FER and Cu 6.1 /FER is presented in Figure 6B,C, respectively. Note that only the highest soda-content materials were examined.

For the Cu 2.8 /FER catalyst (Figure 6B), similar IR bands were observed after impregnation of Na in ethanol. Notably, characteristic IR bands of NO adsorbed on Cu 2+ ions were still observed, in similar intensity. These results are in good agreement with H 2 -TPR experiments which revealed that Na impregnation in ethanol did not significantly impacted the copper distribution. Interestingly, Na addition in water led to opposite results since Cu 2+ species were largely affected. More precisely, the band at 1908 cm -1 was shifted to lower wavenumbers, at 1897 cm -1 . The band at 1908 cm -1 is assigned to the interaction between NO and isolated Cu 2+ ions having a square pyramidal configuration [START_REF] Hadjiivanov | Identification of neutral and charged N x O y surface species by IR spectroscopy[END_REF] whereas the component at lower wavenumbers, at around 1897 cm -1 , is attributed to Cu 2+ sites with a square planar configuration and adjacent to a single framework aluminum atom. It only appeared after sodium addition in water which highlights interactions between Na and exchanged copper using this solvent. The band at 1808 cm -1 , assigned to nitrosyl species adsorbed on Cu + ion, was not observed.

Over Cu 6.1 /FER samples (Figure 6C), similar tendencies were denoted: the impregnation of Na in water affected copper species more than Na addition in ethanol. Again, the band at 1897 cm -1 was observed denoting an alteration of copper configuration.

Finally, NO adsorption monitored by FT-IR spectroscopy confirmed that Na deposit by water pathway impacted more severely the copper species than with the ethanol route. These results globally converge with H 2 -TPR experiments. However, NH 3 -SCR activity also depends on NH 3 adsorption, mainly linked with acidic properties. This point is investigated in the next section.

Effect of the Na Additions on the Surface OH Groups and NH 3 Adsorption Capacity

The influence on the Na deposits on surface OH groups and ammonia adsorption ability were studied by infrared spectroscopy.

OH Groups

Figure 7A reports the IR spectra in OH stretching vibration region of Cu 2.8 /FER and Cu 6.1 /FER samples before sodium addition and for the highest sodium contents depending on the Na impregnation solvent. After activation (450 • C), IR spectra recorded at RT were characterized by IR band at 3747 cm -1 assigned to a single terminal Si-OH groups. The component at 3724 cm -1 is assigned to the O-H stretchings of geminal silanols and/or weakly perturbed vicinal pairs of terminal silanols [START_REF] Trombetta | FT-IR studies on light olefin skeletal isomerization catalysis: III surface acidity and activity of amorphous and crystalline catalysts belonging to the SiO 2 -Al 2 O 3 system[END_REF]. One tailed band for bridged Al-(OH)-Si hydroxyls at 3602 cm -1 was also denoted. This is characteristic of the Ferrerite zeolite Brønsted acid sites, associated with the 8 and 10-membered ring channels. The band at 3642 cm -1 is assigned to Al-OH extra-framework groups. Thermal treatments procedures can partially remove aluminum from the crystal framework. It is assumed that the aluminum removed from the framework (EFAL) induces Lewis acidity and/or basic properties [START_REF] Chakarova | FTIR study of N and CO adsorption[END_REF][START_REF] De Ménorval | Mechanism of n-butene skeletal isomerization over HFER zeolites: A new proposal[END_REF]. procedures can partially remove aluminum from the crystal framework. It is assumed that the aluminum removed from the framework (EFAL) induces Lewis acidity and/or basic properties [START_REF] Chakarova | FTIR study of N and CO adsorption[END_REF][START_REF] De Ménorval | Mechanism of n-butene skeletal isomerization over HFER zeolites: A new proposal[END_REF]. For both catalysts, impregnation of around 2% Na in water (bold dotted line) led to a significant decrease in the OH bands intensity (3602 and 3642 cm -1 ), especially for bridged Al-(OH)-Si hydroxyls. Therefore, it could be supposed that a large part of the H + ions in the zeolite framework was exchanged by Na + ions during the impregnation. Additionally, the intensity of the band at 3602 cm -1 preferentially decreased with the Na loading (spectra not shown). To the opposite, Na impregnation in ethanol (thin dotted line) affected in a lesser extent the intensity of the band at 3602 cm -1 attributed For both catalysts, impregnation of around 2% Na in water (bold dotted line) led to a significant decrease in the OH bands intensity (3602 and 3642 cm -1 ), especially for bridged Al-(OH)-Si hydroxyls. Therefore, it could be supposed that a large part of the H + ions in the zeolite framework was exchanged by Na + ions during the impregnation. Additionally, the intensity of the band at 3602 cm -1 preferentially decreased with the Na loading (spectra not shown). To the opposite, Na impregnation in ethanol (thin dotted line) affected in a lesser extent the intensity of the band at 3602 cm -1 attributed to acidic Brønsted sites in the zeolite lattice. Consequently, it clearly appears that Na deposit in water poisoned more strongly the Brønsted acidity of the zeolite, whatever the Cu content (Cu 2.8 /FER or Cu 6.1 /FER samples), than for samples poisoned with ethanol as solvent for Na impregnation. Consequently Na deposited ethanol is suspected to interact mainly with extra-framework aluminum.

Note that no supplementary bands were observed after Na impregnation, to the opposite of Fritz et al. who observed a new band at 3695 cm -1 , attributed to Na + interaction with water hydrogen-bonded to a framework oxygen atom [START_REF] Fritz | The effect of sodium poisoning on dealuminated Y-type zeolites[END_REF].

NH 3 Adsorption

NH 3 adsorption was monitored by FT-IR. In the 3500-3000 cm -1 spectral range (spectra not shown), IR spectra were distinguished by bands at 3356, 3273, 3220 and 3189 cm -1 assigned to N-H stretching vibration modes [START_REF] Wang | NH 3 -SCR over Cu/SAPO-34-Zeolite acidity and Cu structure changes as a function of Cu loading[END_REF][START_REF] Datka | Acid properties of NaH-mordenites: Infrared spectroscopic studies of ammonia sorption[END_REF][START_REF] Kosslick | Acid properties of ZSM-20-type zeolite[END_REF][START_REF] Elzey | FTIR study of the selective catalytic reduction of NO 2 with ammonia on nanocrystalline NaY and CuY[END_REF]. More precisely, the band at 3189 cm -1 is assigned to Cu + -NH 3 [START_REF] Poignant | In situ FT-IR study of NH 3 formation during the reduction of NO x with propane on H/Cu-ZSM-5 in excess oxygen[END_REF][START_REF] Poignant | NH 3 formation during the reduction of nitrogen monoxide by propane on H-Cu-ZSM-5 in excess oxygen[END_REF]. The spectral region of N-H stretching vibrations was relatively complex, because the distortion of the NH 3 molecule upon coordination led to a splitting of the ν N-H,asym mode and to the activation of the ν N-H,sym mode. In fact, the symmetric N-H vibration (ν sym ) of NH 4 + is inactive toward IR vibration modes. Below 1800 cm -1 (Figure 7B), resolved N-H bending modes of ammonia adsorbed on Brønsted and Lewis sites appeared. This spectral range is dominated by absorption bands at 1452 and 1397 cm -1 (δ asym ), which are usually assigned to ammonium ions formed by the protonation of ammonia molecules located at Brønsted acid sites. These two components are tentatively assigned to different types of hydrogen-bonded ammonium, including monodentate and bidentate complexes for instance. The sharp band at 1621 cm -1 is assigned to bending modes of ammonia coordinatively bound to Lewis acid sites (δ asym ). The nature of these sites could be either tricoordinated Al atoms or Al species attached to defective sites, related to framework and extra-framework positions and also copper Lewis sites such as Cu 2+ [START_REF] Wang | NH 3 -SCR over Cu/SAPO-34-Zeolite acidity and Cu structure changes as a function of Cu loading[END_REF]. The bands at 1452-1397 cm -1 and 1621 cm -1 were used to determine the Brønsted and Lewis ammonia adsorption sites, based on the molar extinction coefficient values (ε Brønsted = 4.6 cm•µmol -1 , ε Lewis = 1.1 cm•µmol -1 both determined at the laboratory by successive addition of controlled amount of NH 3 ). The calculated amounts depending on the catalyst and the sodium loading and impregnation procedure are reported in Figure 8 (Lewis to Brønsted acid sites ratio is provided in Table 1). This graph shows a decrease in the adsorption of ammonia with increasing the Na content whatever the considered catalyst and the Na introduction mode. Considering the linear trend, one Na atom led to the disappearance of about two sites of ammonia adsorption (including Lewis and Brønsted), as previously mentioned for other materials [START_REF] Can | FCC gasoline sulfur reduction additives: Mechanism and active sites[END_REF]. However, Na addition led to some small different behavior in function of copper loading. For Cu 2.8 /FER catalyst, the total amount of acid sites was globally not affected until 300-400 µmol Na/g catalyst (7000-9000 ppm Na). To the opposite, adsorbed ammonia of the catalyst containing over-exchanged copper (Cu 6.1 /FER sample) is globally linearly poisoned by Na. Interestingly, the discrimination of the Brønsted and Lewis acid sites concentration also indicates that impregnation in water induced the total disappearance of the Brønsted sites for approximately 12,000 ppm Na, while the Lewis/Brønsted ratio appeared not affected when Na was added using ethanol (Table 1).

was globally not affected until 300-400 μmol Na/gcatalyst (7000-9000 ppm Na). To the opposite, adsorbed ammonia of the catalyst containing over-exchanged copper (Cu6.1/FER sample) is globally linearly poisoned by Na. Interestingly, the discrimination of the Brønsted and Lewis acid sites concentration also indicates that impregnation in water induced the total disappearance of the Brønsted sites for approximately 12,000 ppm Na, while the Lewis/Brønsted ratio appeared not affected when Na was added using ethanol (Table 1). Finally, FT-IR characterizations indicate a decrease in the ammonia adsorption capacity with increasing the Na content whatever the considered Na solvent. However, addition of around 2% Na in water resulted in a significant decrease in the OH bands intensity, whereas Na impregnation in ethanol affected in a lesser extent acidic Brønsted sites in the zeolite lattice. Water appeared to favor an ion exchange between the H + species and Na + ions during the impregnation step, as suspected between Na + and Cu 2+ from TPR and XRD experiments.

Discussion

Ammonia Adsorption and Copper State

The previous sections showed that sodium additions impacted both the copper state and the acidity/ammonia adsorption behaviors.

The influence of Na addition on the ammonia adsorption capacity is rather similar depending on the impregnation procedure, and differed a little in regard on the copper loading (Figure 8). 250 m 2 g -1 (Table 1).

Catalytic Activity

NOx conversions obtained over stabilized Cu2.8/FER and Cu6.1/FER samples (w are reported in Figure 1 for the Standard-SCR and Fast-SCR conditions. Please catalytic tests in Fast-SCR condition were performed with lower amount of catalyst mg for the Standard-SCR condition) to limit the deNOx efficiency and to possib deactivation by sodium addition. In Standard-SCR condition (Figure 1A), the best activity at low temperature was Cu6.1/FER catalyst with a full NOx conversion at around 300 °C. However, the NOx con a net drop in the 350-500 °C temperature range. It is assigned to a competition b reduction reaction and the ammonia oxidation reaction, leading to a lack in ammoni To the opposite, Cu2.8/FER sample presented an expanded operating temperatur around 90-95% of NOx conversion from 300 to 500 °C. The maximum outlet N2O co recorded at 500 °C, at 1.5 and 5 ppm for Cu2.8/FER and Cu6.1/FER, respectively.
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Discussion

Ammonia Adsorption and Copper State

The previous sections showed that sodium additions impacted both the copper state and the acidity/ammonia adsorption behaviors.

The influence of Na addition on the ammonia adsorption capacity is rather similar depending on the impregnation procedure, and differed a little in regard on the copper loading (Figure 8).
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Discussion

Ammonia Adsorption and Copper State

The previous sections showed that sodium additions impacted both the copper state and the acidity/ammonia adsorption behaviors.

The influence of Na addition on the ammonia adsorption capacity is rather similar depending on the impregnation procedure, and differed a little in regard on the copper loading (Figure 8).

On the opposite, significant differences were obtained concerning the copper distribution depending on the Na loading and impregnation solvent. Water solvent appeared to favor CuO formation at the expense of exchange Cu 2+ (Figure 5).

The amount of exchanged copper determined from H 2 -TPR results is reported in function of ammonia adsorption behavior in Figure 9. This figure reveals that roughly, lower the number of ammonia adsorption sites on Na poisoned sample by impregnation in water, lower the copper in exchange position for both Cu 2.8 /FER (square white symbol) and Cu 6.1 /FER samples (circle white symbol). No clear trend is denoted for Na impregnation in ethanol (grey symbol) because the amount of copper in exchanged position varied in a significantly lower extent. As a result, it is assumed that ammonia adsorption sites poisoned by Na deposits by ethanol route did not directly modify the nature of copper sites, whatever the materials (Cu 2.8 /FER or Cu 6.1 /FER). Additionally, the catalyst containing lower copper content (Cu 2.8 /FER) is more sensitive to Na poisoning than Cu 6.1 /FER sample which already exhibited large ratio of CuO before Na addition. symbol). No clear trend is denoted for Na impregnation in ethanol (grey symbol) because the amount of copper in exchanged position varied in a significantly lower extent. As a result, it is assumed that ammonia adsorption sites poisoned by Na deposits by ethanol route did not directly modify the nature of copper sites, whatever the materials (Cu2.8/FER or Cu6.1/FER). Additionally, the catalyst containing lower copper content (Cu2.8/FER) is more sensitive to Na poisoning than Cu6.1/FER sample which already exhibited large ratio of CuO before Na addition. 

Effect of Na Deposit over NH3-SCR Behaviour

As presented in the introduction section, NH3-SCR activity generally depends on both redox and acidity behaviors. Results presented in this study showed that both are potentially affected by sodium addition. In order to present a general overview of the influence of the Na addition, the deNOx activity recorded in Standard and Fast-SCR at selected temperatures (250 °C and 500 °C) for both Cu2.8/FER and Cu6.1/FER are plotted in function of (i) the ratio of exchanged Cu (assessed from H2-TPR experiments) (Figure 10A,C) or (ii) the amount of adsorbed NH3 determined by FT-IR analysis (Figure 10B,D).

At low temperature (250 °C, Figure 10A,B), the deNOx activity appeared to be sensitive to both copper state and amount of ammonia adsorption sites. More specifically, NOx conversion increased with the ratio of copper in exchanged position until approximately 50% of exchanged copper, and became relatively constant for higher values for both Standard and Fast-SCR condition. In parallel, a linear trend was obtained between the number of ammonia adsorption sites and the deNOx efficiency in the whole studied domain, whatever the considered Cu2.8/FER or Cu6.1/FER samples. Additionally, as expected, Fast-SCR condition allowed higher NOx conversion than Standard-SCR condition, but the same trends were observed for both reaction mixtures. Thus, at low temperature, it appeared that the number of ammonia adsorption sites has potentially more influence than the copper state (redox behavior). These results are consistent with the NO and NH3 oxidation properties previously discussed in Section 2.3.1 who exhibited very low activities at 250 °C.

DeNOx activity at high temperature (500 °C) are reported in Figure 10C,D depending on the copper state and the number of ammonia adsorption sites, respectively. Obviously, obtained trends at 500 °C differ compared to those observed at low temperature. The deNOx efficiency was then strongly dependent of the ratio of exchanged copper, whatever the considered catalyst (Figure 10C). 

Catalytic Activity

NOx conversions obtained over stabilized Cu2.8/FER and Cu6.1/FER samples (without sodium) are reported in Figure 1 for the Standard-SCR and Fast-SCR conditions. Please remind that the catalytic tests in Fast-SCR condition were performed with lower amount of catalyst (15 mg versus 50 mg for the Standard-SCR condition) to limit the deNOx efficiency and to possibly distinguish a deactivation by sodium addition. In Standard-SCR condition (Figure 1A), the best activity at low temperature was achieved by the Cu6.1/FER catalyst with a full NOx conversion at around 300 °C. However, the NOx conversion showed a net drop in the 350-500 °C temperature range. It is assigned to a competition between the NOx reduction reaction and the ammonia oxidation reaction, leading to a lack in ammonia to reduce NOx. To the opposite, Cu2.8/FER sample presented an expanded operating temperature window, with around 90-95% of NOx conversion from 300 to 500 °C. The maximum outlet N2O concentration was recorded at 500 °C, at 1.5 and 5 ppm for Cu2.8/FER and Cu6.1/FER, respectively.

Compared with the Standard-SCR condition, higher NOx conversions were observed at low temperature (200 °C) in Fast-SCR condition (Figure 1B), especially taking into account that the implemented catalyst weight was divided by more than 3. Again, a decrease in NOx conversion was denoted at temperature higher than 350-400 °C, especially for Cu6.1/FER samples, attributed to the ammonia oxidation reaction. The maximum outlet N2O concentration (500 °C) was then a little increased, at 4 and 7 ppm for Cu2.8/FER and Cu6.1/FER, respectively.

Standard-SCR and Fast-SCR catalytic tests were also performed on the Cu/FER zeolite containing various sodium loadings. Preliminary tests were performed with catalysts submitted to the impregnation procedures in water or ethanol, but without sodium salt. Results (not shown) indicated no change in the catalytic behavior.

In order to illustrate the influence of both sodium content and sodium impregnation solvent (water or ethanol) on the deNOx efficiency of both Cu2.8/FER and Cu6.1/FER catalysts, two representative temperatures were selected: 250 °C was chosen to compare the deNOx behaviors at "low" temperature, while 500 °C was selected for the "high" temperature comparisons. Figure 2 compares the loss of the NOx conversion (expressed as a percentage of loss compared with the Na free samples) at "low" and "high" selected temperatures, depending on the sodium content (water and ethanol solvents are presented in blue and red lines, respectively). Note that the N2O outlet concentration was not affected by sodium additions.
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Effect of Na Deposit over NH 3 -SCR Behaviour

As presented in the introduction section, NH 3 -SCR activity generally depends on both redox and acidity behaviors. Results presented in this study showed that both are potentially affected by sodium addition. In order to present a general overview of the influence of the Na addition, the deNO x activity recorded in Standard and Fast-SCR at selected temperatures (250 • C and 500 • C) for both Cu 2.8 /FER and Cu 6.1 /FER are plotted in function of (i) the ratio of exchanged Cu (assessed from H 2 -TPR experiments) (Figure 10A,C) or (ii) the amount of adsorbed NH 3 determined by FT-IR analysis (Figure 10B,D).

At low temperature (250 • C, Figure 10A,B), the deNO x activity appeared to be sensitive to both copper state and amount of ammonia adsorption sites. More specifically, NO x conversion increased with the ratio of copper in exchanged position until approximately 50% of exchanged copper, and became relatively constant for higher values for both Standard and Fast-SCR condition. In parallel, a linear trend was obtained between the number of ammonia adsorption sites and the deNO x efficiency in the whole studied domain, whatever the considered Cu 2.8 /FER or Cu 6.1 /FER samples. Additionally, as expected, Fast-SCR condition allowed higher NO x conversion than Standard-SCR condition, but the same trends were observed for both reaction mixtures. Thus, at low temperature, it appeared that the number of ammonia adsorption sites has potentially more influence than the copper state (redox behavior). These results are consistent with the NO and NH 3 oxidation properties previously discussed in Section 2.3.1 who exhibited very low activities at 250 • C.

DeNO x activity at high temperature (500 • C) are reported in Figure 10C,D depending on the copper state and the number of ammonia adsorption sites, respectively. Obviously, obtained trends at 500 • C differ compared to those observed at low temperature. The deNO x efficiency was then strongly dependent of the ratio of exchanged copper, whatever the considered catalyst (Figure 10C). Indeed, large CuO particles (mainly on Cu 6.1 /FER catalyst) favors the ammonia oxidation at high temperature, then inhibiting the NO x reduction.

Concerning the role of the ammonia adsorption ability, trends are not clearly evidenced. Plots are largely dispersed for Cu 2.8 /FER. For Cu 6.1 /FER sample, a trend seems to appear with a decrease in the deNO x activity with the decrease in the number of ammonia adsorption sites, but to a limited extend. Such results could be expected since the ammonia interaction with adsorption sites (mainly acidic sites) should be very weak at this temperature. As a consequence, the activity is mostly driven by copper state at 500 • C.

Concerning the role of the ammonia adsorption ability, trends are not clearly evidenced. Plots are largely dispersed for Cu2.8/FER. For Cu6.1/FER sample, a trend seems to appear with a decrease in the deNOx activity with the decrease in the number of ammonia adsorption sites, but to a limited extend. Such results could be expected since the ammonia interaction with adsorption sites (mainly acidic sites) should be very weak at this temperature. As a consequence, the activity is mostly driven by copper state at 500 °C. 

Materials and Methods

Catalyst Preparation

A ferrierite structure zeolite (SiO2/Al2O3 = 20, Alfa Aesar, Haverhill, MA, USA), which exhibits a channel system of 10 and 8 member rings, was selected to ensure a high hydrothermal stability. Two copper loadings were prepared (2.8 wt. % and 6.1 wt. %, measured by ICP elemental analysis after preparation of the samples) in order to obtain samples with or without extra-framework copper. Copper was added using the ion-exchange method. The ion exchanges were realized with 10 g of zeolite in suspension in Cu(CH3COO)2 (Sigma-Aldrich, L'Isle d'Abeau, France) diluted in ultra-pure water. The pH was adjusted at 5 with HNO3 to ensure the ionic copper state, based on the diagram of copper speciation from Ajmal et al. [START_REF] Ajmal | Role of sawdust in the removal of copper(II) from industrial wastes[END_REF]. The solution was stirred under reflux at 80 °C for 23 h. Solution was then filtered and thoroughly washed with ultra-pure water and dried at 120 °C for 15 h. The resulting powder was firstly treated at 600 °C under 10% O2-90% N2 for 30 min (heating rate: are largely dispersed for Cu2.8/FER. For Cu6.1/FER sample, a trend seems to appear with a decrease in the deNOx activity with the decrease in the number of ammonia adsorption sites, but to a limited extend. Such results could be expected since the ammonia interaction with adsorption sites (mainly acidic sites) should be very weak at this temperature. As a consequence, the activity is mostly driven by copper state at 500 °C. 
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Catalyst Preparation
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Catalytic Activity
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Materials and Methods

Catalyst Preparation

A ferrierite structure zeolite (SiO 2 /Al 2 O 3 = 20, Alfa Aesar, Haverhill, MA, USA), which exhibits a channel system of 10 and 8 member rings, was selected to ensure a high hydrothermal stability. Two copper loadings were prepared (2.8 wt. % and 6.1 wt. %, measured by ICP elemental analysis after preparation of the samples) in order to obtain samples with or without extra-framework copper. Copper was added using the ion-exchange method. The ion exchanges were realized with 10 g of zeolite in suspension in Cu(CH 3 COO) 2 (Sigma-Aldrich, L'Isle d'Abeau, France) diluted in ultra-pure water. The pH was adjusted at 5 with HNO 3 to ensure the ionic copper state, based on the diagram of copper speciation from Ajmal et al. [START_REF] Ajmal | Role of sawdust in the removal of copper(II) from industrial wastes[END_REF]. The solution was stirred under reflux at 80 • C for 23 h. Solution was then filtered and thoroughly washed with ultra-pure water and dried at 120 • C for 15 h. The resulting powder was firstly treated at 600 • C under 10% O 2 -90% N 2 for 30 min (heating rate: 2 • C min -1 ). Vapor water (10%) was then added and the catalyst was maintained at 600 • C for 16 h before cooling to room temperature. The corresponding stabilized samples are denoted Cu 2.8 /FER and Cu 6.1 /FER depending on the copper content.

Sodium Addition

Sodium addition was made by impregnation, using water or ethanol as solvent. 1.5 g of the catalyst was suspended in 4 mL of water or ethanol with the desire amount of sodium (NaNO 3 , from 4.3.4. Adsorption of Probe Molecules Monitored by FT-IR Adsorption of probe molecules monitored by infrared spectroscopy was used to characterize (i) ammonia adsorption behavior (the usual pyridine sensor to characterize acidic sites is not appropriate since it is not able to diffuse into the small porosity of the considered materials [START_REF] Trombetta | FT-IR studies on light olefin skeletal isomerization catalysis: III surface acidity and activity of amorphous and crystalline catalysts belonging to the SiO 2 -Al 2 O 3 system[END_REF][START_REF] Wichterlová | Determination and properties of acid sites in H-ferrierite: A comparison of ferrierite and MFI structures[END_REF]) and (ii) copper state of exchanged zeolites by NO adsorption. IR spectra were collected using a Nexus Nicolet spectrometer equipped with a DTGS detector (deuterium triglyceride sulfur) and a KBr beam splitter. Spectra were normalized to a disc of 10 mg•cm -2 . Before adsorption, the catalyst was in situ pre-treated under vacuum at 450 • C. Ammonia was then adsorbed at 25 • C and desorption was performed up to 450 • C. NO adsorption was performed at room temperature, IR spectra are compared with the same n NO /n Cu (≈30%) by adding a known amount of NO on the cell.

Conclusions

The impact of sodium, as alkali poison from biodiesel, was investigated on two model NH 3 -SCR catalysts (Cu 2.8% /FER and Cu 6.1% /FER), depending on the Na introduction method (impregnation in water or in ethanol). Impregnation in ethanol led mainly to a decrease in ammonia adsorption capacity, which affected the deNO x efficiency at low temperature whereas NO and NH 3 oxidation behaviors were not really affected. Impregnation of Na in water (representative of interaction of catalyst with condensed water, which occurs during engine stop and cold start) furthermore caused a migration of copper species from the exchange sites to extra-framework CuO. Consequently, NH 3 and NO oxidation behaviors were decreased. Finally, whatever the catalyst and the reaction mixture (Fast or Standard-SCR), the NO x conversion decrease with Na addition appeared linked to the decrease in ammonia adsorption at low temperature (250 • C), whereas the activity at high temperature (500 • C) mainly depended on the ratio of exchanged copper.
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The following are available online at www.mdpi.com/2073-4344/8/1/3/s1, Figure S1: XRD patterns of fresh and hydrotreated zeolite for 16 h at 600 • C and 750 • C. Figure S2: T-O-T bands obtained with zeolite before and after hydrotreatment at 600 • C and 750 • C during 16 h (samples diluted in KBr). Figure S3: XRD patterns of fresh FER, sodium free Cu 2.8 /FER and Cu 2.8 (w)/FER with 19,000 ppm Na impregnated in water. Figure S4: XRD patterns of fresh FER, sodium free Cu 6.1 /FER and Cu 6.1 (w)/FER with 20,300 ppm Na impregnated in water. Figure S5: Effect of Na loading on NH 3 oxidation at 400 • C over Cu 2.8 /FER and Cu 6.1 /FER samples depending on the Na loading impregnated in water (W) or ethanol (Et). Figure S6: H 2 -TPR profile deconvolution over Cu 2.8 /FER with 19,000 ppm of Na content impregnated in water.
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 2 Figure 2. NOx conversion loss in function of the sodium loading on Cu/FER zeolites in standard (A,B) and Fast-SCR (C,D) at 250 °C (A,C) and 500 °C (B,D). : Cu2.8/FER; : Cu6.1/FER. (Na impregnation in water: blue line; sodium impregnation in ethanol: red line).
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 4 Figure 4. H2-TPR profiles: Effect of Na loading impregnated in water (W) on (A) copper-exchanged zeolite Cu2.8/FER and (B) on over-exchanged zeolite Cu6.1/FER.
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 7 Figure 7. IR spectra for sodium free zeolites (full line) and for the highest Na contents depending on the Na solvent (water, bold dotted line; ethanol, thin dotted line). (A) OH stretching vibration recorded at RT after activation and evacuation at 450 °C; (B) IR spectra of adsorbed NH3 after evacuation at 150 °C.
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 8 Figure 8. Relationship between the ammonia adsorption amount (determined by NH3 adsorption evacuated at 50 °C) and the Na loading. : Cu2.8(W)/FER; : Cu2.8(Et)/FER; : Cu6.1(W)/FER; : Cu6.1(Et)/FER.
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 10 Figure 10. Effect of copper content of Cu2.8/FER (, ) and Cu6.1/FER (, ) catalysts in the relationship between deNOx activity in Standard-SCR () and Fast-SCR () and exchanged Cu ((A) 250 °C; (C) 500 °C) or ammonia adsorption ((B) 250 °C, (D) 500 °C).
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Fisher Scientific Labosi, Elancourt, France). The solution was stirred at room temperature during 4 h. After solvent evaporation, the sample was dried one night at 80 • C. Finally, the resulting powder, as the catalyst without sodium, was submitted again to the thermal treatment: 30 min at 600 • C under 10% O 2 -90% N 2 and 16 h at 600 • C under 10% O 2 , 10% H 2 O and N 2 . The effective Na contents were measured by ICP, and the amount of sodium deposit was up to 20,300 ppm.

The resulting impregnated catalysts were denoted (W) or (Et) depending on the sodium impregnation solvent (water or ethanol).

Characterization Techniques and Catalytic Tests

Structural/Textural Characterizations, Elemental Analysis

Elemental analysis was carried out to assess the copper and sodium loadings. After mineralization of the samples, analysis were performed with an ICP-OES apparatus (Perkin Elmer Optima 2000 DV, Waltham, MA, USA).

Specific surface areas were determined by BET method (Micromeritics ASAP 2000, Norcross, GA, USA) using nitrogen adsorption at 77 K. The total pore volume was evaluated at P/P 0 = 0.97, and the microporous volume was calculated with t-plot. Prior to the N 2 physisorption, the samples were degassed under vacuum 1 h at 90 • C and 4 h at 350 • C.

The powder XRD patterns were collected using an Empyrean (PANalytical, Almelo, The Netherlands) diffractometer. Data acquisition was recorded from 5 • to 70 • (2θ) with a scanning step of 0.017. Crystalline phases were identified by comparison with ICDD database files.

Catalytic Activity

The SCR tests were performed in a tubular quartz reactor. For the Standard-SCR catalytic tests, 50 mg of zeolite (sieved in the 0.2-0.4 mm range) diluted in 50 mg of SiC (Prolabo, 0.35 mm) were used. The reactant gas composition was 500 ppm NO, 500 ppm NH 3 , 10% O 2 , 10% CO 2 , 9% H 2 O balanced in N 2 . The total flow rate was fixed at 250 mL min -1 . For the Fast-SCR catalytic tests, 500 ppm NO x were made of 250 ppm NO and 250 ppm NO 2 , and only 15 mg of zeolite diluted in 15 mg of SiC were used in order to obtain conversions allowing the discrimination of catalysts. Gaseous NO, NO 2 , NH 3 , CO 2 , O 2 and N 2 flows were adjusted by mass-flow controllers, while H 2 O was added via a saturator. The composition of the feed gas and effluent stream were analyzed online with a MKS 2030 Multigas infrared analyzer.

Redox Properties

Temperature Programmed Reduction (TPR) with Hydrogen Temperature programmed reduction experiments were performed on a Micromeritics Autochem 2920. Sample (100 mg) was placed in a U-shaped quartz reactor. Prior the reduction, the catalyst was in situ calcined at 450 • C for 30 min under O 2 (heating rate: 5 • C•min -1 ). After cooling to room temperature and purge under argon flow for 45 min, the reduction was carried out under 1% H 2 /Ar up to 1000 • C (rate: 10 • C•min -1 ). The reduction was followed by a thermal conductivity detector (TCD). Because this TCD is sensitive to water, a H 2 O trap was added downstream the reactor, allowing the quantification of the H 2 consumption.

NO and NH 3 Oxidation

The NO and NH 3 oxidation tests were performed in similar condition than the Standard-SCR tests. 50 mg of catalyst (sieved in the 0.2-0.4 mm range), diluted in 50 mg of SiC (Prolabo, 0.35 mm) were used. The gas compositions were 500 ppm NO or 500 ppm NH 3 , 10% O 2 , 10% CO 2 , 9% H 2 O balanced with N 2 , with a total flow rate fixed at 250 mL•min -1 .
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